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ABSTRACT

Context. Magnetic activity cycles are an important phenomenon both in the Sun and other stars. The shape of the solar cycle is
commonly characterised by a fast rise and a slower decline, but not much attention has been paid to the shape of cycles in other stars.
Aims. Our aim is to study whether the asymmetric shape of the solar cycle is common in other stars as well, and compare the cycle
asymmetry to other stellar parameters. We also study the differences in the shape of the solar cycle, depending on the activity indicator
that is used. The observations are also compared to simulated activity cycles.
Methods. We used the chromospheric Ca ii H&K data from the Mount Wilson Observatory HK Project. In this data set, we identified
47 individual cycles from 18 stars. We used the statistical skewness of a cycle as a measure of its asymmetry, and compared this to other
stellar parameters. A similar analysis has been performed for magnetic cycles extracted from direct numerical magnetohydrodynamic
simulations of solar-type convection zones.
Results. The shape of the solar cycle (fast rise and slower decline) is common in other stars as well, although the Sun seems to have
particularly asymmetric cycles. Cycle-to-cycle variations are large, but the average shape of a cycle is still fairly well represented by
a sinusoid, although this does not take its asymmetry into account. We find only slight correlations between the cycle asymmetry and
other stellar parameters. There are large differences in the shape of the solar cycle, depending on the activity indicator that is used.
The simulated cycles differ in the symmetry of global simulations that cover the full longitudinal range and are therefore capable
of exciting non-axisymmetric large-scale dynamo modes, and wedge simulations that cover a partial extent in longitude, where only
axisymmetric large-scale modes are possible. The former preferentially produce positive and the latter negative skewness.

Key words. Stars: activity – Stars: chromospheres – Sun: activity

1. Introduction

The shape of the 11-year sunspot cycle is not perfectly symmet-
ric, but characterised by a faster rise from minimum to maximum
and a slower decline from maximum to minimum (Waldmeier
1935). Another common feature that deviates from a sinusoid
shaped cycle is the typical double peak, known as the Gnevy-
shev gap (Gnevyshev 1963). Gnevyshev (1967, 1977) suggested
that the solar cycle generally consists of two waves of activity.
There is an asymmetry in solar activity between the northern and
southern hemisphere (e.g. Newton & Milsom 1955; Deng et al.
2016). Norton & Gallagher (2010) studied the solar cycle sepa-
rately on each hemisphere and concluded that differences in the
hemispheres cannot explain the Gnevyshev gap, but a mecha-
nism must be producing it for both hemispheres. One factor that
might affect it is the complexity of active regions. Simple active
regions, with unipolar or bipolar sunspot groups, on average ap-
pear earlier in the solar cycle than more complex active regions
(Nikbakhsh et al. 2019). Thus the simple regions dominate the
first peak of the maximum, and the complex regions only have
a notable effect on the latter peak. Feminella & Storini (1997)
found that the activity dip in the Gnevyshev gap is more evi-
dent in high-energy phenomena, such as the occurrence of long-
lasting energetic flares, while the occurrence of flares and other
phenomena with lower energies tend to follow the simple 11-
year cycle. The cycle amplitude and length of the rising phase

are also anti-correlated. This is known as the Waldmeier effect
(Waldmeier 1935, 1939).

There is no reason for stellar analogues of the solar cycle
to be perfectly symmetric either, but they are usually fitted with
simple sinusoids, and not much attention has been paid to their
shape. Reinhold et al. (2017) showed that cycles derived from
the variability of Kepler stars deviate from simple sinusoids, the
average shape showing a sharp maximum and flattened mini-
mum. The authors also hypothesised that this effect might have
a temperature dependence because it was weak for the coolest
stars.

The solar cycle has been modelled with many different math-
ematical formulations accounting for their asymmetry (Norde-
mann 1992; Elling & Schwentek 1992; Hathaway et al. 1994;
Volobuev 2009; Du 2011). Takalo & Mursula (2018) applied the
principal component analysis to the solar cycle and divided it
into two components, an average cycle component, which al-
ways has the same shape, with varying period and amplitude,
and one component that varies from cycle to cycle.

One parameter that has been used to measure asymmetries
of solar cycles is the skewness. This is a measure of asymmetry
that is commonly used in statistics. Ramaswamy (1977) reported
a relation between the ratio of the maximum sunspot number of
the following cycle to the current cycle µ and the skewness γ of
the current cycle as

γ + 0.37µ = 0.80. (1)
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Lantos (2006) improved the correlation by separately consider-
ing even and odd cycles, and derived the following formulae:

µ=

{
−2.1092γ + 1.9418 when the current cycle is even,
−1.2552γ + 1.3570 when the current cycle is odd.

(2)

Stellar cycles, however, have not been modelled as extensively.
Garg et al. (2019) found the Waldmeier effect in stars from
Mount Wilson observatory data. They also studied stellar cycle
asymmetries by fitting similar functions as for the solar cycle,
and they calculated the skewness. Pipin & Kosovichev (2016)
found from numerical mean-field simulations for solar-type stars
that magnetic cycles of a higher amplitude are more asymmetric,
until at some amplitude, the asymmetry becomes saturated.

The methods that are commonly used to study stellar cycles
are not capable of taking cycle asymmetries into account be-
cause usually the cycles are assumed to have sinusoidal form.
The Lomb-Scargle periodogram (Lomb 1976; Scargle 1982) is
a commonly used method, but it assumes a strict periodicity,
which is generally not the case in stellar activity cycles. The du-
ration of the solar cycle, for instance, varies from about 8 years
to 14 years. The use of quasi-periodic models allows the cycles
not to be strictly periodic (Olspert et al. 2018). Here, we study
each cycle individually to account for cycle-to-cycle differences
in the duration and shape of the cycles.

