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ABSTRACT

Context. This paper presents a method which can be used to calculate models of the global solar corona from observational data.
Aims. We present an optimization method for computing nonlinear magnetohydrostatic equilibria in spherical geometry with the aim
to obtain self-consistent solutions for the coronal magnetic field, the coronal plasma density and plasma pressure using observational
data as input.
Methods. Our code for the self-consistent computation of the coronal magnetic fields and the coronal plasma solves the non-force-
free magnetohydrostatic equilibria using an optimization method. Previous versions of the code have been used to compute non-
linear force-free coronal magnetic fields from photospheric measurements in Cartesian and spherical geometry, and magnetostatic-
equilibria in Cartesian geometry. We test our code with the help of a known analytic 3D equilibrium solution of the magnetohydrostatic
equations. The detailed comparison between the numerical calculations and the exact equilibrium solutions is made by using magnetic
field line plots, plots of density and pressure and some of the usual quantitative numerical comparison measures.
Results. We find that the method reconstructs the equilibrium accurately, with residual forces of the order of the discretisation error of
the analytic solution. The correlation with the reference solution is better than 99.9% and the magnetic energy is computed accurately
with an error of <0.1%.
Conclusions. We applied the method so far to an analytic test case. We are planning to use this method with real observational data
as input as soon as possible.
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1. Introduction

In the recent past, numerical methods based on optimization
principles have been used for a number of problems associ-
ated with the calculation of solar MHD equilibria. Wheatland
et al. (2000) were the first to suggest the use of an optimiza-
tion method to calculate nonlinear force-free fields in the corona
from photospheric measurements. Since then the optimization
method has been extended in various ways, for example by im-
proving certain aspects of the original method for force-free
fields (e.g. Wiegelmann 2004), by introducing additional fea-
tures such as plasma pressure into the method (e.g. Wiegelmann
& Neukirch 2006) or by reformulating the method in other ge-
ometries (e.g. Wiegelmann 2007).

Optimization methods have the advantage of being concep-
tually straightforward and are reasonably easy to implement
(Wheatland et al. 2000; Wiegelmann & Neukirch 2003; Inhester
& Wiegelmann 2006, see e.g.). At the moment they also seem
to be very competitive in terms of computational efficiency (e.g
Schrijver et al. 2006; Metcalf et al. 2007). A slight disadvan-
tage compared to, for example, the Grad-Rubin method (e.g.
Amari et al. 1997; Wheatland 2006; Inhester & Wiegelmann
2006; Amari et al. 2006) is that they still lack the same degree
of rigorous mathematical basis existing for other methods.

In the present paper we describe a further extension of the
optimization method to calculate magnetohydrostatic (MHS)

equilibria (including pressure and gravity) in spherical geometry.
This is important for calculating global models of the corona in-
cluding information going beyond just the structure of the mag-
netic field. In Sect. 2 we describe the basic equations of the op-
timization method for problem in hand. We then give a brief
description of the analytical 3D MHS equilibria that we use to
test the numerical code in Sect. 3 and present the test results in
Sect. 4. Our conclusions are presented in Sect. 5.

2. Basic equations

The magnetohydrostatic (MHS) equations are given by

(∇ × B) × B − µ0∇p − µ0 ρ∇Ψ = 0 (1)

∇ · B = 0, (2)

where B is the magnetic field, p the plasma pressure, ρ the mass
density and Ψ = −GMs

r the gravitational potential with the grav-
itational constant G, the solar mass Ms and the distance from
the sun’s center r. We do not assume an equation of state for
the coronal plasma, but leave p and ρ to be independent quanti-
ties. To find a magnetic field B, plasma pressure p and plasma
density ρ satisfying Eqs. (1) and (2), we follow the spirit of
the previous optimization methods (e.g. Wheatland et al. 2000;
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Wiegelmann & Inhester 2003; Wiegelmann 2004; Wiegelmann
& Neukirch 2006) and define the functional

