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Abstract

Rossby waves are found at several levels in the Sun, most recently in its supergranule layer. We show that Rossby
waves in the supergranule layer can be excited by an inverse cascade of kinetic energy from the nearly horizontal
motions in supergranules. We illustrate how this excitation occurs using a hydrodynamic shallow-water model for
a 3D thin rotating spherical shell. We find that initial kinetic energy at small spatial scales inverse cascades quickly
to global scales, exciting Rossby waves whose phase velocities are similar to linear Rossby waves on the sphere
originally derived by Haurwitz. Modest departures from the Haurwitz formula originate from nonlinear finite
amplitude effects and/or the presence of differential rotation. Like supergranules, the initial small-scale motions in
our model contain very little vorticity compared to their horizontal divergence, but the resulting Rossby waves are
almost all vortical motions. Supergranule kinetic energy could have mainly gone into gravity waves, but we find
that most energy inverse cascades to global Rossby waves. Since kinetic energy in supergranules is three or four
orders of magnitude larger than that of the observed Rossby waves in the supergranule layer, there is plenty of
energy available to drive the inverse-cascade mechanism. Tachocline Rossby waves have previously been shown
to play crucial roles in causing seasons of space weather through their nonlinear interactions with global flows and
magnetic fields. We briefly discuss how various Rossby waves in the tachocline, convection zone, supergranule
layer, and corona can be reconciled in a unified framework.

Unified Astronomy Thesaurus concepts: Solar photosphere (1518); Solar motion (1507); Solar physics (1476)

1. Introduction

Rossby waves are a form of inertial wave, found somewhere
in all rotating spherical bodies containing fluid, particularly on
or in rotating planets and stars. The restoring forces in all
inertial oscillations are the combination of Coriolis force and
pressure gradient forces. Rossby waves generally propagate in
longitude, with the direction of propagation determined by
other properties, such as the thickness of the spherical shell as a
fraction of the radius of the body. Rossby waves were first
recognized for the Earth’s atmosphere (Rossby 1939), and are
well known to occur in oceans, probably also in the Earth’s
liquid core (Hide 1966; Raphaldini & Raupp 2020), and in
other planetary atmospheres. Light curves of Kepler space
mission recently showed the indication of Rossby waves near
the surfaces of many stars with different spectral types (Van
Reeth et al. 2016; Saio et al. 2018). The waves could also be
important in the dynamics of many different astrophysical
objects (Zaqarashvili et al. 2021). Rossby waves are central to
modern numerical weather prediction models, and are critical
for understanding and predicting evolving patterns of solar
magnetic activity.

Since the first discovery of solar Rossby waves (McIntosh
et al. 2017; Loptien et al. 2018) a rapidly growing amount of
evidence has shown that the Sun also contains Rossby waves
(Hanasoge & Mandal 2019; Liang et al. 2019; Mandal &
Hanasoge 2020; Hathaway & Upton 2021); it is then very
likely that other stars with convection zones also contain them.
An earlier report of evidence of solar Rossby waves by Kuhn
et al. (2000) has been shown by Williams et al. (2007) to
instead be evidence of corrugations in the lower solar
atmosphere from supergranules below. Evidence of Rossby
waves has now been seen in both solar velocities and magnetic
structures in the solar atmosphere. Near-surface helioseismic
measurements have revealed them, as have surface flow fields
and patterns. Global coronal brightness patterns and coronal
bright points show evidence of Rossby waves. There are
differences between the velocity and magnetic feature measures
of Rossby waves, but such differences could in part be
evidence of Rossby waves originating in different depths in the
Sun’s photosphere, and below and above as well. There is also
theoretical and modeling evidence of Rossby waves in the solar
tachocline, which plausibly are generated due to global
magnetohydrodynamics there (Dziembowski & Kosovichev
1987; Gilman & Fox 1997; Dikpati & Gilman 2001;
Zaqarashvili et al. 2010; Balk 2014; Raphaldini & Raupp 2015;
Dikpati et al. 2018a), and nonlinearly interact with the spot-
producing toroidal magnetic fields and differential rotation to
cause the short-term seasonal or quasi-annual/quasi-biennial
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variability observed in the surface solar activity and space
weather (Dikpati et al. 2017, 2018b).

It is well known from theory and models that Rossby waves
have different properties, particularly their longitudinal direc-
tion of propagation and their frequency, as functions of
longitudinal wavenumber, depending on the thickness of the
layer they reside in compared to the radius of the rotating body.
All Rossby waves arise from the conservation of potential
vorticity as fluid particles move in a rotating fluid. Potential
vorticity is defined as the fluid vorticity measured in an
absolute frame of reference, divided by the product of the fluid
shell thickness and the fluid density. In a thin 2D fluid shell
such as the Earth’s lower atmosphere neither thickness nor
density variations are important, so potential vorticity varies in
the same way as absolute vorticity, and all models show that
Rossby waves propagate retrograde relative to the rotating
frame because fluid particles displaced toward the equator
spiral to the west against the rotation direction. By contrast,
fluid columns aligned with the axis of rotation in a thick fluid
shell outside the tangent cylinder to its inner boundary, whose
fluid density, and thickness parallel to the rotation axis, decline
in the outward direction, as in a rotating star, lead to prograde
propagating Rossby waves (see, e.g., Glatzmaier & Gilman
1981). From both the thickness and density gradients, outward
moving fluid columns spiral in the direction of rotation,
leading to the prograde propagation. To achieve these prograde
Rossby waves requires that the Sun be rotating fast enough so
that the flows outside the equatorial tangent cylinder tend to
align with the rotation axis. This property has not yet been
established in the Sun; it could be that the Sun is simply not
rotating fast enough for these particular Rossby waves to be
present.

