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Abstract We describe a newly developed code for the extrapolation of nonlinear force-free
coronal magnetic fields in spherical coordinates. The program uses measured vector mag-
netograms on the solar photosphere as input and solves the force-free equations in the solar
corona. The method is based on an optimization principle and the heritage of the newly de-
veloped code is a corresponding method in Cartesian geometry. We test the newly developed
code with the help of a semi-analytic solution and rate the quality of our reconstruction qual-
itatively by magnetic field line plots and quantitatively with a number of comparison met-
rics. We find that we can reconstruct the original test field with high accuracy. The method
is fast if the computation is limited to low co-latitudes (say 30° ≤ θ ≤ 150°), but it becomes
significantly slower if the polar regions are included.

1. Introduction

The solar corona is dominated by the coronal magnetic field because the magnetic pressure is
several orders of magnitude higher than the plasma pressure. Knowledge regarding the coro-
nal magnetic field is therefore important to understand the structure of the coronal plasma
and to get insights regarding dynamical processes such as flares and coronal mass ejections.
The direct measurement of magnetic fields is very difficult and such measurements are only
occasional available; see, e.g., Lin, Kuhn, and Coulter (2004). Well established are mea-
surements of the photospheric magnetic field with the help of line-of-sight magnetographs
(e.g., SOHO/MDI and NSO/Kitt Peak) or vector magnetographs (e.g., currently with the
Solar Flare Telescope/NAOJ and the Imaging Vector Magnetograph/Mees Observatory, and
in the near future with SOLIS/NSO, Hinode, and SDO/HMI). These photospheric fields can
be extrapolated into the solar corona by making suitable model assumptions. The simplest
approach is to assume current-free potential fields, which can be computed from the photo-
spheric line-of-sight magnetic field alone. Such source surface potential field models (Schat-
ten, Wilcox, and Ness, 1969; Neugebauer et al., 2002; Schrijver and Derosa, 2003) already

T. Wiegelmann (�)
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse 2,
37191 Katlenburg-Lindau, Germany
e-mail: wiegelmann@mps.mpg.de



228 T. Wiegelmann

give some insight about the coronal magnetic field structure, e.g., regarding the location of
coronal holes and active regions. They cannot, however, be used to estimate the magnetic
energy and helicity of the corona; in particular, they fail to provide an estimate of the free
energy available for eruptive phenomena. For reliable estimates of these quantities, currents
have to be included. To lowest order the effects of plasma pressure and gravity can be ne-
glected and we can assume that the currents are parallel to the magnetic field, the force-free
assumption. A popular simplification of force-free fields are linear force-free fields (Chiu
and Hilton, 1977; Seehafer, 1978) where the electric current flow is parallel to the mag-
netic field with a global constant of proportionality α. This approach is particularly popular
because linear force-free models require only line-of-sight magnetograms as input and con-
tain only a single free parameter α, which can be specified by comparing magnetic field
line plots with coronal images (Carcedo et al., 2003; Marsch, Wiegelmann, and Xia, 2004).
In general α changes in space and taking this into account requires the use of nonlinear
force-free models. A comparison of observationally inferred 3D magnetic field structures
in a newly developed active region (Solanki et al., 2003) with different extrapolated field
models by Wiegelmann et al. (2005b) revealed that linear force-free fields are better than
potential fields, but nonlinear force-free models are even more accurate. The computation
of nonlinear force-free fields is more challenging, however, for several reasons. Mathemati-
cally, problems regarding the existence and uniqueness for various boundary value problems
dealing with nonlinear force-free fields are still open; see Amari, Boulmezaoud, and Aly
(2006) for details. Another issue is the numerical analysis for a given boundary value prob-
lem. An additional complication is to derive the required boundary data from photospheric
vector magnetic field measurements. High noise in the transversal components of the mea-
sured field vector, ambiguities regarding the field direction, and nonmagnetic forces in the
photosphere complicate the task to derive suitable boundary conditions from measured data.