L(B, p, ρ) =
∫ ⎡⎢⎢⎢⎢⎢⎣ |(∇ × B) × B − µ0 ∇p − µ0 ρ∇Ψ|2

B2

+ |∇ · B|2
⎤⎥⎥⎥⎥⎥⎦ r2 sin θ dr dθ dφ. (3)

It is obvious that Eqs. (1) and (2) are satisfied if L = 0. Here B is
a vector field, but not necessarily a solenoidal magnetic field dur-
ing the iteration. The numerical method is based on an iterative
scheme to minimize the functional L. To simplify the mathemat-
ical derivation we define the quantities

Ωa = B−2 [
(∇ × B) × B − µ0 ∇p − µ0 ρ∇Ψ]

(4)

Ωb = B−2 [(∇ · B) B] , (5)

and rewrite L as

L =
∫

V

[
B2Ω2

a + B2Ω2
b r2

]
sin θ dr dθ dφ. (6)

Taking the derivative of L with respect to an iteration parameter
t, where B, p, ρ are assumed to depend upon t, we obtain

1
2

dL
dt
= −

∫
V

∂B
∂t
· F dV +

∫
V

∂p
∂t
µ0∇ ·Ωa dV

−
∫

V

∂ρ

∂t
µ0Ωa · ∇Ψ dV −

∫
S

∂B
∂t
· G dS

−
∫

S

∂p
∂t
µ0Ωa · dS, (7)

where

F = ∇ × (Ωa × B) −Ωa × (∇ × B)

+∇(Ωb · B) −Ωb(∇ · B) + (Ω2
a + Ω

2
b) B (8)

and

G = n̂× (Ωa × B) − n̂(Ωb · B). (9)

Assuming that

∂B
∂t
= µ F (10)

∂p
∂t
= −ν µ0∇ ·Ωa (11)

∂ρ

∂t
= ξ µ0 Ωa · ∇Ψ = ξ µ0

GMs

r2
Ωa · er (12)

with positive definite parameters µ, ν and ξ and that the bound-
ary integrals vanish, one can easily see that L is monotonically
decreasing with t (note that this does not necessarily imply that
L tends to zero).

Discretized versions of Eqs. (10) to (12), together with ap-
propriate boundary conditions, form the basis for the numeri-
cal scheme. The boundary conditions have to be consistent with
the assumption that the boundary integrals vanish, for example,
by keeping the magnetic field, pressure and density fixed on the
boundaries during the iteration. For testing the method in this
paper we shall take these boundary conditions from the known
exact solution. For practical applications these would have to
come from observational data. We remark that due to the intro-
duction of additional forces the constraints on the consistency
of the boundary conditions for the magnetic field are somewhat

different from the force-free case. However, the general theory
of magnetohydrostatic equilibria requires for example that the
pressure has the same value at both foot points of a closed field
line under the general conditions assumed in the present paper.
This is similar to the Cartesian case discussed by Wiegelmann &
Neukirch (2006), where the pressure equation was forward inte-
grated along field lines using an upwind method from one foot
point to the other (in the test case described later we make use of
the property that the pressure is known to be consistent).

In the numerical implementation based on this method one
has to choose the product of the time-step ∆t with the three nu-
merical parameters µ, ν and ξ. Usually these products have to be
small enough to achieve convergence and this is ensured by an
adaptive time-step control. In this paper we have chosen the three
parameters (multiplied by ∆t) to have the same values on all grid
points. Previous experience with applying a similar method to
force-free magnetic fields in spherical geometry (Wiegelmann
2007) showed that choosing the same values for the entire box
can lead to long computing times in the polar regions due to the
distortion of the numerical grid in spherical polar coordinates
towards the poles (note that the poles θ = 0 and θ = π are ex-
cluded from the computational domain). This could in principle
be compensated by allowing for a spatial variation of the itera-
tion parameters.

