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Abstract

Recent observation with the LASCO coronagraph on board the SOHO
spacecraft have shown that helmet streamers may have an internal triple
arcade structure. The observations suggest that this triple structure might
be important for the initiation of coronal mass ejections (CME’s). In this
paper we undertake a first step towards the theoretical description of such
triple structures by calculating self-consistent solutions of the magneto-
hydrostatic equations in two dimensions. For simplicity, we start with the
investigations of current-free structures, leading to potential magnetic
fields. We then go on to investigate the case of linear currents. These two
cases have the disadvantage of being linearly stable in the framework of
MHD, which makes it difficult to take them as starting-points for further
investigations. Therefore, we also investigate special exact solutions of a
nonlinear case and apply the method of asymptotic expansion to another
nonlinear problem to obtain approximate elongated solutions, which might
be useful for linear or nonlinear stability checks.

1. Introduction

Arcade type structures play an import role in solar flare
physics. Two dimensional magnetohydrostatic models
assuming a photospheric dipole field and corresponding
single arcade structures have been studied for example in [1,
2, 3]. Studies about the existence, uniqueness and stability
of magnetohydrostatic equilibria can be found for example
in [4, 5].

Recent observations (LASCO telescope on board the
SOHO spacecraft, [6, 7]) of coronal helmet streamers show
a triple structure. This suggests that both a dipolar and a
quadrupolar component of the global solar magnetic field
are important inside these structures. The observations also
show that these structures can open and eject material into
the interplanetary medium. It is therefore important to
investigate the properties of such structures theoretically.
We take a first step in this direction and try to calculate
equilibria with a triple arcade structure.

We present four different methods to calculate solutions
with a triple arcade structure. First we present three method
leading to exact solutions of two-dimensional magnetostatic
equilibria which may be useful to describe arcade structures
near the sun.

For simplicity, we start with the investigations of current
free structures and structures with a linear current. In both
cases one can find exact solutions in the form of Fourier
series. These structures a linearly stable in the framework of
MHD. Therefore, we also investigate a special nonlinear
case which has exact solutions. To describe strongly
stretched structures we use the method of asymptotic expan-
sion.

2. Basic equations

We use the equations of magnetohydrostatics to describe
the coronal plasma:

1
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where P is the pressure, B the magnetic field, p the mass
density, ¥ the gravitation potential, R the gas constant, T
the temperature and p, the permeability of free space. As a
first step to describe the observed triple arcade structures we
use a Cartesian geometry. For simplicity the configurations
considered are two-dimensional (6/0y = 0). In the 2D case
the magnetic field may be written as:

B(x, z) = VA(x, z) X e, + B,(A)e,. “

A is the y-component of the vector potential 4 and B(4) is
the magnetic field component in the invariant direction.
Equation (2) is then identically fulfilled.

Using eq. (4) one can find from eq. (1)

0 B(A)

—Ad = (uoP(A, v)+=22) 5)
With a homogeneous gravitational field g and the assump-
tion of constant temperature, one finds (see for example [1,

4])
P(4, ¥) = P(4, z) = p(4) - exp (- %) ©6)

where H = RT/g is the scale height. If one assumes a hydro-
gen plasma and a coronal temperature T = 3 x 10°K one
finds H ~ 9 x 107 m. Since this is a first attempt to describe
triple structures and since gravitation has no influence on
the lateral structure of the magnetic field, we will make the
assumption that we can approximate the pressure as:

P(4, P) ~ p(A). )

We include gravitation in section “Asymptotic Expansion”
because the radial length scale of the equilibria are compa-
rable or larger than the scale height in this case. We ignore
gravitation in all other cases, because we assume H > z
there. In the present contribution, we do not explicitely take
a magnetic shear component (B,) into account. In those
cases in which we neglect the dependence of the pressure on
the gravitational field, all results apply as well if one
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replaces the pressure p(4) by B,(4)*/2u, or a combination of
both.

3. Linear models
3.1. Potential fields

If we assume that there are no currents, eq. (5) simplifies to:
A4 =0. ®

We can solve eq. (8) easily by using a separation method
(see for example [8]) A(x, z) = A.(x) x A,(z) and get:

A.(x) = a cos (kx) + b sin (kx), )]
(10)

We discard the exponentially growing solution because we
demand the magnetic field to be bounded for z —» co. We
can write the solution of (8) in Fourier-Series:

A[z) = ¢, exp(—kz) + ¢, exp (+kz).