Different approaches have been proposed for the nonlinear force-free extrapolation of
vector magnetograms:

– The upward integration method (e.g., Wu et al., 1990; Cuperman, Demoulin, and Semel,
1991; Demoulin, Cuperman, and Semel, 1992; Amari et al., 1997)

– The Grad – Rubin-like method (e.g., Grad and Rubin, 1958; Sakurai, 1981; Amari et al.,
1997; Amari, Boulmezaoud, and Mikic, 1999; Wheatland, 2004; Amari, Boulmezaoud,
and Aly, 2006)

– Different MHD relaxation methods (e.g., Mikic and McClymont, 1994; Roumeliotis,
1996; Valori, Kliem, and Keppens, 2005)

– The Green’s-function-like method (e.g., Yan and Sakurai, 2000; Yan and Li, 2006) and
– the optimization method (e.g., Wheatland, Sturrock, and Roumeliotis, 2000; Wiegelmann,

2004)

For a more complete review on existing methods for computing nonlinear force-free coronal
magnetic fields see the review papers by Amari et al. (1997) and Schrijver et al. (2006). The
Grad – Rubin method as described in Amari et al. (1997) and Amari, Boulmezaoud, and
Mikic (1999) has been applied to investigate particular active regions in Bleybel et al. (2002)
and a comparison of the extrapolated field with 2D projections of plasma structures as seen
in Hα, EUV, and X rays has been done in Régnier, Amari, and Kersalé (2002) and Régnier
and Amari (2004). The optimization code in the implementation of Wiegelmann (2004)
has been applied to an active region in Wiegelmann et al. (2005a) and compared with Hα

images. Wiegelmann and Inhester (2006) investigated the possibility of using magnetic field
extrapolations to improve the stereoscopic 3D reconstruction from coronal images observed
from two viewpoints.
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Recently, Schrijver et al. (2006) compared the performance of six different Cartesian
nonlinear force-free extrapolation codes in a blind algorithm test. All algorithms yield non-
linear force-free fields that agree well with the reference field in the deep interior of the
volume, where the field and electrical currents are strongest. The optimization approach
also successfully reproduced the weak field regions and compute the magnetic energy con-
tent correctly with an accuracy of 2%. In a coordinated study Amari, Boulmezaoud, and Aly
(2006) obtained an accuracy of somewhat better than 2%.

The good performance of the optimization method encourages us to develop a spherical
version of the optimization code. The required full-disk vector magnetograms will become
available soon (e.g., from SOLIS). The heritage of the newly developed code is a Cartesian
force-free optimization method as implemented by Wiegelmann (2004). We outline the pa-
per as follows. In Section 2 we describe our newly developed algorithm. Section 3 contains
a semi-analytic test case and the setup of computations to check the accuracy and perfor-
mance of our code. We introduce figures of merit to rate the quality of our reconstruction in
Section 4 and present the results of our test runs in Section 5. Finally, we draw conclusions
in Section 6 and give an outlook for future work.

2. Method

Force-free magnetic fields have to obey the equations

(∇ × B) × B = 0, (1)

∇ · B = 0. (2)

We solve Equations (1) and (2) with the help of an optimization principle as proposed
by Wheatland, Sturrock, and Roumeliotis (2000) and generalized by Wiegelmann (2004).
Until now the method has been implemented in Cartesian geometry.

Here we define a functional in spherical geometry:

L =
∫

V

[
B−2

∣∣(∇ × B) × B
∣∣2 + |∇ · B|2]r2 sin θ dr dθ dφ. (3)

It is obvious that the force-free equations (1) and (2) are fulfilled when L equals zero. We
normalize the magnetic field with the average radial magnetic field on the photosphere and
the length scale with a solar radius.

The functional (3) can be numerically minimized with the help of the iteration equations:

∂B
∂t

= µF (4)

where µ is a positive constant and

F = ∇ × (�a × B) − �a × (∇ × B) + ∇(�b · B) − �b(∇ · B) + (
�2

a + �2
b

)
B (5)

with

�a = B−2
[
(∇ × B) × B

]
, (6)

�b = B−2
[
(∇ · B)B

]
. (7)
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The theoretical deviation of the iterative equation (4) as outlined by Wheatland, Sturrock,
and Roumeliotis (2000) does not depend on the use of a specific coordinate system. Previous
numerical implementations of this method have been done to our knowledge only in Carte-
sian geometry, however. Here we describe a newly developed implementation in spherical
geometry.