3. 3D MHS equilibria

We use the exact 3D MHS equilibrium in spherical coordinates
presented by Neukirch (1995) to test our code (called case II
in his paper). In his paper, Neukirch (1995) extended earlier
work by Bogdan & Low (1986) on exact 3D MHS equilibria
in spherical coordinates. The general method was first found by
Low (1985) (previous closely related work can also be found in
Low 1982; and Low 1985) for Cartesian coordinates and devel-
oped further in Low (1991, 1992, 1993a,b, 2005). The method
relies on the presence of an external force (in our case gravi-
tation) and the basic assumption that the electric currents flow
only in surface direction perpendicular to the direction of the ex-
ternal force. The additional assumption that the dependence of
the current density on the spatial coordinates has a special form
involving the magnetic field component along the direction of
the external force (in our case that is the radial component of
B) leads to a linear equation for that magnetic field component.
The plasma density and pressure are determined from the force
balance equation.

Neukirch (1995) has extended this method by including a
current density component of the constant-α type (αB with α
constant), which also allows components of the current density
in the direction of the external force. It is important to emphasize
that this does not mean that the total field-aligned current density
is of the linear force-free type, because the other component of
the current density also has a field-aligned part.

The formulation by Neukirch (1995) basically reduces the
mathematical problem to the solution of an equation similar to
a Schrödinger equation. A slightly simpler formulation of the
same problem was given by Neukirch & Rastätter (1999) and
some analytical solutions (in Cartesian coordinates) with a non-
linear relationship between the current density and the mag-
netic field were found by Neukirch (1997). A formulation using
Green’s functions was given by Petrie & Neukirch (2000).

Since the magnetic field given in Eqs. (45)–(47) of Neukirch
(1995) contain a number of typographical errors, we repeat the
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correct field components here. As in Neukirch (1995) we define
the functions

f1(r) =
cos q + q sin q

cos q0 + q0 sin q0
(13)

f2(r) =
(3 − q2) cos q + 3q sin q

(3 − q2
0) cos q0 + 3q0 sin q0

(14)

with

q = α(r + a), q0 = α(r0 + a). (15)

We then obtain1

Br = A10
r2

0

r2

r0 + a
r + a

f1(r)Y0
1

−1
2

A21
r2

0

r2

(r0 + a)2

(r + a)2
f2(r)(Y1

2 − Y−1
2 ) (16)

Bθ =
1
2

A10
r2

0

r
r0 + a
r + a

(
d f1
dr
− f1

r + a

)
∂

∂θ
Y0

1

− 1
12

A21
r2

0

r
(r0 + a)2

(r + a)2

(
d f2
dr
− 2 f2

r + a

)
∂

∂θ
(Y1

2 − Y−1
2 )

− 1
12

A21α
r2

0

r
(r0 + a)2

(r + a)2
f2(r)

1
sin θ

∂

∂φ
(Y1

2 − Y−1
2 ) (17)

Bφ = −1
2

A10α
r2

0

r
r0 + a
r + a

f1(r)
∂

∂θ
Y0

1

+
1

12
A21

r2
0

r
(r0 + a)2

(r + a)2
f2(r)

∂

∂θ
(Y1

2 − Y−1
2 )

− 1
12

A21
r2

0

r
(r0 + a)2

(r + a)2

(
d f2
dr
− 2 f2

r + a

)
1

sin θ
∂

∂φ
(Y1

2 − Y−1
2 ). (18)

These expression tend to the solution presented as case III in
Bogdan & Low (1986) in the limit α = 0. The magnetic field is
shown in the top panel of Fig. 1. The solution is completed by
expressions for the pressure and the density as given by Bogdan
& Low (1986) and Neukirch (1995).

Neukirch (1995) followed Bogdan & Low (1986) and nor-
malized the radial coordinate r at a radius of 1.5 R�. In the
present paper, we deviate from this and normalize the radial
coordinate at a radius of 1 R�, because we want to impose our
boundary conditions at the solar surface (=1 R�). We then carry
out our numerical calculation on a box which has an inner
boundary at 1 R� and an outer boundary at (1.0 + π/2) R� ≈
2.57 R�. We use a grid with 20 points in the radial direction,
40 points in the latitudinal direction and 80 points in the lon-
gitudinal direction. We exclude the polar regions for numerical
reasons (see discussion in Sect. 2) and extend the numerical box
in θ only from 11.25◦ to 168.75◦.