The primary property of Rossby waves that has been
detected in the various solar measurements described in the
references cited above is their frequency as a function of
longitudinal wavenumber. In particular, both helioseismic and
surface correlation tracking measurements find the retrograde
phase speed, of an amount consistent with the fluid shell in
which the waves reside being thin. This means they are like
Rossby waves in a thin planetary atmosphere such as the Earth,
despite the fact that while the Earth’s troposphere is no more
than one pressure scale height thick, the outermost layer of the
Sun’s convection zone is many scale heights deep. In addition,
the Earth’s troposphere average vertical stratification is
subadiabatic, conducive to nearly horizontal flow with nearly
hydrostatic balance in the local vertical direction, which leads
to flows that are extremely large in horizontal scale compared
to the thickness of the layer. By contrast, the outer layers of the
solar convection zone have superadiabatic stratification and
contain vigorous convection everywhere (granulation), whose
flow is certainly neither hydrostatic nor primarily horizontal.
Yet Rossby waves characteristic of a thin stably stratified
atmosphere are seen. This reveals a form of paradox for the
Sun, which we will discuss.

Henceforth in this paper our aim is to explore theoretically
the generation of Rossby waves observed in velocities near the
top of the convection zone. In our judgment there are only two
possible ways such waves can be excited and maintained. One
is that they are generated in situ; the other is that they propagate
up to the top from wherever they are generated below. Here we
focus on in situ generation. Separately, upward propagation of
Rossby waves generated below is under study. In situ

generation of Rossby waves requires an in situ energy source.
One possibility is the Sun’s latitudinal differential rotation,
which could be unstable to Rossby waves. In that case, the
Rossby waves would be energetically active, taking kinetic
energy from the differential rotation, which itself would have to
be maintained by some other mechanism. This would require
Reynolds stresses (correlations between longitude and latitude
motions) that transport angular momentum from low latitudes
to high, down the gradient of angular velocity. But all
theoretical models for the differential rotation do exactly the
opposite, transporting angular momentum toward the equator
to maintain it against turbulent diffusion by smaller scales. And
measures of angular momentum transport by flows, such as
correlations of longitude and latitude motions of sunspots
(Gilman & Howard 1984), also show angular momentum
transport toward the equator, but being a magnetic measure,
these data may be reflecting flow correlations coming from
much deeper levels of the convection one. Furthermore, the
Rossby waves observed through their associated fluid velocities
appear to be energetically neutral; that is, they have no
Reynolds stress associated with them. So there must be some
other energy source to excite and maintain Rossby waves. Here
we explore whether the horizontal motions in supergranulation
can provide this energy source.

2. Rationale for Supergranulation as the Excitation Source
of Rossby Waves

So how can the apparent paradox of finding Rossby waves
with virtually horizontal motion in a fully convective medium
be resolved? Stated another way, while stable stratification of a
thin rotating spherical shell is sufficient to result in Rossby
waves, given an excitation mechanism, it may not be necessary.
It is well known that Rossby wave modes with no vertical
motion can, at least in theory, even exist in atmospheres of
arbitrary vertical density profile (see, e.g., p. 379 of Pedlosky
(1987). They are called barotropic modes, and can exist even
without requiring hydrostatic equilibrium. Historically in
meteorology it has generally been assumed that if unstable
stratification is present and the system is experiencing
convection (or possibly other small-scale motions), Rossby
waves will not be favored. But that does not rule out them
being present. Convectively driven Rossby waves have been
invoked for deep atmospheres of giant planets (Liu &
Schneider 2011) and in more general theory (Tikhomolov
1996). Apparently this is what is happening in the supergranule
layer of the Sun. By any measure the kinetic energy of
both supergranulation and granulation is orders of magnitude
higher than that of the observed Rossby waves. One
implication of this fact is that while Rossby waves in the
supergranule layer may be useful as diagnostic tools, they are
very unlikely to be dynamically significant in the supergranule
layer, since there is so much more energy in the much smaller
scales of motion.
Given how large the kinetic energy of granulation and

supergranulation is compared to the observed Rossby waves, if
even a small amount of this energy could leak into global scales
of flow, it would be enough to maintain the observed kinetic
energy of the Rossby waves in the depths where granulation
and supergranulation are found. This transfer of energy from
small to large scales is well known to turbulence modelers as
inverse cascade, and is well known to occur in stably stratified
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thin rotating spherical shells. But here too it may not be
essential that the shell be stably stratified.