2.1. Implementation

We use a spherical grid r, θ,φ with nr, nθ , nφ grid points in the radial direction, latitude,1

and longitude, respectively. Here we intend to compute the whole sphere r = 1Rs . . .2.57Rs,
θ = 0◦ . . .180◦, φ = 0◦ . . .360◦, but in principle one could limit the method also to parts of
a sphere. To avoid the mathematical singularities at the poles, we do not use grid points
exactly at the south and north pole, but set them half a grid point apart at θmin = dθ

2 and
θmax = 180◦ − dθ

2 .
The method works as follows:

1. We compute the initial source surface potential field in the computational domain from
Br on the photosphere at r = 1Rs.

2. We replace Bθ and Bφ at the bottom photospheric boundary at r = 1Rs by the measured
vector magnetogram.2 The outer radial boundary is unchanged from the initial poten-
tial field model. For the purpose of code testing we also try other additional boundary
conditions (see Section 3.2).

3. We iterate for a force-free magnetic field in the computational box by minimizing the
functional L of (3) by applying (4).

4. The continuous form of (4) ensures a monotonically decreasing functional L. For finite
time steps, this is also ensured if the iteration time step dt is sufficiently small. If L(t +
dt) ≥ L(t) this step is rejected and we repeat this step with dt reduced by a factor of 2.

5. After each successful iteration step we increase dt by a factor of 1.01 to ensure a time
step as large as possible within the stability criteria. This ensures an iteration time step
close to its optimum.

6. The iteration stops if dt becomes too small. As stopping criteria we use dt ≤ 10−9.

1θ corresponds to the co-latitude, with θ = 0◦ and θ = 180◦ at the south and north poles, respectively.
2It is as well possible to replace only parts of the photosphere (a limited region in θ and φ direction) and to
restrict the nonlinear force-free computation onto this region. This is in particular necessary if the observed
photospheric vector magnetogram is only available for parts of the photosphere. In such cases the global
magnetic field is basically a potential field and only locally (say, in active regions) a nonlinear force-free
field. For such limited regions in θ and φ we encounter the same problem as in Cartesian codes: that the
lateral boundary conditions are unknown. One possibility is to describe the lateral boundaries with the help
of a global potential field. The assumption of a potential field outside the computational domain restricts
currents to the active region, but non-current-carrying field lines can leave the computational box. At the
interface between the potential and non-potential field, a boundary layer as described in Wiegelmann (2004)
for the Cartesian implementation of our code can be used. Full spherical force-free fields certainly do not
have lateral boundaries and if one is interested in the details of interaction of two far-apart active regions, it
might be better to compute first a global low-resolution force-free field (e.g., in future with SOLIS data) and
then compute the field in the active regions with higher resolution (e.g., with Hinode data). Such an approach
would also allow current-carrying field lines to connect the two active regions, which might be important for
the initiation of CMEs.
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3. Test Case

3.1. Semi-Analytic Reference Field

We test our newly developed code with the help of a known nonlinear force-free field model
developed by Low and Lou (1990). The authors solved the Grad – Shafranov equation for
axisymmetric force-free fields in spherical coordinates r , θ , φ. The magnetic field can be
written in the form

B = 1

r sin θ

(
1

r

∂A

∂θ
er − ∂A

∂r
eθ + Qeφ

)
(8)

where A is the flux function and Q represents the φ-component of B, depending only on A.
The flux function A satisfies the Grad – Shafranov equation

∂2A

∂r2
+ 1 − µ2

r2

∂2A

∂µ2
+ Q

dQ

dA
= 0 (9)

where µ = cos θ . Low and Lou (1990) derive solutions for

dQ

dA
= α = const. (10)

by looking for separable solutions of the form

A(r, θ) = P (µ)

rn
. (11)

The solutions are axisymmetric in spherical coordinates with a point source at the ori-
gin. They have become a kind of standard test for nonlinear force-free extrapolation codes
(Amari, Boulmezaoud, and Mikic, 1999; Wheatland, Sturrock, and Roumeliotis, 2000;
Wiegelmann and Neukirch, 2003; Yan and Li, 2006; Amari, Boulmezaoud, and Aly, 2006;
Inhester and Wiegelmann, 2006; Schrijver et al., 2006) in Cartesian geometry because the
symmetry in the solution is no longer obvious after a translation that places the point source
outside the computational domain and a rotation of the symmetry axis with respect to the
Cartesian coordinate axis.