As parameters we choose the parameter a, which determines
the influence of the non-magnetic forces on the equilibrium, to
have the value a = 0.2, and we choose the force-free param-
eter α to have the value α = 0.5. Internally our code normal-
izes the length scale with one solar radius, the magnetic field
strength with the average radial magnetic field strength on the
photosphere Bave, the pressure with p̃ = µ0 p/B2

ave and the mass
density with ρ̃ = µ0 G Msρ/Rs B2

ave.

1 Compared to Neukirch (1995) these expression have been corrected
in the following way: a) a factor 1/2 has been included in the second
term of Br, b) a factor 1/ sin θ has been removed from the second term
of Bφ and c) the sign of the third term of Bφ is negative.

Fig. 1. Magnetic field lines for the exact analytical solution, a poten-
tial field with the same Br on the photospheric boundary (r = R�) and
the magnetic field obtained by the optimization method. The color cod-
ing corresponds to the value of Br on the photosphere (yellow: posi-
tive, blue: negative) and the disk center corresponds to φ = 180◦. The
potential field is used as the initial field for the numerical calculation
and clearly has a different connectivity from the exact analytical solu-
tion. The reconstructed solution matches the analytical solution down
to plotting precision, except for one equatorial field line.

4. Results

The numerical code based on the optimization method described
in Sect. 2 has been run with initial conditions given by a poten-
tial field calculated from just the Br component of the above ex-
act solution on the boundaries. The initial conditions for density
and pressure are as in a stratified atmosphere. This configuration
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Fig. 2. Plots of the spatial variation of the pressure p (left column) and
density ρ (right column) in logarithmic scaling in the r–θ-plane for
φ = 0. The top, center and bottom panels correspond to the exact so-
lution, the spherically symmetric stratified atmosphere used as initial
state for the iteration (also identical to the background atmosphere used
in the analytical solution) and the result of the numerical calculation.
The main features of the analytical solutions are clearly recovered by
the numerical method, but some small differences are still present.

balances the radial pressure gradient and the gravity force.
Consequently the initial plasma is structured only in the radial
direction and p and ρ are invariant in θ and φ. We use the exact
solution to prescribe the boundary conditions for B, p, ρ. Our
code solves the magnetohydrostatic Eqs. (1), (2) in the computa-
tional box with respect to these boundary conditions. To evaluate
the performance of our code we compare the result with the ex-
act solution.

A visual impression of the exact magnetic field is given in
the top panel of Fig. 1. For comparison the potential field used
as initial condition for the iteration is shown in the middle panel
of Fig. 1. One notices in particular that the potential field has
a different connectivity than the analytical MHS solution. The
numerical method will thus have to change the magnetic field
connectivity during the iteration process.

In Fig. 2 we show r-θ cuts of pressure (left) and density
(right) for the angle φ = 0. The top panels show these quantities
for the exact solution, the middle panels for the initial condition
and the bottom panels show the result of the numerical calcula-
tion. Visual inspection of these figures gives the impression that
the method does achieve a good, but not perfect agreement with
the exact solutions. Especially the regions close to the θ bound-
aries still show noticeable differences, which may be caused by
the general problems with convergence closer to the poles due
to the deformation of the numerical grid using spherical coor-
dinates. A more sophisticated numerical grid, as discussed in
Sect. 5, will probably help to overcome these problems.

To check the quality of the reconstruction in a more quan-
titative way we use a number of methods. The results are pre-
sented in Table 1. First, we evaluate how well the force balance

Table 1. The table provides several figures of merit which can be used to
assess the quality of the reconstructed solution. We compute all figures
for the complete computational domain. The analytical reference field
was specified in the cones 11.25◦ ≤ θ ≤ 168.75◦. For the calculation
presented here we used the following iteration parameters: µ = 1, ν =
0.01, ξ = 1.