Ax, z) = i exp (—kz)[ay cos (kx) + by sin (kx)].

k=0

(11)

3.2. Linear current solutions
In the absence of gravity and assuming the current to be
linear in A4,

j=— (uop(A) * #) =4,

we get from (5)

—Ad=c?- A (12)

Equation (12) includes the linear force free case (0p(A4)/
0A=0, B(A)=c-A) and the quadratic pressure case
without magnetic shear (p(4) = ¢*/2-A%, B,(A) = 0).

To solve eq. (12) we can use a similar separation method
as in the potential case and get:

A(x) = a cos (kx) + b sin (kx),

A (z) = ¢, exp (—vz) + c,exp (+vz), k>c,

A,(z) = d, cos (0z) + d, sin (wz),
Az(z) =ez+ ey, k=c, (13)

(V¥ =k*— > 0; 0*> = ¢* — k* > 0). We discard the expo-
nentially growing solution and the linearly growing solution
because we demand the magnetic field to be bounded for
z — 00. Furthermore we do not consider the solutions with
k < c because these solutions are periodic in z and do not
lead us to arcade structures. As a result we get a solution of
eg. (12) in Fourier-Series:

k<ec,

Ax, z) = i exp (—vz)[a, cos (kx) + by sin (kx)]. (14)

3.3. Examples

In this section we use eq. (11) and eq. (14) to get solutions
which have triple arcade structures. We prescribe photo-
spheric boundary conditions to calculate the coefficients a,
and b, in eq. (11) and eq. (14). We want to get solutions that
are symmetric with respect to x =0 and we set A(—(n/2),
z) = A(+ /n/2), z) = 0 from which we get: b, = OVk > 1. (We
remark that a, and b, add only constants to the vector
potential 4 and have no influence on the magnetic field.) We
prescribe the normal component of the magnetic field as the
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photospheric boundary condition. The chosen photospheric
boundary conditions are g, = 0 for almost all k; the non-
vanishing g, are given explicitely in the following. In Fig.
1(a)—(f) we present solutions of the potential eq.(8) with the
photospheric magnetic field as:
(a) dipole-like field (a, = 1),
(b) quadrupole-like field (a; = 1)
In (c)-(f) we present solutions with combinations of a
photospheric dipole-like and quadrupole-like field:
(C) a; = 1 az = 1,
da;=1a,=—1,
(e) a, = 1 as = -2,
®a, =1,a;=—05.

In (g) and (h) we present solutions of eq. (12) and use as

Fig. 1. Magnetic field lines (contourplots of A(x, z)) for different boundary
conditions in the linear case (see text).



boundary conditions the same values as in (f), but different
values of ¢?:
(8) > =05,
(h) 2 =0.8.

As one can see the dipole-like boundary condition (a)
results in a single arcade-structure and the quadrupole-like
boundary condition (b) results in a periodic triple structure.
The structure (c) seems to be unrealistic because the observ-
ations do not show a large arcade structure between two
small arcade structures, but (d)—(h) show a qualitative agree-
ment with the structures observed with the LASCO-
Coronagraph.

4. Non-linear models

If one assumes local thermodynamic equilibrium one can
find the pressure in the form p(4) = A/c exp (—cA). Thus we
get from eq. (5), if we use B, = 0 for simplicity:

AA = A exp (—cA). 15)

We use a method, developed by Liouville to solve this equa-
tion [4, 9].

With u = x + iz and # = x — iz the general solution of eq.
(15)is

c

=W

14+

A(u, u) = p; log (16)

oy
ou

With eq. (16) every analytic function ¥(u) specifies a solu-
tion of eq. (15).

4.1. Examples

We use the Liouville method to produce some illustrative
solutions. To specify solutions of (15) which could have rele-
vance for coronal triple structures we use ¥(u) = —a, cos
(a, u) + a5 u? (with real parameters g;) and get

2
A(x, z) = z log (1 + % I:(—a1 cos (a, x) cosh (a, z)

+ as(x* — z%))?

+ (a4 sin (a, x) sinh (a, z) + 2a, xz){|>

2
—7 log ([(a, a, sin (a, x) cosh (a, z) + 2a; x)*

+ (a, a, cos (a, x) sinh (a, z) + 2a; 2)*]/?). a7

Figure 2 shows the magnetic field lines (contourplots of
A(x, z)) for this solutions with ¢ = 2. We present solutions of
the form (17) with a, = 3, a, = 2, a; = 5 but with different
values of A (a) A = 0.1; (b) A = 0.9.