Here we use the Low and Lou solution in spherical coordinates. The original equilibrium
is invariant in φ, but we can produce a 3D-looking configuration by placing the origin of
the solution with 1/4 solar radius offset to the sun center. The corresponding configuration
is no longer symmetric in φ with respect to the solar surface, as seen in the synoptic map
in Figure 1, which shows Br on the photosphere. Let us remark that we use the solution
for the purpose of testing our code only and the equilibrium is not assumed to be a realistic
model for the global coronal magnetic field. We do the test runs on spherical grids (r, θ,φ)

of 20 × 40 × 80 and 40 × 80 × 160 grid points.

3.2. Boundary Conditions

– Case 1: The boundary is specified on the photosphere, on the source surface, and in co-
latitude at θ = 30◦ and θ = 150◦. Optimization is restricted in co-latitude to 30◦ < θ <

150◦.
– Case 2: The boundary is specified on the photosphere, on the source surface, and in co-

latitude at θ = dθ
2 and θ = 180◦ − dθ

2 .
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Figure 1 The synoptic map of Br on the photosphere. We project the map onto the solar surface in Figure 2
with the disk center at Carrington longitude 180◦ .

– Case 3: The boundary is specified on the photosphere and on the source surface.
– Case 4: The boundary is specified only on the photosphere. This is the realistic case

for real data, where measurements are only available on the photosphere. On the source
surface the magnetic field is chosen from the initial potential field.

For the computations done here we use a grid resolution of dθ = dφ = 4.5◦ for the low-
resolution test case and dθ = dφ = 2.25◦ for the high-resolution one.3 This means that
the full spherical extrapolation cases (Cases 2–4) are limited in co-latitude by 2.25◦ ≤ θ ≤
177.75◦ and 1.125◦ ≤ θ ≤ 178.875◦ for the low- and high-resolution computations, respec-
tively. As the initial state we compute a source surface potential field in our computational
domain. The source surface is a spherical shell where all field lines are assumed to become
radial (Schatten, Wilcox, and Ness, 1969). We locate the source surface at 1 + π

2 ≈ 2.57Rs,
which is the outer radial boundary of our physical domain. The finite differences in φ are
cyclic. For Cases 1 and 2 boundary values in θ are specified and for Cases 3 and 4 we
interpolate the values at the poles.

4. Figures of Merit

In Table 1 we provide some quantitative measures to rate the quality of our reconstruction.
Column 1 names the corresponding test case. Columns 2 – 4 show how well the force and
solenoidal condition are fulfilled, where column 2 contains the value of the functional L

as defined in (3) and L1 and L2 in columns 3 and 4 correspond to the first (force-free) and
second (solenoidal free) part of L. The evolution of the functional L during the optimization
process is shown in Figure 3. Column 5 contains the L∞ norm of the divergence of the
magnetic field:

‖∇ · B‖∞ = sup
x∈V

|∇ · B|, (12)

3If the angle is given in radians we have dr = dθ = dφ for the test cases. The code also allows, however, the
use of dr 	= dθ 	= dφ.
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and column 6 lists the L∞ norm of the Lorentz force of the magnetic field:

‖j × B‖∞ = sup
x∈V

|j × B|. (13)

The next five columns of Table 1 contain different measures that compare our recon-
structed field with the semi-analytic reference field. These measures have been introduced
by Schrijver et al. (2006) to compare a vector field b with a reference field B.

– Column 7 lists the vector correlation

Cvec =
∑

i

Bi · bi/

(∑
i

|Bi |2
∑

i

|bi |2
)1/2

. (14)

– Column 8 lists the Cauchy–Schwarz inequality

CCS = 1

N

∑
i

Bi · bi

|Bi ||bi | (15)

where N is the number of vectors in the field.
– Column 9 lists the normalized vector error

EN =
∑

i

|bi − Bi |/
∑

i

|Bi |. (16)

– Column 10 lists the mean relative vector error

EM = 1

N

∑
i

|bi − Bi |
|Bi | . (17)

– Column 11 lists the total magnetic energy of the reconstructed field normalized with the
energy of the input field:

ε =
∑

i |bi |2∑
i |Bi |2 . (18)

The two vector fields agree perfectly if Cvec,CCS, and ε are unity and if EN and EM are zero.
Column 12 contains the number of iteration steps until convergence and column 13 shows
the computing time on four processors.