Ref. Potential Reconstruction
L 0.003 0.004 0.002
L1 0.001 0.002 0.001
L2 0.002 0.002 0.001

‖ ∇ · B ‖∞ 0.448 0.582 0.448
‖ j × B − ∇p − ρ∇Ψ ‖∞ 0.137 0.186 0.143

Cvec 1 0.946 0.9997
CCS 1 0.810 0.997
EN 0 0.378 0.021
EM 0 0.524 0.042
ε 1 0.951 1.0008

Correlation p 1 0.975 0.9998
Correlation ρ 1 0.928 0.9990
No. of Steps 214220

Computing time 12 h27 min

Fig. 3. Evolution of the functionals L (solid line), L1 (dotted line) and
L2 (dashed line; for definitions see text) during the iteration process.
All three functionals decrease by several orders of magnitude during
the iteration.

condition and the solenoidal condition are fulfilled. To do this
we evaluate

– the functional L as defined in (3),
– the functional L1 =

∫ |(∇×B)×B−µ0 ∇p−µ0 ∇Ψ ρ|2
B2 r2 sin θ dr dθ dφ,

telling us how well the force balance condition is satisfied,
– the functional L2 =

∫ |∇ · B|2 r2 sin θ dr dθ dφ, which tells us
how well the solenoidal condition is satisfied.

The evolution of the functionals L, L1, L2 during the numerical
computation is shown in Fig. 3 in a double logarithmic plot. The
functionals L and L1 decrease rapidly by about five orders of
magnitude. The functional L2, which represents the solenoidal
condition decreases by about three orders of magnitude. The en-
tries in the table give the values of the functionals at the end of
the numerical calculation.

Following Amari et al. (2006) and Wiegelmann & Neukirch
(2006) we also provide the infinity norms

– ‖ ∇ · B ‖∞
– ‖ j × B − ∇p − ρ∇Ψ ‖∞,
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Fig. 4. Outlook: How can the
tool become applied to data?
The basic idea is to com-
pute first a nonlinear force-
free field from observed vector
magnetograms and then model
the plasma along the loops.
Our newly developed magneto-
hydrostatic code uses the result-
ing magnetic field and plasma
configuration as input for the
computation of a self-consistent
equilibrium.

which are defined as the supremum of the divergence and the to-
tal force density. For comparison, we also provide these values
for the exact analytic solution if used in a discretized form. This
allows us to estimate the discretisation error introduced by cal-
culating the solution on a finite numerical grid (Here 20, 40, 80
grid-points in the r, θ, φ direction, respectively).

We compare the reconstructed equilibrium directly with the
known analytic equilibrium by a number of quantitative mea-
sures as defined by Schrijver et al. (2006, see Sect. 4 of that pa-
per). The figures quantify the difference between two discretized
vector fields B (known analytic field evaluated on the numerical
grid) and b (reconstructed field). These measures are:

– the vector correlation Cvec =
∑

i Bi · bi/
(∑

i |Bi|2 ∑
i |bi|2

)1/2
,

– the Cauchy-Schwarz inequality CCS =
1
N

∑
i

Bi·bi
|Bi ||bi | , where N

is the number of vectors in the field;
– the normalized vector error EN =

∑
i |bi − Bi|/∑i |Bi|,

– the mean vector error EM =
1
N

∑
i
|bi−Bi |
|Bi|

– the magnetic energy of the reconstructed field divided by the

energy of the analytical field ε =
∑

i |bi |2∑
i |Bi |2 .

The quality of the reconstruction of the pressure p and the den-
sity ρ is quantitatively assessed by correlating the analytic and
the reconstructed solutions using the linear Pearson correlation
coefficients (called correlation p and correlation ρ in Table 1).
Finally, we provide the number of iteration steps and computing
time for a single processor run on a common workstation.

5. Conclusions and outlook

We have extended the optimization method originally proposed
for the reconstruction of force-free magnetic fields (Wheatland
et al. 2000) to global magnetohydrostatic equilibria including the
pressure force and the gravitational force in spherical geometry.
The proposed generalization of the optimization method leads
to two additional equations for the pressure and the density that
have to be solved simultaneously to the magnetic field equation.

Boundary conditions for the magnetic field, the pressure and the
density are necessary to complete the problem.