Supergranulation is better suited than granulation to be the
source of the energy to excite Rossby waves through the
possible inverse-cascade mechanism, for multiple reasons.
First, from observations, supergranulation flow is predomi-
nantly horizontal flow, as are Rossby waves. The predomi-
nance of horizontal over vertical motions in supergranules
implies they are rather shallow, perhaps no more than 30Mm,
no more than 4% of the solar radius. By contrast, granulation
observations show mostly vertical flow. Second, the horizontal
scale of supergranulation is only one order of magnitude
smaller than that of Rossby waves (Rossby waves are always
global in thin layers, but supergranulation by inspection is not),
and granulation is between two and three orders of magnitude
smaller in scale. Third, supergranules last long enough (∼1
day) to be modestly influenced by Coriolis forces, but
granulation lifetimes are much too short (<10 minutes) to feel
that influence. Finally, while there is no doubt that granulation
is a form of convection, with many numerical models
predicting the scale and turnover time, the same is less clear
for supergranulation. There is still some debate about whether it
is convection at all. In fact, it has been proposed that
supergranulation itself is driven by an inverse cascade of
kinetic energy from the even more energetic granulation. Thus,
the idea of inverse cascades of energy playing important roles
in solar fluid dynamics and MHD in convection zones has
already been invoked. Rincorn & Rieutord (2018) have given a
recent comprehensive review of observations, models, and
theory of supergranulation, which includes the points we have
discussed above.

3. Model to Link Supergranules with Rossby Waves

Ideally it would be best to explore whether the inverse
cascade of energy from small scale can generate near-surface
Rossby waves or not is by using a global high resolution thin
shell model for convection, one that fully resolves at least
supergranulation, and even granulation. But to our knowledge
no such model of this resolution has been used, mainly because
it would require far too much supercomputer time (due to the
high spatial and time resolution needed) to do a meaningful
simulation involving inverse cascade of energy from super-
granulation and especially granulation. This is particularly a
limitation if supergranulation itself is driven by an inverse
cascade from granulation. Also, there does not appear to be any
generally accepted theory of supergranulation that correctly
predicts its horizontal scale and pattern. So we have chosen a
different strategy, using a global model that focuses on
horizontal motions and has enough horizontal resolution to
include scales of motion that are an order of magnitude smaller
than Rossby waves, as supergranulation is.

Note that our aim is not to develop a theoretical model for
supergranulation, but to initialize our global model with kinetic
energy at only the smallest scales, and explore their dynamical
interactions with other global-scale motions. Then the simula-
tion experiments will determine whether an inverse energy
cascade is possible in reaching global scales; if possible, how
efficient is the inverse-cascade process, and what the properties
are of the global motions that are excited. Do they have the
right properties of Rossby waves to compare with solar
observations? The initial kinetic energy at small scales will
contain a lot of horizontal divergence as well as some

amplitude in the vertical component of vorticity, just as
supergranules do. Finally, we acknowledge that the super-
granule layer, unlike the tachocline, is not clearly distinct from
the rest of the convection zone below (or above, in the case of
the tachocline). However, it is the layer where the convection
zone changes from larger scale motions substantially influ-
enced by Coriolis forces (Rossby number <1), to motions that
are at most only slightly influenced by Coriolis forces (Rossby
number >1). This difference, in its own way, does support the
idea of treating it as a dynamically distinct layer in models of
solar fluid dynamics.
All of the characteristics described above are included in the

hydrodynamic version of the global nonlinear shallow water
model of Dikpati (2012). The major difference from the Sun is
that this model does not include convection explicitly because
it is stably stratified, and it is very limited in vertical resolution,
so it only focuses on the shallow-water mode, which is
essentially a quasi-3D barotropic mode. Also, there is a close
correspondence between the shallow water system and a
stratified fluid with an equivalent depth (Pedlosky 1987). What
this means is that for each propagating Rossby wave in a
stratified fluid there is a wave with the same propagation speed
in a homogeneous layer of the equivalent depth. This property
was originally derived by Taylor (1936) and it is valid for all
wave modes in stratified and compressible atmosphere. This
shallow-water layer also contains another form of small-scale
motion, also driven by buoyancy forces, namely, horizontally
propagating gravity waves. This is important because the
model is free to determine whether the kinetic energy
introduced at the smallest scales goes into driving a wide
range of gravity waves, or it in fact does inverse cascade into
global scales to excite Rossby waves, or both. We recognize
that there are no actual gravity waves generated in the
supergranule layer because it is superadiabatically stratified;
we are instead representing in the initial conditions the
horizontal motions of supergranules. Therefore, the numerical
experiments we will perform are analogous to those we would
perform with a fully convective thin shell, but more efficient by
orders of magnitude. We think of this approach as an analog to
the convection cascade problem, rather than as a form of it. We
will report on a series of numerical experiments that include
cases with no rotation, solid rotation, and differential rotation to
determine the role of rotation and differential rotation for
transferring energy to the largest spatial scales from super-
granule-like scales.