5. Results

5.1. Qualitative Comparison

In Figure 2 we compare magnetic field line plots of the original model field (Original) with
a corresponding potential field (Potential) and nonlinear force-free reconstructions with dif-
ferent boundary conditions (Cases 1 – 4). The color coding shows the radial magnetic field
on the photosphere, as also shown in the synoptic map in Figure 1. Carrington longitude
180◦ corresponds to the disk center in Figure 2. The images show the results of the compu-
tation on the 20 × 40 × 80 grid.

A comparison of the original reference field (Original in Figure 1) with our nonlinear
force-free reconstructions (Cases 1 – 4) shows that the magnetic field line plots agree with
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Figure 2 The original reference field, a global potential field, and the results of a nonlinear force-free re-
construction with different boundary conditions (Cases 1 – 4; see text). The color coding shows Br on the
photosphere and the disk center corresponds to 180◦ longitude.

the original for Case 1 – 3 within the plotting precision. Case 4 shows some deviations from
the original, but the reconstructed field lines are much closer to the reference field than to the
initial potential field (Potential). We cannot expect a perfect agreement with the reference
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field for Case 4, because here the outer radial boundary conditions are taken from the initial
potential field model, which are different from the outer boundary of the reference field. It
is well known from computations in Cartesian geometry that the lateral and top boundaries
influence the solution in the box.4

5.2. Quantitative Comparison

The visual inspection of Figure 2 is supported by the quantitative criteria shown in Table 1.
For Cases 1 and 2 (where the boundary conditions have been specified on the photosphere,
on the source surface, and in latitude) the formal force-free criteria (L,L1,L2) are smaller
than the discretization error of the analytic solution and the comparison metrics show an
almost perfect agreement with the reference field. For Case 3 we still find a very good
agreement between the reference field and our reconstruction and for Case 4 the agreement
is still reasonable. We are in particular able to correctly compute the magnetic energy content
of the coronal magnetic field approximately. A potential field reconstruction does obviously
not agree with the reference field. The figures of merit show that the potential field is far
away from the true solutions and contains only 75% of the magnetic energy.

For a practical use of any numerical scheme the computing time certainly matters. As
seen in the last column of Table 1 the computing time is quite fast if we restrict the com-
putational domain to low co-latitudes (30◦ < θ < 150◦, Case 1) but increases significantly
for full-sphere computations. The time needed for one iterative time step is approximately
constant (0.04 s on the low-resolution grid and 0.36 s on the high-resolution one), but the
number of iteration steps needed until convergence increases by more than one order of
magnitude if high co-latitude regions are included in the optimization. The reason is that
the iteration time step dt , which adjusts automatically in our code, becomes much smaller
and consequently the convergence speed becomes slow. This is quite visible in Figure 3,
which shows the evolution of the functional L with the number of iteration steps. For the
low-latitude computations (Case 1, solid line in Figure 3) the functional L is much steeper
than for the full-sphere computations (Cases 2 – 4, dotted, dashed, and dash-dotted lines).
The slow convergence of the full-sun computations is directly related to the smaller time
step and the time step itself is restricted by the physical grid resolution,5 which becomes
very small close to the poles. We will address this point in the discussion (Section 6) and
outline possible solutions to overcome these difficulties.

Some insights regarding the performance of our newly developed code might be given
by a comparison of the figures in Table 1 with the results of computations in Cartesian
coordinates, as shown in of Schrijver et al. (2006), where row (b) contains the results of our
Cartesian optimization code. The upper part of Schrijver’s Table I corresponds to a test case
where all six boundaries of a Cartesian box have been specified (Schrijver’s Case I, which
is somewhat similar to our Cases 1 – 3) and the lower part of Schrijver’s Table I corresponds
to a case where only the bottom boundary of a Cartesian box has been specified (Schrijver’s
Case II, which is equivalent to our Case 4 in spherical geometry). Both for Cartesian and
spherical computations the correspondence with the original field is reduced if the boundary
conditions are only specified on the photosphere. For real observed vector magnetograms
we certainly have only photospheric data and it is therefore important to get a reasonable

4In the Cartesian case this effect can be reduced by choosing a well-isolated active region surrounded by a
sufficiently large area with low magnetic field; see, e.g., test case II in Schrijver et al. (2006).
5This condition is similar to the CFL condition for time-dependent problems.
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Figure 3 Evolution of L (as
defined in 3) during the
optimization process. The solid
line corresponds to Case 1, the
dotted line to Case 2, the dashed
line to Case 3, and the
dash-dotted line to Case 4. The
horizontal dash-double-dotted
line marks the discretization error
of the original semi-analytic
solution. The top panel
corresponds to the low-resolution
(20 × 40 × 80) and the bottom
panel to the high-resolution
(40 × 80 × 160) computation.

nonlinear force-free magnetic field reconstruction for this case. The errors of the different
comparison metrics are still small and in a comparable range for Cartesian and spherical
computations. The vector correlation is better than 99% and we got the magnetic energy
correct within a few percent for all examples investigated in this paper.