2. Data

2.1. Mount Wilson data

We used the publicly available Ca iiH&K S-index measurements
from the Mount Wilson (MW) Observatory, a programme started
by Wilson (1978). The data set, including almost 2300 stars, was
gathered between 1966 and 1995, with additional data for 35
stars extended to 2001. The S-index, defined as

S = α
H + K
V + R

, (3)

is a sensitive indicator of chromospheric magnetic activity (e.g.
Egeland et al. 2017). Here H and K indicate flux integrated over
narrow passbands centred around the Ca ii H and K line cores,
and V and R are broad continuum bands on the violet and red
sides of the Ca lines. α is a calibration factor that is determined
for each night from standard lamp and standard star observa-
tions.

Baliunas et al. (1995) determined the periodicity of the MW
stars with Lomb-Scargle periodograms, and divided the stars
with cyclic variations into four different categories based on
the false-alarm probability (FAP), the probability that a peak as
strong as the observed peak would randomly occur in the Lomb-
Scargle periodogram, assuming purely Gaussian noise. These
categories are labelled ‘excellent’, ‘good’, ‘fair’, and ‘poor’, cor-
responding to FAP ≤ 10−9, 10−9 < FAP ≤ 10−5, 10−5 < FAP ≤
10−2, and 10−2 < FAP ≤ 10−1, expressed in percent, respec-
tively. The authors note, however, that because of variations due
to the growth and decay of active regions, for instance, which is
non-Gaussian noise, the FAP should not be taken too literally.

Olspert et al. (2018) compared the cycle periods in Baliunas
et al. (1995) and periods derived with quasi-periodic methods.
They found that the results were similar for the ‘excellent’ stars,
while the resemblance weakens gradually for the ‘good’, ‘fair’,

and ‘poor’ stars. Some of the differences, however, can be ex-
plained by their use of additional data from the extended 2001
data set, and by the higher significance level.

In our sample we included all the stars defined as ‘excel-
lent’ or ‘good’ by Baliunas et al. (1995), with the exception of
HD 78366, HD 201092, and HD 156206, which are labelled
‘good’. HD 78366 is left out because it is not clear where its
minima are because there are multiple secondary minima in the
data. HD 201092 was excluded because its minimum around JD-
2444000=2500 is very difficult to define; there seems to be a lo-
cal maximum where the minimum should be according to the
11.7-year cycle reported by Baliunas et al. (1995). They found
no secondary shorter cycle in HD 201092, although visual in-
spection indicates that this would be the case. HD 156206, on
the other hand, does not have data to cover any cycle completely
(from minimum to minimum). Whithout these stars, our sample
consists of 18 stars, all with fairly clear cycles. All the stars in
our analysis have also been found to be cyclic by Olspert et al.
(2018).

Most of our stars are main-sequence stars, but we also in-
clude three giants. The MW database also includes Ca ii H&K
measurements of the Sun. They were made by measuring the
Moon because the lunar spectrum for the H&K lines is effec-
tively just reflected sunlight. Because the Mount Wilson data
include only one full cycle for the Sun, we extended our data
for the Sun by including Sacramento Peak (SP) Ca ii K observa-
tions, which were scaled to the same level as the MW S-index as
S SP = 2.61KSP − 0.0647, as was done by Olspert et al. (2018).
This combined data set includes three full solar cycles.

The series for the Sun was even further extended back to
1907, including data from solar cycles 15 to 24 by Egeland et al.
(2017), who also added Ca ii K plage index measurements from
the Kodaikanal Observatory in India and calibrated them to the
MW scale. However, we only used the data from MW and SP
observatories, as was done in Olspert et al. (2018).

2.2. Sunspot numbers

To compare the stellar cycles to the solar cycle, we also anal-
ysed sunspot data in addition to the solar chromospheric mea-
surements. We compared the MW+SP data to the classical
Wolf sunspot number (WSN)1 and to the group sunspot num-
ber (GSN), which is recalibrated for different observers with the
active day fraction method by Willamo et al. (2017). Reaching
as far back as 1610, the sunspot series is much longer than any
time series of other active stars. We used the data for sunspot cy-
cles 9-23, from 1843.5 to 2008.9, where multiple of these series
are available (MW+SP, WSN, and GSN).

3. Methods

3.1. Defining times of minima and maxima

We defined the times for minima and maxima of the stellar activ-
ity cycles individually for each cycle. To define the exact time,
we fitted a parabola to the data around the minimum or max-
imum, and the interval of data included varied depending on
the specifics of the cycle. When the cycle was very asymmetric
around the minimum or maximum, only a short interval could
be used when a symmetric function was fitted, whereas with a
poorly covered cycle, a longer interval had to be used to obtain

1 Source: WDC-SILSO, Royal Observatory of Belgium, Brussels;
available at http://www.sidc.be/silso/datafiles
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Table 1. Our sample of Mount Wilson stars.

Star ncyc log R′HK Teff [K] Prot [d] Pcyc [yr] 〈γ〉 σ 〈tr〉/〈td〉 nbin FAP MS/G Data
HD 3651 1 -5.040 5280 37.0 15.06 0.368 ... 0.594 10 G MS 1995
HD 4628 2 -4.874 5014 37.14 8.21±0.41 0.096 0.145 0.905 10 E MS 1995

HD 16160 1 -4.902 4762 48.58 12.18 0.074 ... 1.023 10 E MS 1995
HD 26965 2 -4.919 5196 38.65 10.34±0.07 0.076 0.131 0.864 10 E MS 1995
HD 32147 1 -4.939 4703 33.7 10.40 0.127 ... 0.758 10 E MS 1995

HD 166620 1 -4.975 5007 42.1 15.33 0.146 ... 0.723 10 E MS 1995
HD 219834A 2 -5.098 5705 43.4 6.16±1.78 0.364 0.133 0.429 7 G G 1995
HD 219834B 3 -4.919 5136 34.78 8.86±1.25 0.319 0.144 0.672 8 E G 1995