3.1. Equations

Over the last several decades nonlinear hydrodynamic
shallow-water models have been applied for studying global
oceanic and atmospheric dynamics (see, e.g., p. 387 of
Pedlosky 1987). Such models, as well as the generalized
versions, including magnetohydrodynamics, have been exten-
sively applied for studying global solar dynamics (Gilman
2000; Zaqarashvili et al. 2010; Klimachkov & Petrosian 2017;
Dikpati et al. 2018b). A full set of nonlinear hydrodynamic and
magnetohydrodynamic shallow-water equations, applied to
study tachocline instabilities, have been presented in an inertial
frame of reference in spherical coordinates (see, e.g., Dikpati &
Gilman 2001; Gilman & Dikpati 2002). Here we focus
primarily on the hydrodynamic shallow-water system, and
present the equations in the rotating reference frame, corotating
with the core-rotation rate.
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Basic formulation of a global nonlinear shallow-water
model, including physical assumptions, approximations, and
boundary conditions, applied to the Sun have already been
presented in various papers (see, e.g., Dikpati et al. 2018b),
which also provide detailed formulations of energy integrals in
closed form. We do not repeat them here. In brief, shallow-
water models are quasi-3D models with a much larger
horizontal extent than thickness. The variations in the
horizontal direction are much larger than in the vertical
direction. Due to the thinness of the fluid layer compared to
radius of the astrophysical body divergence of the radii and the
density variation are ignored in the momentum and mass
continuity equations. Traditionally, shallow-water models are
hydrostatic in the vertical because the horizontal spatial scale of
the motions is much larger than the thickness, but it has
recently been shown (Jalali & Dritschel 2021) that such models
can be extended to include nonhydrostatic motions whose
horizontal scale is comparable to the thickness of the layer. We
have not employed that extension here, but it may be useful in
the future.

Before we write the full set of nonlinear hydrodynamic
shallow-water equations in the frame rotating with core-
rotation rate (ωc), we discuss the application of the shallow-
water model in our case here. The supergranulation layer of the
Sun is thin, with thickness no more than a few percent of the
solar radius. Therefore, for the simulations that follow, we use a
global thin spherical shell. Its undisturbed thickness varies with
latitude according to whether the shell is rotating, differentially
rotating, or not rotating. In our case, the variations in thickness
are all small, but the dynamical perturbations to the thickness
are very important because they allow for gravity waves that
can absorb energy put in at the smallest scales of the model,
without giving rise to energy transfer to excite global-scale
Rossby waves. Thus, in this model the nonlinear mode-mode
interactions can choose to inverse cascade and/or to get
absorbed in gravity waves.

If we denote λ as longitude, f as latitude, t as time, u as the
longitudinal velocity in the rotating frame, v the latitudinal
velocity, and h the height deformation of the top surface, then
the dimensionless governing shallow-water equations are given
by
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In Equations (1) and (2) above, the parameter G is no longer
a measure of the actual effective gravity of the supergranule
layer, but rather a parameter to set the characteristic frequencies

of gravity waves present in the model. The dimensional
parameters within G, such as the radius, layer thickness, and
gravity, have somewhat different values than were originally
chosen for the application of the model to the tachocline (radius
larger, gravity smaller, thickness in the same range), but the
appropriate G values to include gravity waves that are
relatively high frequency compared to Rossby waves are in
the same range as they were for the tachocline case. Gravity
waves in this model have frequencies proportional to G1/2, so
the smaller G is, the lower the frequency. We take a G value
large enough that the model gravity waves propagate much
faster than Rossby waves, so they are quite distinct. We take
G= 10 for all cases studied. To evaluate G, we use an estimate
of the thickness of the supergranule layer. In order to separate
the timescales of Rossby and gravity waves, G just has to be
large enough. In this study G has been specified to be of value
10. By following the definition of equivalent height as given in
Pedlosky (1987), the thickness of the supergranule layer would
be somewhat larger than the equivalent height, since the latter
is close to ∼1 scale height. So if we consider an equivalent
height of that layer, the value of G would be greater than 10, for
which the dynamics of the model will be similar because the
behavior of modes was found to change the regime from high
G to low G below about G= 1 (Dikpati 2012).

3.2. Solution Method

Nonlinear shallow-water equations have been solved by
Dikpati and colleagues using pseudo-spectral schemes. Since
the details can be found in Dikpati (2012) (see also Dikpati
et al. 2018b), here we briefly describe the major steps, and
describe certain small differences in the present simulations
compared to that of TNOs (tachocline nonlinear oscillations).
To solve Equations (1)–(3) we perform the following steps:

(i) compute u, v, and h in a Gaussian grid of f− λ; certain
nonlinear terms are computed in real space and then are
converted to spectral space; (ii) for time evolution, first kick-
start using the fourth-order Runge–Kutta method, then apply
the Adams–Bashforth method; (iii) momentum is checked and
balanced every few steps; (iv) in order to avoid ringing/Gibb’s
phenomena, a small spectral viscosity is added; (v) a semi-
implicit scheme is used to integrate the effect of very high-
frequency gravity waves. For the length of integrations we have
done, the small spectral viscosity added makes no measurable
difference in the constancy of the total energy of the system
with time. Velocities do not decay in total, which we will see
later in the results section while discussing our simulation
results.
In the TNO study, Dikpati et al. (2018b) focused on low

longitudinal wavenumbers m up to m= 10 or so, and the
evolution of the model-system containing spot-producing
magnetic fields was advanced for several months. However
the present study requires all possible l and m in spherical
harmonics representations of u, v, and h. With m� l, we
consider all possible m for l up to 21 and 42, respectively, in
the T21 and T42 models. The computation is done in a 4.5
petaflop supercomputer “Cheyenne” at the NCAR-Wyoming
supercomputer center, using OpenMP parallelization.
To perform a simulation run for 1 day, 500 cpu hours are

required in a T21 model. But in a T42 model, this time
increases by about a factor of 10. Therefore, we demonstrate
only one case of our simulations in a T42 model, and the rest
we do using a T21 model. Performing simulations of one case
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in both resolutions also confirms the validity of the numerical
scheme. The T42 model truly captures the supergranule scale,
but due to being too expensive, we do almost all our
simulations in a T21 model. T21 is not fine enough to truly
include supergranule scale horizontal motions; however, if
similar results are obtained using both the T42 and T21 models,
we can safely use the T21 model for exploring various
numerical experiments.

3.3. Initial Conditions

For the initial conditions in all cases below we put kinetic
energy in almost all l, m modes to ensure nonlinear interaction,
but with the spectrum in m heavily weighted toward the highest
wavenumbers m allowed in the model; this spectrum peaks at
m= 35 for the T42 model and m= 15 for the T21 version,
above which it falls off sharply to the highest m allowed,
namely, m= 42 and m= 21, respectively. We also include
initial potential energy in the form of undulations of the top
surface to further enhance the ability of the model to stimulate
gravity waves on all spatial scales.

We compute the radial component of vorticity and horizontal
divergence present in the initial motions. We know that Rossby
wave velocities are almost all vortex motions with very little
divergence. By contrast, supergranule horizontal motions are
mostly divergent as estimated from results in Langfellner et al.
(2015) and Böning et al. (2015). We select the initial velocities
in such a way as to reflect these characteristics of super-
granulation. The vorticity ζ and horizontal divergence δ in our
initialization are given, respectively, by
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Since energy is a scalar quantity it is straightforward to
compute the kinetic energy in the initial state as a function of
m. But the vorticity and divergence, being or containing
vectors, can be computed at each grid point of the domain. To
compute the mean-square vorticity and divergence as function
m at t= 0, we integrate the square of these quantities over the
entire domain for each m. A similar methodology is used for
the calculation of mean-square vorticity, which is often called
enstrophy in fluid mechanics (see, e.g., Weiss 1991; Umurhan
& Regev 2004).

How the system responds to the initial kinetic energy at
small scales critically depends on the magnitude of the energy.
Small initial energy means the nonlinear advection terms in
Equations (1) and (2) will always be small compared to
horizontal pressure gradients and Coriolis forces, and even
compared to local accelerations (∂u/∂t, ∂v/∂t). There will be
no preference for Rossby waves over gravity waves modestly
influenced by rotation. That is clearly not the situation in the
Sun’s supergranule layer, where the kinetic energy of
horizontal supergranulation flow is three or four orders of
magnitude larger than the Rossby waves observed. If the initial
kinetic energy in the system is large enough to be responsible
for producing significant nonlinear advection terms, mode-
mode nonlinear interactions in small-scale motions can lead to
a different quasi-stable state in the system. While the nonlinear

advection terms in the equations of motion couple modes with
different l and different m together to excite other modes with
other l, m values, in rotating spherical geometry there is a
second mechanism for mode coupling, namely, the Coriolis
forces, which couple modes of the same m but differing l
values. In the general case, both mode coupling mechanisms
operate.

4. Results

4.1. T42 Model Simulation with Solid Rotation

As previewed above, we first carry out a simulation with the
high resolution T42 model, which truly captures supergranule
scale. Figure 1(a) shows the initial kinetic energy spectrum for
this simulation, which peaks around m= 35, similar to where
supergranulation energy peaks. Initially, there is essentially no
energy at low m. Figure 1(b) shows the initial distribution of
squared vorticity and horizontal divergence by wavenumber m,
which shows that at the highest m, which represent super-
granule scale horizontal motions, the motions have little
vorticity compared to their divergence, consistent with
observations. In fact, all but the very lowest m modes have
more initial divergence than vorticity. And both are small for
m< 15 or so compared to higher m. This ensures that initial
conditions are not favored for producing large vortical motions.
Can the Coriolis forces acting on the small-scale divergent

motion generate large vortical motions as the dynamics evolve?
Can mode-mode nonlinear interactions carry kinetic energy in
wavenumber space from large to small m, where Coriolis forces
have much greater influence on the flow?
Three snapshots of the evolving kinetic energy spectra in l, m