We have implemented a numerical code based on the pro-
posed method and have tested the code using a known three-
dimensional magnetohydrostatic equilibrium (Neukirch 1995).
The numerical calculation is started from a potential field with
the same radial magnetic field component as the analytical equi-
librium on the boundary. The initial pressure and density distri-
bution are a spherically symmetric stratified atmosphere in hy-
drostatic balance. Both visual inspection of the results as well
as a quantitative analysis using various diagnostic measures in-
dicate that the method works well and converges to the ana-
lytic equilibrium. For the presented tests we used a low spa-
tial resolution and got a relatively long computing time (about
200 000 iteration steps) until convergence. In experiments with
the force-free version of our spherical code (see Wiegelmann
2007) we found that the computing time scales with N5.4 regard-
ing the number of grid points N in one spatial direction. This is
somewhat slower as the theoretical estimate of N5 for a carte-
sian optimization code obtained by Wheatland et al. (2000). The
spherical magnetohydrostatic code is significantly slower than
the cartesian force-free code for two reasons.

1. The convergence of the numerical grid towards the poles re-
quires a sufficiently small time-step.

2. The plasma β might vary strongly in the entire region and
in particular low-β-regions require very small time-steps to
compute the magnetic field and plasma simultaneously, be-
cause small changes in the Lorentz force can result in con-
siderably large changes in the low β plasma.

Point 1. can be addressed by using a more sophisticated numeri-
cal grid, e.g. the Yin-Yang grid developed by Kageyama & Sato
(2004), which has been applied in geophysics (see e.g. Yoshida
& Kageyama 2004). This overset grid contains two complemen-
tary grids which lead to an almost uniformly spaced spherical
grid. An additional advantage of the Yin-Yang grid is that it
is suitable for massive parallelization. The Yin-Yang grid has
been applied for geophysical simulations on the Earth simula-
tor super-computer in Yokohama. To speed up the 2. point one
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might compute first the magnetic field alone as a nonlinear force-
free field (which is a reasonable approximation in low-β-regions)
and switch on the self-consistent plasma iteration only after for a
fine-tuning. A multi-scale approach, as recently implemented to
speed up our force-free cartesian optimization code (see Metcalf
et al. 2007, for details) is also an option worth trying for the
spherical implementation of our force-free and magnetohydro-
static codes. We are confident, that the above mentioned po-
tential for improvements together with a massive parallelization
will allow us to apply our newly developed method to real data
with a reasonable grid resolution.

In Fig. 4 we outline a scheme on how the code might be
applied to data. As boundary conditions on pressure and density
are not directly measured, we propose the following approach.
The basic idea is to compute first a force-free magnetic field and
then model the plasma along the magnetic loops, e.g., by the use
of scaling laws and optionally with the help of a tomography
code. Such an approach has been used by Schrijver et al. (2004)
by using a global potential magnetic field and specifying free
scaling law parameters (e.g., heating function) by comparing
artificial plasma images (created by line-of-sight integration
from the model plasma) with X-ray and EUV observations.
We propose to generalize this approach by using a nonlinear
force-free magnetic field model and compare the model plasma
with observations from two viewpoints as provided by the
STEREO-mission. Optional STEREO-images can be used
additionally to approximate the coronal density distribution
by a tomographic inversion. As a consequence of this step
(modelling the plasma along a magnetic loop) the plasma
pressure is consistent along the loops. Different values for
the pressure on different field-lines will violate the force-free
condition for the magnetic field, however, and the configuration
is not exactly in a magnetohydrostatic equilibrium. Finite
pressure gradients have to be compensated by a Lorentz force.
This computation can be done with the help of the program
described in this paper. We propose to use the force-free
magnetic field configuration and the model plasma as initial
state for our newly developed magnetohydrostatic code to
compute a self-consistent MHS-equilibrium. For a low β plasma
the back-reaction of the plasma onto the magnetic field will be
small, for higher values of β (as found e.g., in helmet streamers)
the magnetic field might change significantly. As a result of this

approach one has reconstructed the 3D coronal magnetic field
and plasma configuration self-consistently within the magneto-
hydrostatic approach and the model is consistent with measured
photospheric vector magnetograms and observed coronal images
from different viewpoints as well.
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