These parameters are chosen to illustrate that one can
find exact triple arcade solutions within a nonlinear model.
As one can see with increasing A the arcade structure in the
middle decreases. The observations also show differences in
the height of the single arcade structures within a triple
arcade structure, but we cannot relate our parameters
directly to the observations yet. We remark that it is neces-
sary for the Liouville method that B, = —(04/0z) and B, =
0A/0x are of the same order of magnitude to obtain triple
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Fig. 2. Magnetic field lines (contourplots of A(x, z)) of solutions calculated
with the Liouville method (see text).

structures. If B, > B, one cannot find triple arcade struc-
tures with this method because the current cannot change
its sign if one assumes j(4) oc exp (—cA). A necessary con-
dition for the formation of triple structures in all described
methods is 924/0x> = 0 between the single arcade struc-
tures. If one assumes B, > B, one obtains j ~ —(02A4/0x?).
Thus the Liouville method cannot lead to stretched triple
structures.

5. Asymptotic expansion

In the preceding sections we presented fully two dimension-
al solutions. If the configuration is strongly stretched in one
dimension, which means:

0/0x = O(1)= B, = 0(1), 0/0z = O(e) < 1 =B, = O(¢), B, =
O() <1 or, for simplicity, B,=0, we can ignore 0%/
0z*> = O(e?). This method is well known in the theory of the
Earth’s magnetotail [1, 11]. In this section we investigate
also the effect of gravity because the radial length scale of
the equilibria are comparable or larger then the scale height
in this case. Therefore we use P(z, 4) as defined in eq. (6).
With these approximations and without magnetic shear we
get from eq. (5):

%4 z \ dp(A4)
T eXp<_ﬁ)a—A' 9
After one integration with respect to x we get:
0A z
“_ _ _Z 19
o + \/ 2#0(1’0(2) exp ( H)P(A))- (19)

Do(2) is a constant of integration which depends parametri-
cally on z. For some special forms of p(A4) one can find ana-
Iytical solutions [10, 11].

To get triple arcade solutions in stretched configurations
the current density has to change its sign between the single
arcade structures. The current density is defined as j = dp/
0A. Thus the pressure function must have a minimum or we
have to allow a discontinuity in j(4). In this paper we do not
present solutions with a discontinuity in in the current func-
tion. We remark that changing the sign in (19) is equivalent
to changing the direction of the z component of magnetic
field B, = 0A/0x which is the only relevant component for
the magnetic pressure B?/2u, in the tail approximation. To
get triple arcade structures it is necessary to change the sign
of (19) if 04/0x = 0.

In principle every smooth pressure function p(A4) with a
minimum leads to triple arcade structures. To illustrate this
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we present some example solutions with two different pres-
sure profiles and solve (19) numerically. As a boundary con-
dition we use the total pressure at x = 0 and choose:

z4 .

(2o + 2)* *po,
(with z, = 300, p¥ = 0.3). A motivation for this choice is
that the magnetic field outside the whole configuration, in
the solar wind, varies oc 1/z2. Thus the magnetic pressure
DPm = B?/2u, varies oc 1/z*. We assume that the total pres-
sure py(z) is a sum of the magnetic pressure outside the con-
figuration and p§ which we interpret as the asymptotic solar
wind pressure for z — co. We remark that the exact form of
Po(2) is not important because it is only an integration con-
stant in this model. One may use any monotonously
decreasing function py(z) and get similar structures.

In Fig. 3 we present the magnetic field lines for the solu-
tions of eq. (19). In Fig. 3(a) and (b) we present solutions to
the pressure function p,(4) = exp (—24) + 0.54. In (a) we
ignore gravity (H — o) and in (b) we consider a homoge-
neous gravitation field (H = 500). In Fig. 3(c) and (d) we
present solutions to another pressurefunction p,(4) = exp

Po(2) =

D
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Fig. 3. Contourplots of A(x, z) calculated with the method of asymptotic
expansion for different pressure functions. The configurations on the left
hand side are calculated without gravity. The configurations on the right
hand side include a homogeneous gravitation field (see text). Note the dif-
ferent in horizontal scales in the upper and lower panels. Note also the
different scaling compared with the previous figures.
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(—24) + 0.542. In (c) we ignore gravity and in (d) we con-
sider a homogeneous gravitation field (H = 500). Note the
difference in horizontal scale between the upper and lower
panel in this figure and note also that the scales differ from
the scales in the previous figures. We show a plot of the two
pressure functions in Fig. 4. We remark that the chosen
pressure functions are only examples for functions which
can be used to get triple arcade structures with the method
of asymptotic expansion. One cannot calculate the exact
form of p(A) or derive it directly from the observations.