space are shown in Figure 2. The movie shows their continuous
evolution (attached in the caption of Figure 2). The total
calculation shown is for 1.7 days. We see that the energy very
quickly migrates from high m and l to low m, l, to modes of less
than 6,6 or so. Each of these modes contains far more kinetic
energy than do high individual mʼs at the start of the
simulation. Thus, we see that an inverse cascade of energy
via mode-mode interactions can quickly take energy from
supergranule scales and deposit it in global low m modes that
are likely to be Rossby waves.
These low m modes now contain mostly vorticity, which is

characteristic of Rossby waves. Having obtained the basic
inverse-cascade phenomena in a T42 model, several numerical
experiments as well as analysis need to be performed to
understand the features of these low m modes. However, the
T42 model is extremely expensive: producing a 1.7 day run
uses 36 cores × 12 hr per run × 45 runs, which is
approximately 20,000 core hours. Therefore, for the feasibility
of completing the necessary simulations, we do all subsequent
simulations reported below with the T21 version of the model,
which is roughly 10 times faster. The T21 model can retain all
the characteristics of the T42 model, just with less scale
separation between the smallest resolved scales and global
scales.

4.2. T21 Model Simulation with Solid Rotation

Figure 3 shows the initial kinetic energy spectrum for a
simulation at T21 summed over l for each m. For this case the
spectrum peaks around m= 15, in contrast to the the T42 case
shown in Figure 1, where it peaks near m= 35. We also see in
Figure 3 that the vorticity and divergence mean-square

5

The Astrophysical Journal, 931:117 (18pp), 2022 June 1 Dikpati et al.



amplitudes are similar to those for the T42 case, but of course
peaking at a lower wavenumber. For the T21 simulations, the
horizontal divergence is initially much larger than the vorticity
for all longitudinal wavenumbers.

Figure 4 shows a sequence of energy spectra during an
evolving solution. Panel (a) shows the spectra shortly after the
initialization (about 0.18 day). Here kinetic energy is spread
over a wide range of wavenumbers, but concentrated at the
high wavenumber end. As time progresses (panels (b), (c)) one
can clearly see energy migrating to both low l and low m, and
by panel (d) the highest energy concentrations are in l, m at 6,6
and below. By about 2.4 days and onward (see the bottom two
panels, (e) and (f), the spectrum is stabilizing with dominant
energies present in m= 1−4 with corresponding ¢l s. These are
most likely global-scale Rossby waves. In the accompanying
video, it is possible to see waves of kinetic energy migrating
from high to low m with time. This appearance is partly due to

potential energy at high m in the initial state being converted to
kinetic energy of the same m as the calculation proceeds. This
initial potential energy is providing a source of energy more
extended over time, but it is also limited by the constraint that
the total energy, kinetic plus potential, is pretty accurately
conserved in these simulations, very much like what we saw in
the TNO simulations (see, e.g., Figure 3(a) of Dikpati et al.
2017).
It is to be noted that the energy spectra cannot reach a fully

stable state because of the presence of large nonlinearity.
The spectra reach a quasi-stable state, in which the dominant
m= 1−4 modes continue nonlinear exchange of energies
among themselves in a slow rate (compare panels (e) and (f) of
Figure 4), but no evidence of the energy cascading back to
higher wavenumbers is seen even in the longest simulation of
25 day duration. A small difference between the solid rotation
simulations performed using a T21 model and T42 model is

Figure 1. (a) Initial kinetic energy assigned to each longitudinal wavenumber m (summed over all possible l) at the start of the T42 simulation. (b) Mean-square
vorticity and horizontal divergence in initial state for each m.

6

The Astrophysical Journal, 931:117 (18pp), 2022 June 1 Dikpati et al.



that in the T21 model the Rossby waves are even more
concentrated at the lowest m’s, but with very similar overall
evolution and final spectral profiles.
Figure 5 shows how kinetic (panel (a)) and potential (panel

(b)) energies migrate in m-space as a function of time. In
Figure 5(a) we present the kinetic energy for each longitudinal
wavenumber m for all possible spherical harmonic indices l and
display the evolution of the kinetic energy in a contour plot, in
which m is the vertical axis and t the horizontal axis. The
constant energy contours in panel (a) show how the kinetic
energy is being transferred from high m to low m. The peak in
kinetic energy, denoted by yellow in this PARULA color map
(dark blue–sky blue–green–yellow), migrates smoothly from
wavenumber m= 15 down to a band of energy in wavenum-
bers 1–4, with a peak at m = 2,3. Note also that only a small or
negligible amount of kinetic energy ends up in the m= 0 band,
which implies latitudinal differential rotation. This result
suggests that in the solar supergranule layer, the inverse
cascade of energy from supergranule scales to larger scale does
not play a significant role in the generation and sustenance of
observed latitudinal rotation gradient. But it has been known
for many years that vertical momentum transfers by super-
granulation may be responsible in significant measure for the
near-surface shear layer observed there (Gilman & Foukal 1979;
Hotta et al. 2015; Matilsky et al. 2019). Finally, we note that
there appear to be weak bands of kinetic energy at higher
wavenumbers that show migration toward both lower and
higher m with time. These represent some combination of
gravity waves and nonlinear mode-mode interactions that at
times are reflecting back toward higher m with time.
We can see in the bottom panel (b) of Figure 5 that the