Sun 3 -4.911 5780 26.09 10.90±1.23 0.394 0.161 0.625 10 E MS 1995+SP
HD 10476 3 -4.962 5489 35.6 10.23±0.16 0.111 0.273 0.697 10 E MS 2001
HD 81809 3 -4.940 5889 41.66 7.94±0.59 0.222 0.074 0.740 9 E G 2001

HD 103095 3 -4.939 5265 34.03 6.94±0.42 0.202 0.133 0.917 10 E MS 2001
HD 114710 3 -4.738 6098 11.99 5.44±0.34 0.107 0.463 0.676 8 G MS 2001
HD 115404 2 -4.502 4976 18.03 10.62±1.99 0.158 0.028 0.742 10 G MS 2001
HD 149661 6 -4.625 5265 20.76 4.68±1.25 -0.013 0.361 0.916 5 G MS 2001
HD 152391 3 -4.469 5461 10.62 8.67±2.19 -0.040 0.342 0.959 8 E MS 2001
HD 160346 4 -4.818 4897 32.0 7.15±0.26 0.109 0.071 0.772 7 E MS 2001
HD 201091 4 -4.588 4177 35.54 7.05±0.70 -0.033 0.072 0.873 9 E MS 2001

Notes. FAP = E/G (excellent/good) as defined by Baliunas et al. (1995). MS = main-sequence star, G = giant. Pcyc is given with its standard
deviation; thus there are no ‘error bars for stars with only one detected cycle. γ for the Sun was calculated from solar cycles 21-23, for which
MW+SP data are available, but to calculate 〈tr〉/〈td〉, cycles 1-20 were also included, where all tmin and tmax are from the dates listed in Hathaway
(2015). Source of Teff for the Sun: Cox (2000).

enough data for a reliable fit. The times of minima and max-
ima defined by this method along with the intervals we used are
listed in the appendix (Table A.1). One cycle is then defined as
the time between two consecutive minima.

For the dates of minima and maxima for the Sun, we used
the minimum and maximum value of the 13-month mean value
of the sunspot number. This is a commonly used definition of
solar minima (see e.g. Hathaway 2015). This is the minimum
of the sunspot number cycle, and the chromospheric emission
need not be at its minimum at the same time – there are in-
deed differences of even several years in the timing of the solar
minima between different activity indicators, such as the sunspot
number, sunspot area, and 10.7cm radio flux (Hathaway 2015).
When the same minima times are used for different solar activity
indicators, however, the analysis for the MW cycles of the Sun
is comparable to that for the sunspot cycles in Section 4.4. For
other stars we have only MW data, therefore they are not directly
comparable in this sense to the solar cycle.

3.2. Skewness

Skewness is a statistical measure of the asymmetry of a proba-
bility distribution, which has been used to measure asymmetries
of solar cycles (Ramaswamy 1977; Lantos 2006; Du 2011). The
skewness γ, or third moment, of a set of data points xi is defined
as

γ =

N∑
i=1

(xi − x)3

(N − 1)σ3
x
, (4)

where N is the number of data points, x is the sample mean, and
σx is the standard deviation of the sample. A positive skewness
indicates a distribution leaning to the left, or in the case of a stel-
lar cycle, a cycle with faster rise time and slower declining time.
A negative skewness indicates a leaning to the right, or longer

rise time and shorter declining time. A symmetric distribution
has γ = 0, although zero skewness does not always mean that
the distribution is symmetric. For instance, a distribution with a
long and thin tail on the one side and short but thick on the other
could also have γ = 0.

In order to calculate the skewness of an activity cycle, the
cycle has to be transformed into a one-dimensional distribution.
We did this by dividing the cycle into ten bins of equal length,
where the centre of the bin is at tbin. In the cases when the gaps in
the data were too long and some bins would have no data points
at all, we reduced the number of bins into the largest number
that still included data points in each bin. Then we calculated
the mean value of the data points in each bin, and built the final
distribution, emulating the cycle, by multiplying this mean value
by 10 000 in order to derive an integer value n from data with
four decimals, and added n occurrences of tbin to the distribution.

In order to compare the skewness of stellar cycles to the so-
lar cycle, their zero-levels must be comparable. The sunspot cy-
cle approaches zero at solar minimum, but the S-index of active
stars does not. To correct for this, we shifted all the bins of a
cycle with a constant value, so that the bin with the lowest value
reached S min = 0.001 (corresponds to the tbin appear n = 10
times in the distribution). This was performed similarly for each
cycle. An example of this type of distributions emulating the cy-
cles of HD 81809 is shown in Fig. 1. We repeated the same anal-
ysis with the same shift of the zero-level also for the sunspot
cycle. For each star, we calculated the skewness for each cycle,
and used the average of these cycles as a measure of the average
cycle asymmetry for this star.

4. Results

4.1. Rise and decline times of cycles

A simple way to estimate the asymmetry of a cycle is to compare
the duration of the rising and the declining phases of the cycle.
In the Sun the rising phase is typically shorter.

Article number, page 3 of 12
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Fig. 1. Cycles of HD 81809. The crosses are the original calibrated MW
data, and the histograms are the distributions built from these. Vertical
lines show the times of minima, dividing the data set into three com-
plete cycles. The zero-levels of the histograms are defined individually
for each cycle, but here they are plotted on the same level. The correct
individual shifts for each cycle are therefore missing in the visualisa-
tion for simplicity. The value on the y-axis, S × 10000 (which has been
shifted in the y-direction), equals the number of data points in a bin, n.

For each star we calculated the ratio of the average duration
for the rising phase 〈tr〉 and average duration of the declining
phase 〈td〉 of a cycle. Figure 2 shows the relation of this ratio to
the average skewness of the stellar cycles. As both are a measure
of asymmetry, the almost linear relation is expected. The values
of 〈tr〉/〈td〉 are also listed in Table 1.