6. Discussion and Outlook

Within this work we developed a code for the nonlinear force-free computation of coronal
magnetic fields in spherical geometry. The method is based on an optimization principle.
We tested the performance of the newly developed code with the help of a semi-analytic
reference field. We find that the spherical optimization method works well and the accuracy
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of the reconstructed magnetic field configuration is comparable with the performance of a
corresponding code in Cartesian geometry. The computation is reasonably fast if we limit
the computation to low-latitude regions but becomes significantly slower if polar regions are
included. Such a behavior is well known for computations in spherical coordinates; see, e.g.,
Kageyama and Sato (2004). This is because the physical grid converges to the poles. A fair
approximation for the iteration time step is dt ∝ ∆2, where ∆ is the physical grid resolution.
As the finest grid resolution restricts the time step, it becomes much smaller if high-altitude
regions (where ∆ becomes very small) are included in the optimization. Our code has an
automatic step size control and we find that dt automatically adjusts to much smaller values
for full-sphere computations.

A possible solution is the use of the so-called Yin – Yang grid, as developed by Kageyama
and Sato (2004) and as used, e.g., for Earth mantle convection by Yoshida and Kageyama
(2004). The Yin – Yang grid is composed of two identical complementary grids, which
partly overlap and together cover the solar surface with a quasi-uniform grid spacing (see
Kageyama and Sato, 2004 for details). Naturally, the Yin – Yang grid has no poles at all and
a considerably large iteration step can be used. There is certainly a numerical overhead for
transformations between the complementary grids, but the limitations regarding the time
step in polar regions for traditional spherical grids are more time demanding. For solar ap-
plications one has to consider, however, that photospheric magnetic field measurements are
currently less accurate close to the poles. It might therefore be acceptable to restrict non-
linear force-free computations onto equatorial regions, say between about 30◦ and 150◦
latitude.6 For these low-latitude regions the spherical optimization code as described here is
reasonably fast. For application to observed vector magnetograms one has to consider that
the measured magnetic field is not necessary force-free in the photosphere and in particular
the transverse components of the magnetic field vector contain considerable noise. These
problems are, however, also present for force-free extrapolations in Cartesian geometry and
a preprocessing of the photospheric vector magnetograms as described in Wiegelmann, In-
hester, and Sakurai (2006) helps to overcome these difficulties.

The code solves the nonlinear force-free equations in the bounded domain between 1Rs

and the source surface at 2.57Rs. The outer boundary is kept fixed from the initial potential
field. All current-carrying field lines have to close inside the volume. The domain outside
2.57Rs is not included in the model, because the force-free approach is no longer justified
here. A further step toward a consistent modeling of the solar corona would be the inclusion
of non-magnetic forces, such as plasma pressure, gravity, and the dynamic pressure of the so-
lar wind. This is particularly useful for long structures of several solar radii, such as helmet
streamers, where the plasma β becomes finite (see, e.g., Guo and Wu, 1998 and Wiegel-
mann, Schindler, and Neukirch, 1998). Neukirch (1995) found a special class of magneto-
hydrostatic solutions that are separable in spherical coordinates. Petrie and Neukirch (2000)
extended the linear force-free Green’s function methods to include non-magnetic forces in
Cartesian geometry. Both approaches assume a kind of global linear force-free parameter
α for the parallel part of the electric currents. This is certainly a too restrictive condition
to include the detailed information provided by measured vector magnetograms. The opti-
mization method has been generalized for this aim in Wiegelmann and Inhester (2003) and
implemented in Cartesian geometry. A corresponding implementation into spherical geom-
etry is straightforward but does certainly require additional observational constraints (e.g.,
the tomographically reconstructed 3D coronal density distribution).

6Alternatively, one could use a larger grid spacing for the computation of a force-free field in polar regions.
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