potential energy also moves from high to low m in spectral
space in about the same time interval, but with a small shift in
time by about a few to several hours with respect to the
movement of the kinetic energy spectra. Note that the shell
thickness variations that determine it are closely spatially
correlated with the horizontal velocities. This is because
Rossby waves are nearly geostrophic, with vortical velocities
swirling round high and low pressure centers, consistent with a
near balance between horizontal pressure gradient and Coriolis
forces.
Figure 6 shows that the total energy, kinetic plus potential, is

conserved over the length of the T21 simulation, despite the
presence of a small amount of spectral viscosity at the highest
wavenumbers. The simulations presented here are essentially
for an ideal HD setup. We see several interesting features
revealed from Figure 6. First, some out of phase oscillations
with time between kinetic and potential energies are evident as
the simulation proceeds. This is expected because the kinetic
and potential energy reservoirs can nonlinearly exchange
energies between them, here in an approximate timescale of
gravity waves. We also see that the kinetic energy slowly
grows with time at the expense of the potential energy of the
system. This is also a clear evidence that the Rossby waves are
getting generated in the system. Much longer simulations
reported in Dikpati (2012) and Dikpati et al. (2017) show the
same precision of total energy conservation of the system.
We bring out further properties of the emerging Rossby

waves by constructing synoptic maps of the flow and height

Figure 2. Three snapshots during the evolution of kinetic energy spectra in
spectral space, for the initial solid rotation, in a T42 model. Continuous
evolution can be seen in the animation movie at https://drive.google.com/file/
d/1uF-2GUVu5vgd2CnMoCye-H0D9zgunp6n/view?usp=sharing.
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fields, and by measuring the phase speed of the Rossby wave
patterns on these maps. Figure 7 shows a sequence of three
synoptic maps of the horizontal flow vectors and the variations
in the thickness of the single layer of the shallow-water model.
We can see clearly that as time advances, the initial pattern,
dominated by small scales, evolves over time to one with
global organization of flow and thickness into N-S bands at a
much lower wavenumber. These bands are the manifestation of
low longitude wavenumber Rossby waves. Over time, there are
slow variations in the total pattern, as well as migration of the
pattern in the retrograde direction (right to left in Figure 7),
which is characteristic of classical Rossby waves. A more
detailed analysis reveals that there are nonlinear interactions
among these Rossby waves, contributing to time variations in
the amplitude of each wave. From such data it may be possible
to define lifetimes of individual Rossby waves, in a way
analogous to what is done in helioseismological studies of solar
acoustic waves.

Our initial flow pattern, concentrated at high m, contained
much more horizontal divergence than vertical vorticity. What

has changed as a result of the inverse cascade? Figure 8 shows
the mean-square vorticity and divergence after about 4 days of
simulation. We see that now there is much more vorticity than
divergence, especially at low m. This has occurred as a result
of Coriolis forces acting on the flow at all m, coupled with the
inverse cascade of kinetic energy, which inevitably results in
vorticity being concentrated where in m space the velocity
amplitudes are the largest. High vorticity compared to
divergence is a fundamental characteristic of Rossby waves.
Since Figure 8 is a snapshot of vorticity and divergence rather
than an average, we should expect the envelope of vorticity
amplitudes will not be smooth at any given time. This
accounts for the somewhat smaller amplitude in the m= 5
mode compared to its immediate neighbors. At another time,
m= 5 might be larger than its neighbors. The nonlinear
interactions among Rossby waves with neighboring wave-
numbers will continually fluctuate the amplitudes relative to
each other.
We can also see in Figure 8 that there is a small amount of

vorticity and divergence in the m= 0 mode. The divergence is

Figure 3. (a) Initial kinetic energy assigned to each longitudinal wavenumber m (summed over all possible l) at the start of the T21 simulation. (b) Mean-square
vorticity and horizontal divergence in initial state for each m.
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associated with the time dependent meridional circulation,
obviously much weaker than latitudinal flow for m> 0 modes.
Coriolis forces acting on this circulation generates a small
amount of vorticity in the small induced differential rotation.

This small effect is concentrated in middle and high latitudes
where the Coriolis forces are stronger. As can be seen in
Figure 8, this feature is quite weak compared to the Rossby
waves induced by the inverse cascade.