For the calculation of the 〈tr〉/〈td〉 parameter for the Sun we
used sunspot data for solar cycles 1-23 for better statistics. With
any other star, the maximum number of cycles is six.

As the main measure of the cycle asymmetry we used the
skewness of the cycle (see Sect. 4.2), but the correlation of the
skewness and 〈tr〉/〈td〉 confirms that both are usable parameters
to measure cycle asymmetries. We calculated a Pearson correla-
tion coefficient r = −0.78 between these two parameters, which
indicates a fairly strong negative correlation. Assuming linearity,
we derived the relation between them as

γ = −0.68
[
〈tr〉/〈td〉

]
+ 0.69. (5)

The times of minima and maxima are listed for each star in the
appendix (Table A.1). When available, we used times of maxima
of incomplete cycles to obtain better statistics. For instance, for
HD 32147 only one complete cycle is available, but three times
of maxima.

4.2. Average skewness of MW cycles

The average skewness 〈γ〉 for the cycles of each star and its stan-
dard deviation σ for those stars with multiple cycles is shown in
Table 1. Figure 3 shows the distribution of the skews of all cy-
cles of all stars. Most cycles (34 of a total number of 47 = 72%)
have a positive skew. The peak values are between 0.1 and 0.2.
The Sun has a considerably high asymmetry, with a mean skew
from MW+SP data of 0.394. Taking all 47 cycles into account,
we obtain an average skewness of 0.13, with a standard deviation
0.26.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
tr / td

0.0

0.1

0.2

0.3

0.4

Fig. 2. Ratio of average rise time and average decline time vs. average
skewness. Blue dots represent main-sequence stars, and red dots giants.
The Sun is shown in yellow. The continuous line shows the best linear
fit.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

2

4

6

8

n

Fig. 3. Distribution of skews of all cycles of all stars.

We compared the average skewness for each star to other
stellar parameters; cycle period Pcyc, rotation period Prot, effec-
tive surface temperature Teff , and activity index log R′HK, in Figs.
4-7. The figures show the mean value and standard deviation of
the variation of γ (and Pcyc) for stars with multiple cycles (σ and
the standard deviation of Pcyc in Table 1). Values for Prot and
log R′HK are from Olspert et al. (2018). The Teff values are from
Gaia DR2 (Gaia Collaboration et al. 2016, 2018; Andrae et al.
2018), except for the Sun.

The three giants and the Sun have a considerably high skew-
ness; the Sun has the highest skewness of the stars in our sample.
This is mainly due to the third cycle (solar cycle 23), which is
the second most positively skewed cycle of any star in our sam-
ple; solar cycles 21 and 22 are much more symmetric. Sunspot
data also give a much lower skewness for cycle 23 than MW+SP
data (see Sect. 4.4). The value 〈tr〉/〈td〉 = 0.625 for the Sun,
which was calculated from sunspot cycles 1-23, is also a very
asymmetric value, but two stars have an even larger asymmetry
in the rise and decline times. The skewness of the solar cycles
from MW+SP data might thus be slightly biased as a result of an

Article number, page 4 of 12
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Pcyc [yr]
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0.2

0.4

0.6

Fig. 4. Average skewness plotted against Pcyc. Blue dots represent main-
sequence stars, and red dots giants. The Sun is shown in yellow. The
error bars represent the cycle-to-cycle variations for stars with multiple
cycles. The vertical line represents γ = 0.

over-representation of very asymmetric cycles. We recall, how-
ever, that the rise and decline times were calculated from sunspot
data, which might behave differently than chromospheric data.

We calculated the Pearsons correlation coefficients r between
〈γ〉 and the other parameters. These are shown in Table 2 along
with their p-values. 〈γ〉 and Pcyc or Prot show at best a very weak
positive correlation. There might be a slightly stronger positive
correlation between 〈γ〉 and Teff , but the most relevant is the neg-
ative correlation between 〈γ〉 and log R′HK (r = −0.67). The less
active stars might thus have more asymmetric cycles in general.
This is plausible because young, active stars are known to have
more irregular cycles than older, less active stars (Baliunas et al.
1995). Irregular cycles might be skewed in either direction and
then be averaged close to symmetric cycles with zero skewness,
if enough cycles are included. This correlation is unclear, how-
ever. More data are required to be analysed before this can be
claimed with some certainty. This differs from the simulated re-
sults of Pipin & Kosovichev (2016), who found stronger cycles
to be more asymmetric in the regime of weak cycles in their
mean-field simulations.

There is much variation in the skewness of the cycles for
individual stars, which is seen as high values of σ. Table 1 shows
that σ is generally high compared to γ. This is probably not only
due to the limited amount of cycles because the sole star with 6
cycles (HD 149661) has the second highest value of σ. The large
cycle-to-cycle variations are expected because this is the case in
the Sun as well (see Sect. 4.4).

We also compared our values for the average skewness to
those of Garg et al. (2019), who studied the same data. This is
shown in Fig. 8. There are some large differences in the val-
ues. This might be due to the definition of the zero-level or the
binning, which are not described in detail in Garg et al. (2019)
because they focused more on the Waldmeier effect than on the
cycle skews.

One source of uncertainty is the number of bins, which might
affect the skewness of the cycle. In most cases, the data are abun-
dant and regular enough to allow us to divide them into ten bins,
but in some stars the number of bins is reduced, in the worst
case, to five bins. This is inevitable because these data contain

10 15 20 25 30 35 40 45 50
Prot [d]

0.4

0.2

0.0

0.2

0.4

0.6

Fig. 5. Same as Fig. 4, but for Prot.