One can see that the configuration calculated with the
function p,(4) is wider than those calculated with p,(A).
Especially between the outer arcade structures there is a
factor of more then two. To obtain the reason for this fact
look at Fig. 4. The increasing part of the pressure function
P, is much steeper as the one of p;. As one can see from eq.
(18) this means that B, = 04/0x varies more quickly with
respect to x if one uses p,. Consequently the configuration
with p, is thinner than the configuration with p,.

The panels on the right hand side show the same calcu-
lation as the one on the left hand side but include a homo-
geneous gravitation field. The effect of gravity is that the
configurations become more stretched and that the outer
arcade structures bend towards the boundary. The second
effect is more clear in the lower panels. In the middle (x = 0)
of our configurations we have P(A4, z) = py(z) because B,
and consequently the magnetic pressure vanishes here. If we
use P(4, z) as defined in eq. (6) we get p(4) = py(z) exp (z/H).
Consequently in a configuration with gravity, p(4) has the
same values at a lower value of z than in a configuration
without gravity. The effect increases with increasing z. Thus
the configurations with gravity become more stretched.

The explanation for the second effect is that with increas-
ing z the pressure-function P(z, A) and 0P(z, A)/0A decrease
for the same values of 4. We explained above that a flatter
pressure function leads to a wider configuration. Thus in a
configuration with gravity the configuration becomes wider
with increasing z. In a Cartesian geometry the configuration
gets bend. We used z,,,,/H = 0.2 to investigate the effect of
gravity. Although this value is unrealistically low one may
use it to investigate the effect of gravity. To describe huge
structures with z_,, > H, which are more realistic, one

p1(A)=exp(—2A)+0.5"A; p2(A)=exp(-2A)+0.5*A 2

3.5 T T T T

1.5 2 25

o ' L
-0.5 0 0.5

»al

Fig. 4. Pressure functions
exp (—24) + 0.542.

pi(A) =exp (—24)+ 054 and py(4) =



should use spherical coordinates and a realistic gravitation
field (not a homogeneous one).

6. Conclusions

In this paper we presented different possibilities to calculate
solutions which could have relevance for the observed triple
structures associated with helmet streamers. To describe
triple arcade structures near the sun we used 2D solutions of
the Grad Shafranov equation. In a first attempt we used the
linear theory which allows solutions in the form of Fourier
series. Thus we derived triple arcade structures by pre-
scribing the Fourier coefficients.

As a next step we presented analytical solutions of one
type of the non linear Grad Shafranov equation (Liouville
equation (A4 = A exp (—cA)). We showed that one can find
exact triple arcade solutions of this equation. We remark
that it is necessary for this method that B, = —(0A4/0z) and
B, = 0A/0x are of the same order of magnitude to obtain
triple structures. If B, > B, one cannot find triple structures
with this method because the current density
j(A) = —A exp (—cA) does not change its sign. Thus this
method cannot be used to describe stretched triple struc-
tures. This is a disadvantage of the Liouville method
because unstable stretched structures are assumed to play
an important role in the theory of coronal mass ejections.

Special methods to describe stretched magnetic fields
have been developed in [10] and [11] with applications to
the Earth’s magnetotail. We illustrated that one can use this
methods also to get triple arcade structures if a special form
of the pressure profile, which must have a minimum, is used.
Analytical solutions are not yet available for this case.

It is not clear, which of these methods will turn out to be
the most useful one. The linear theory allows to describe
structures near the sun and stretched structures but it is well
known ( not proofed in this paper) that these structures are
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(linearly) stable. With the Liouville method one can calcu-
late exact solutions of one special nonlinear case, but one
cannot use this method to describe stretched triple struc-
tures. The method of asymptotic expansion allows us to cal-
culate stretched triple structures in a nonlinear case. The
observations suggest that stretched arcade structures could
have relevance for coronal mass ejections. Thus these con-
figurations may be used as a start equilibrium for MHD
simulations related to coronal mass ejections.

An important question for future work is whether triple
structures make the occurrence of eruptions more likely and
also more energetic. To answer this question, investigations
and comparisons of the stability and the time evolution of
single and multiple arcade structures are necessary. This will
be done in the future with the use of MHD simulations.
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