4250 4500 4750 5000 5250 5500 5750 6000
Teff [K]

0.4

0.2

0.0

0.2

0.4

0.6

Fig. 6. Same as Fig. 4, but for Teff .

Table 2. Correlation coefficients between γ and other parameters.

Parameter Correlation coefficient p-value
〈tr〉/〈td〉 -0.78 1.3 × 10−4

Pcyc 0.28 0.26
Prot 0.29 0.24
Teff 0.42 0.08

log R′HK -0.67 2.6 × 10−3

large gaps. The number of bins used for each star is listed in
Table 1.

We tested the effect of the binning with the Sun, for which
nbin = 10, and average skewness 〈γ〉 = 0.394. When the number
of bins is reduced to nbin = 8, we obtain 〈γ〉 = 0.402, and with
nbin = 5, 〈γ〉 = 0.329. For stars with poorer data quality, this ef-
fect can be expected to be even stronger. It appears to be evident,
however, that the stars with nbin = 10 are most comparable to
each other.

Because of the gaps in the data, long cycles are probably
more reliable than short cycles because the seasonal gaps affect
a proportionally smaller part of the cycle, and the shape of the
cycle can be identified with more certainty.

Article number, page 5 of 12
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Fig. 7. Same as Fig. 4, but for log R′HK.
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Fig. 8. Our average skewness for each star compared to that of Garg
et al. (2019). The orange line is y=x, where these values would be equal.

4.3. Average cycle shape

We also tried to combine all 47 individual cycles of all stars into
an average cycle. The cycle amplitudes were normalised with
the same binning as was used in the calculation of γ, so that the
lowest bin has the value 0 and the highest bin 1. We added all the
data points from individual cycles, scaled between 0 and 1, to the
combined cycle without any averaging. The scaling of individual
cycles was, however, made with the mean values of the bins to
avoid that extreme data points set the scale for the cycles. The
cycle duration was normalised to a phase between 0 and 1.

For the resulting average cycle, γ was calculated similarly as
for individual cycles, except that now we divided the data to 20
bins instead of 10 because the data are much more abundant. We
obtain the value for the skewness as γ = 0.078, which is slightly
lower than the average skewness for individual cycles.

We fitted a sinusoid of the form

S (φ) = a cos(2πφ) + c (6)

to the averaged cycle with 20 data points (same as in the binning
when we calculated γ). The cosine function has its minimum

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

S 
(n

or
m

al
ize

d)

Fig. 9. All cycles phased and normalised together. The blue crosses
show the resulting cycle, and the orange curve is a cosine fitted to the
cycle.

or maximum at 0, which is defined as the cycle minimum, so
that it is forced to the same phase as the cycle. The fitted cosine
function, with the fitted parameters a = −0.386 and c = 0.489,
is shown in Fig. 9. The fit is plausible, even though individual
cycles can be very irregular. Quantitatively, we obtain the chi-
squared statistics between the data points and the fitted sinusoid
as χ2 = 11.43, and the p-value p = 0.91. The cosine curve, how-
ever, is not able to take the asymmetry into account because the
actual cycle rises to its maxium faster than the cosine. The best-
fit cosine also has its maximum at a similar level as the actual
average cycle, but its minimum is not as deep. This feature is
different than the feature described by Reinhold et al. (2017) for
Kepler stars, where the maximum was sharper, and the minimum
flatter than the sine curve. They used the amount of photometric
variability as a proxy of magnetic activity, however. The variabil-
ity should be highest around activity maximum, but the details
of the cycles might still be different than those found from the
S-index, and furthermore, the span of the Kepler data allow the
detection of cycle periods only up to around six years.

In Fig. 9 there might also be an indication of a double peak,
as is commonly seen in the Sun, with the Gnevyshev gap in be-
tween. The feature is rather weak, however, therefore based on
our data, we do not claim the existence of double peaks and the
Gnevyshev gap in other stars.

4.4. Comparison to sunspot cycles

The stellar data can be compared to sunspot data. We used the
same method to calculate the skewness for monthly values of
both the classical WSN and the group sunspot number (GSN)
series. The GSN ignores individual spots and only counts the
number of spot groups, which reduces observational errors and
makes the old observations more reliable. We used the mini-
mum values of the 13-month average number of sunspots as the
times of solar minima: 1843.5, 1855.9, 1867.2, 1878.9, 1890.2,
1902.0, 1913.5, 1923.6, 1933.7, 1944.1, 1954.3, 1964.8, 1976.2,
1986.7, 1996.3, and 2008.9 (see e.g. Hathaway 2015).

Our values for the skewness of solar cycles 9 to 23 are shown
in Table 3. We also compare our values to the skewness for the
WSN published by other authors. Our values agree well with
those of Lantos (2006), but not so well with those of Du (2011).
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Table 3. Skewness of the solar cycles.

# MW+SP WSN GSN Lantos (2006) Du (2011)
9 . . . 0.114 -0.004 0.235 0.507

10 . . . 0.400 0.389 0.346 0.135
11 . . . 0.565 0.490 0.646 0.522
12 . . . 0.468 0.360 0.414 0.087
13 . . . 0.559 0.525 0.640 0.345
14 . . . 0.086 0.079 0.204 -0.074
15 . . . 0.339 0.342 0.314 0.327
16 . . . 0.180 0.191 0.262 0.020
17 . . . 0.417 0.425 0.299 0.122
18 . . . 0.294 0.264 0.273 0.162
19 . . . 0.629 0.607 0.581 0.299
20 . . . 0.375 0.232 0.330 0.043
21 0.338 0.134 0.158 0.299 0.116
22 0.231 0.357 . . . 0.419 0.164
23 0.614 0.282 . . . . . . 0.300

The skewness of the GSN is very similar to the skewness of the
classical WSN.

The are some notable differences in the MW data and sunspot
data. Especially for cycle 23 do the MW data give a very high
skewness of γ = 0.614, whereas sunspot data give γ = 0.282. If
the MW cycles for the Sun are not comparable to the sunspot cy-
cle, then cycles for other stars cannot be expected to be directly
comparable to the sunspot cycle either.

5. Comparison to simulations

To compare our observational results to numerical simulations,
we used the direct numerical magnetohydrodynamic (MHD)
simulations of convective dynamos in solar-like stars, described
in Viviani et al. (2018), Warnecke (2018), and Warnecke &
Käpylä (2019). Some of the simulations, presented in Viviani
et al. (2018), are global MHD simulations, ranging between 0.7-
1.0 R in the radial direction, and only omitting the polar regions,
modelling the star between latitudes -75◦ to +75◦, and the full
longitudinal range. A few of the runs in Viviani et al. (2018) and
all the runs in Warnecke (2018) and Warnecke & Käpylä (2019)
are wedges in the azimuthal direction, covering only the longi-
tudes from 0 to π/2. These are labelled with the superscript ‘W’
in Table 4. A few of the global simulations are run in higher res-
olution. These are marked with the superscript ‘a’. The higher
resolution runs are slightly more realistic because they are more
turbulent than their lower resolution counterparts. In addition to
comparing them with the observed MW cycles, we also inves-
tigated whether the differing geometry of the simulation setup
affects the results.

In all of these runs, turbulent convection under the influence
of rotation generates differential rotation and large-scale dynamo
action. As a result, dynamically significant dynamo modes at the
system scale are generated and maintained by the flow.

The radial magnetic field at 0.98 R is decomposed into spher-
ical harmonics, where m = 0 mode contains the axisymmet-
ric part of the radial magnetic field, m = 1 is the first non-
axisymmetric mode, m = 2 is the second mode, and so on. We
studied the evolution of the dominating dynamo mode in each
simulation (found in Table 4 in Viviani et al. (2018)), which
is m = 0 or m = 1 in all runs. In all the wedge runs m = 0
is the dominating mode, containing most of the magnetic en-
ergy on large scales. We note here that a substantial amount of
magnetic energy in all runs comes from the small-scale non-

axisymmetric field, but for the comparison with observed cycles,
only the large-scale magnetic field is relevant.

We chose the runs where cycles for the dominating mode
could be defined for a closer study; this includes 20 runs in to-
tal. We chose only runs where more than one cycle could be
identified in order to obtain some estimate for the cycle-to-cycle
variability. We point out that the simulations do not always pro-
duce strictly cyclic dynamo solutions, which is likely due to the
competition of different dynamo modes in the simulated system.
Therefore defining the cycle minima was more challenging from
the models than from the MW data. Thus, the results may not be
as reliable for the simulated data.

We built the distributions emulating the cycles similarly as
for the MW data by multiplying the value of each data point so
that we obtained an integer number, and added this many oc-
currences of this time point to the distribution. We then fitted a
parabola around the minimum to define its exact location. Then
we calculated the skewness of each cycle similarly as with the
MW data.

Figure 10 shows a histogram of the distribution of the skews
of the simulated cycles for all cycles together and including only
the global runs or only the wedge runs. There is a visible differ-
ence between the global and wedge runs: while the histogram in-
cluding all cycles is centred around zero, with a mean skewness
0.00 and standard deviation 0.32, the histogram including only
the global runs has a mean skewness of 0.06 and standard devia-
tion 0.31, and the one including only wedge runs has a mean of
-0.06 and standard deviation 0.31. It would thus seem that global
simulations produce more positively skewed cycles than wedge
runs, although in both cases the cycle-to-cycle variation is large,
as it is in real stars as well.

In both global and wedge runs, the deviation (0.31 in
both cases) is larger than the difference between them (0.06 −
(−0.06) = 0.12). To investigate if the difference is significant,
we additionally calculated the standard error σ〈γ〉 of the mean of
the distribution:

σ〈γ〉 =
σ2

n
, (7)

where n is the sample size. We obtain σ〈γ〉,global = 0.04 and
σ〈γ〉,wedge = 0.03. These are smaller than the difference, which
indicates that it is significant and not noise caused by a small
sample size. However, we note that for the global runs, a signif-
icantly large fraction of the cycles (14 of 48) are from the run
K1, which has higher average skewness than most of the runs,
and might induce a bias to the result. Nevertheless, the difference
between the global and wedge runs, although small, is probably
real.

The wedge assumption forces the large-scale dynamo to be
axisymmetric, whereas in global simulations, non-axisymmetry
is also allowed. These simulations therefore not only allow us
to study the cycle asymmetry as a function of rotation or cy-
cle period, but also to study the effect of the degree of non-
axisymmetry on it. By comparing skewness and axisymmetry
of global simulations to observational data, it might be deduced
whether cycles in real stars are dominated by axisymmetric or
non-axisymmetric modes. Although the parameters in the simu-
lations are still far removed from the real stellar conditions, this
may provide a diagnostic tool in the future to further classify
observational data into axis- and non-axisymmetric modes.

We note, however, that even the global runs have a lower
average skewness than the observed MW cycles. When we as-
sume that the observed chromospheric emission is directly pro-
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portional to the magnetic field strength, it is thus plausible that
some ingredient is still missing in the simulations, which causes
the asymmetry in the observed cycles. The simulations are, for
example, still in a parameter regime that is too mildly turbulent,
and they do not include realistic photospheres or chromospheres.
The other alternative is that cycles are more symmetric for more
rapidly rotating stars (for which there is a weak correlation in
the MW data). In this case, the different parameter regime of the
observations and simulations might explain their difference be-
cause the rotation was much faster in most of the simulated runs
than in the observed stars.

Similarly to the observational data, we also compared the
mean skewness of each run to other stellar parameters. Table
4 shows the mean skewness of all these runs, and the rotation
rate of the simulated star, normalised to the solar rotation rate
Ω̃. The rotation rate is transformed into the rotation period by
Prot = P�/Ω̃, where P� = 26.09 d is the rotational period of the
Sun. 〈γ〉 is plotted against Prot in Fig. 11, and against Pcyc in Fig.
12. Global and wedge simulations are separated by colour in the
figures, as are the higher resolution global runs. We calculated
Pearson correlation coefficients between 〈γ〉 and Prot, and 〈γ〉
and Pcyc for all simulations together and separately for the global
and wedge runs. These are shown in Table 5. The strongest cor-
relation is r = −0.57 for Prot for the global simulations, although
this is fairly weak. Moreover, the correlation is positive for the
wedge runs. For Pcyc the correlations are even weaker. We draw
no other conclusions from this, except for the lack of strong cor-
relations between cycle asymmetry and other parameters, as was
the case with observed cycles as well.

We note that the cycle period, which we defined from the
times of minima, was determined differently by Viviani et al.
(2018). The authors counted how many times the mean mag-
netic energy level is crossed. The cycle period is also different in
Warnecke (2018), who determined the period using power spec-
tra.

It must also be noted that the rotation rate, although the most
relevant parameter, is not the only parameter that was varied be-
tween the simulations. Other input parameters that were changed
between the runs are the grid resolution, the fluid, subgrid-
scale, and magnetic Prandtl numbers, the Taylor number, and the
Rayleigh number. We did not analyse, however, how these affect
the cycle asymmetry because these parameters are not known for
real individual stars.

Table 6 summarizes the main features of the simulated cy-
cles, both including all cycles and when the global and wedge
runs are separated. Despite the low number of statistics and the
different parameter space between the observations and simula-
tions, the comparison is deemed useful. Firstly, this gives a re-
alistic view on the current state of direct numerical simulations.
Furthermore, comparing the observed and simulated trends in
skewness may serve as an additional tool for deducing what type
of dynamo is operating in a star.

6. Conclusions

We draw the following conclusions from our study. A fast rise
and slower decline is common for stellar activity cycles. The
Sun has particularily asymmetric cycles. More active stars might
have less asymmetric cycles, but the correlation between the
skewness and other parmeters is mostly unclear. Individual cy-
cles might have very irregular shapes, but the average cycle
shape is fairly well represented with a sinusoid. The average
cycle still reaches its maximum before the sinusoid because it
is asymmetrical. The chromospheric and sunspot cycles do not

have exactly the same shape. This means that MW cycles for
other stars can probably not be directly compared to the sunspot
cycle.

The numerically simulated cycles, with shorter rotation pe-
riods than the observed real stars, have on average more sym-
metric cycles, with a distribution in the skewness values cen-
tred very close on zero. Perhaps the simulations miss something
that makes the cycles asymmetric in real stars. This might in-
dicate that the physics that is still not captured by these mod-
els, such as the missing photosphere and chromosphere, is cru-
cial for creating the cycle asymmetries. Other explanations for
this might be a difference in the cycles between slow and fast
rotators, for which there is some support from the weak cor-
relation between the skewness and the rotation period, and the
stronger anti-correlation between the skewness and log R′HK in
the MW data. The simulation geometry affects the asymmetry
of the simulated cycles, with the wedge simulations having on
average more negatively skewed cycles than the global simula-
tions.
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Fig. 10. Distribution of skews of individual cycles for all the runs (left), only the global runs (centre), and only the wedge runs (right).

Table 4. Skewness of the simulated cycles. The runs are named as in the corresponding reference.

Run ncyc 〈γ〉 σ Ω̃ Prot [d] Pcyc [yr] G/W Reference
A1 2 -0.323 0.239 1.0 26.09 3.20 ± 0.25 G Viviani et al. (2018)
C2 7 0.061 0.230 1.8 14.49 5.02 ± 2.14 G Viviani et al. (2018)
E 2 0.179 0.199 2.9 9.00 13.41 ± 2.63 G Viviani et al. (2018)
F1 4 0.106 0.124 4.3 6.07 4.14 ± 1.65 G Viviani et al. (2018)
Ga 4 0.012 0.325 4.9 5.32 7.69 ± 3.12 G Viviani et al. (2018)
Ha 6 -0.173 0.208 7.8 3.34 2.60 ± 0.62 G Viviani et al. (2018)
J 2 -0.090 0.127 14.5 1.80 5.14 ± 0.71 G Viviani et al. (2018)

K1 14 0.209 0.458 21.4 1.22 1.85 ± 0.58 G Viviani et al. (2018)
La 3 0.303 0.148 23.3 1.12 3.16 ± 0.62 G Viviani et al. (2018)
M 4 0.050 0.122 28.5 0.92 6.73 ± 0.68 G Viviani et al. (2018)

M2 10 0.162 0.376 2.0 13.05 4.09 ± 1.30 W Warnecke (2018)
M2.5 5 0.047 0.474 2.5 10.44 4.13 ± 0.90 W Warnecke (2018)
M3 3 -0.258 0.413 3.0 8.70 7.22 ± 1.88 W Warnecke (2018)
M5 13 -0.165 0.266 5.0 5.22 2.17 ± 0.35 W Warnecke (2018)
M7 12 -0.092 0.160 7.0 3.73 2.75 ± 0.78 W Warnecke (2018)

M10 13 -0.163 0.219 10.0 2.61 2.61 ± 0.73 W Warnecke (2018)
M15 4 -0.076 0.082 15.0 1.74 5.68 ± 2.27 W Warnecke (2018)
JW 9 0.050 0.216 15.5 1.68 4.70 ± 1.97 W Viviani et al. (2018)

M30 6 0.093 0.230 30.0 0.87 5.58 ± 2.87 W Warnecke & Käpylä (2019)
MW 10 0.030 0.204 31.0 0.84 4.15 ± 2.10 W Viviani et al. (2018)

Notes. The G/W column divides the runs into global (G) and wedge (W) runs. The high-resolution runs are named with the superscript a.

Table 5. Correlation coefficients between 〈γ〉 and other parameters in
the simulated cycles.

Parameter Correlation coefficient p-value
Prot,all -0.32 0.17

Prot,global -0.57 0.09
Prot,wedge 0.12 0.75
Pcyc,all 0.19 0.11

Pcyc,global 0.21 0.59
Pcyc,wedge 3.6 × 10−3 0.99

Table 6. Average skewness and its standard deviation of the observed
and simulated cycles.

Parameter MW All simulated runs Global Wedge
〈γ〉 0.11 0.00 0.06 -0.06
σ 0.28 0.32 0.31 0.31
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Fig. 11. Mean skewness of the simulated cycles as a function of Prot.
The error bars represent the standard deviation of the cycles in the run.
Global runs are shown in red, with the high-resolution runs in orange
and the wedge runs in blue. The horizontal line represents γ = 0.
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Fig. 12. Same as Fig. 11, but for Pcyc.
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Appendix A: Minima and maxima of individual MW
cycles
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Table A.1. Times of minima and maxima for the MW stars and the time intervals we used to derive these as upper and lower index, and period
and skewness for each cycle.

HD #cyc tmin tmax Pcyc [yr] γ

3651 1 -2600−1000
−4000, 29005000

1000 -550500
−1500 15.06 0.368

4628 1 -2450−1500
−3500, 4001300

−500 -10000
−2000 7.80 -0.049

4628 2 400, 35504700
2500 18002800

800 8.62 0.242
16160 1 -900500

−2000, 35504500
2500 13502300

500 12.18 0.074
26965 1 -2050−1000

−3200, 17002500
1000 -3001300

−1700 10.27 -0.055
26965 2 1700, 55006000

4800 34504500
2500 10.40 0.207

32147 1 -1050−200
−1800, 27503700

2000 -3150−2200
−4300, 3001100

−600, 48505500
4200 10.40 0.127

166620 1 -2200−800
−3300, 34004500

2200 1501000
−1500 15.33 0.146

219834A 1 1501000
−800, 30503600

2200 10001800
300 7.94 0.231

219834A 2 3050, 46505500
4000 35504500

3000 4.38 0.496
219834B 1 -3950−3000

−4500, -5001000
−1500 -2700−1900

−4000 9.45 0.521
219834B 2 -500, 31503600

2600 11001800
300 9.99 0.197

219834B 3 3150, 57506000
5000 42004700

3600 7.12 0.238
Sun 1 -1150, 2650 200 10.40 0.338
Sun 2 2650, 6200 3700 9.72 0.231
Sun 3 6200, 10800 7650 12.59 0.614

10476 3 -2900−2100
−3600, 9001400

400 -1350−500
−2200 10.40 0.109

10476 2 900, 45505100
3700 21002600

1500 9.99 0.446
10476 3 4550, 83008500

7500 64007000
5800 10.27 -0.224

81809 1 -2650−2100
−3200, 3501000

−500 -1250−500
−2000 8.21 0.128

81809 2 350, 34504000
3000 16002300

900 8.49 0.310
81809 3 3450, 60506700

5200 45005200
4100 7.12 0.228

103095 1 -1700−1000
−2400, 7501600

−300 -600300
−1300 6.71 0.260

103095 2 750, 35003800
3100 21002700

1600 7.53 0.018
103095 3 3500, 59006800

5000 46005300
3800,73007800

6800 6.57 0.328
114710 1 12001800

500 , 33503800
2700 17502300

1300 5.89 0.761
114710 2 3350, 53005800

4700 43004900
3500 5.34 -0.248

114710 3 5300, 71508100
6400 62006700

5700 5.07 -0.193
115404 1 -1100−300

−2000, 35004000
3200 4001500

−800 12.59 0.130
115404 2 3500, 66507100

6100 53006000
4600 8.62 0.186

149661 1 -3350−2800
−3800, -1700−1300

−2300 -2400−1800
−3000 4.52 0.006

149661 2 -1700, -400200
−1200 -1300−500

−1900 3.56 0.524
149661 3 -400, 13001800

800 4001300
−300 4.65 -0.123

149661 4 1300, 25003100
2100 20002800

1300 3.29 -0.114
149661 5 2500, 51005700

4200 34004000
2500 7.12 0.268

149661 6 5100, 69007400
6500 62506800

5800 4.93 -0.638
152391 1 -1800−500

−3200, 21002800
1600 200800

−500 10.68 -0.460
152391 2 2100, 56506100

5000 40504900
3200 9.72 -0.038

152391 3 5650, 77008200
7200 63506800

5800 5.61 0.379
160346 1 -3750−3000

−4100, -1100−500
−1600 -2700−2000

−3300 7.26 0.008
160346 2 -1100, 14002000

1000 150700
−500 6.84 0.178

160346 3 1400, 39504600
3200 23502800

1800 6.98 0.077
160346 4 3950, 67007200

6200 52505700
4700 7.53 0.175

201091 1 -3400−3100
−3800, -850−400

−1400 -2300−1800
−2800 6.98 -0.085

201091 2 -850, 21502800
1800 4001000

0 8.21 -0.004
201091 3 2150, 45005100

4000 34004000
2500 6.43 0.071

201091 4 4500, 69007600
6400 57006500

5000 6.57 -0.113

Notes. [tmin/max]=JD-2444000. tmin and tmax for the Sun are from Hathaway (2015). Intervals used in the fitting of minima are only listed once for
each minimum. With HD 32147 and HD 103095, the additional maxima were used in to increase statistics in the calculation of 〈tr〉/〈td〉.
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