Figure 4. Snapshots of kinetic energy spectra in spectral space, for initial solid rotation, for T21 simulation runs. Six panels capture the characteristic features of this
spectra during time evolution. Continuous time evolution can be seen at https://drive.google.com/file/d/13UlysyOnoYbPnifj3yBiYLeTKYbpbRwm/view?
usp=sharing.
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4.3. T21 Simulation with Differential Rotation

In this section, we simulate the mode-mode interactions
when the T21 model is initialized with a differential rotation of

the form as derived from helioseismic observations (see, e.g.,
Charbonneau et al. 1999):

( )w f f= - -s s ssin sin . 60 2
2

4
4

Figure 5. Top and bottom panels respectively display kinetic and potential energies (dimensionless units) in each m (i.e., summed over all possible lʼs) as function of
time, to display inverse cascading with time in T21 simulation runs. In each panel the energy with time in each m is labeled on the left axis at the bottom of that band.
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So for these cases we have a prescribed initial differential
rotation velocity for the longitudinal motion u for the m= 0
mode, but then we allow the system to evolve as it will
according to the nonlinear dynamics, still conserving total
energy (kinetic plus potential energies) of the system.

For G= 10, we know that the differential rotation given by
Equation (7) is hydrodynamically stable to perturbations unless
s4 is large compared to s2. When we simulated the nonlinear
interactions among large m modes, including a pole-to-equator
differential rotation of 28% equally contributed by s2 and s4
terms, we get very similar results to those with no differential
rotation because this differential rotation is stable. A very
similar inverse cascade of kinetic energy occurs in this case, but
the Rossby wave longitudinal phase speeds are altered
somewhat by the presence of the differential rotation.

The case with unstable differential rotation is more
interesting. For this case we distributed the same 28% pole-
to-equator differential rotation contributed by s2 and s4 terms as
s2 = 0.04 and s4 = 0.24. This profile is unstable with
perturbation e-folding growth time of about 5 months. Figure 9
shows the kinetic energy spectrum plotted in l, m space,
analogous to that shown in Figure 4 for the case of solid
rotation. We again see evidence of an inverse energy cascade,
but one that appears less vigorous than without differential
rotation present, in that kinetic energy is somewhat less
concentrated at the very lowest wavenumbers, and with
somewhat more energy remaining in the high wavenumbers.
What is happening here is that the kinetic energy is coming into
low l, m modes both from higher l, m and from the differential
rotation itself, resulting in some oppositely directed energy
cascades, leading to peak energy for modes l, m of 3 and 4,
rather than 1 and 2 as in Figure 4. In some sense, the low m
modes 1 and 2, which are unstable, push back against the
inverse energy cascade.

4.4. Longitudinal Phase Speeds for Rossby Waves with
Different Background and/or Initial States

We can estimate the phase speed in longitude for each
longitudinal wavenumber m from synoptic maps made at a
sequence of times, and tracking the distance each peak in
vorticity or thickness moves. We do this by creating images of
velocities filtered for each m mode, in which all lʼs are present.
Because the system is nonlinear, the movement is not always at
the same speed, and there are amplitude changes as well,
arising from various mode-mode interactions due to the
nonlinear fluid advection terms in the equations of motion.
Gravity waves also cause occasional rapid movements in
latitude, during which the tracked vortex pattern may fade out
and reappear. Therefore, a phase-speed estimate is a formidably
difficult task. However, we manage this by tracking simulta-
neously a few vortices, so that all do not fade out at the same
time. Thus, the estimates are reasonably stable, and consistent
with each other. We compare all phase speeds measured in this
way with the classical Rossby wave formula for phase speed,
originally derived by Haurwitz (1940), given in dimensional
form as

( )
( )w

= -
W
+m l l

2

1
, 7c

in which Ωc is the rotation rate of our coordinate system, and as
above, l is the spherical harmonic index.
Figure 10 shows measures of the westward (retrograde)

propagation speeds of Rossby waves with longitudinal
wavenumbers between 1 and 10, all measured dimensionally
in units of degrees of longitude per day, a familiar measure for
solar rotation observations. The classical Rossby wave speed is
denoted with black filled circles, together with two cases
starting from solid rotation, one with large initial kinetic energy

Figure 6. Evolution of kinetic (red), potential (blue), and total (black) energies (dimensionless units) (summed over all possible lʼs and mʼs) as function of time for the
T21 simulation runs.
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perturbations at high m (deep blue circles), the other with
medium kinetic energy perturbations (sky-blue circles), and
finally the phase speeds for a case with large initial kinetic
energy perturbations at high m along with an initial latitudinal

differential rotation, the profile of which is unstable to
perturbations for m= 1 and 2 (orange circles). In order to
avoid clumsiness in the plot, the error bar has only been put in
one curve, namely, for the high-perturbation case with solid

Figure 7. Three snapshots of synoptic map during evolution of vortical flows (arrow vectors) superimposed on height deformation (color map), for initial solid
rotation. Red denotes the height or high pressure relative to equilibrium pressure and blue the depression or low pressure regions. Continuous evolution can be seen in
the animation movie available at https://drive.google.com/file/d/1oM-Iq79E8UwfW_–Bc3086APcvvIh41A/view.
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rotation. It is to be noted that the error is slightly more for low
m modes due to their faster speeds.

We can immediately see in Figure 10 that all cases show
very similar profiles of phase velocity as functions of
longitudinal wavenumber m, even the case for which the
differential rotation profile used is itself unstable for m = 1 and
2. Our interpretation of the differences in phase speed is that,
unlike the original Rossby–Haurwitz waves, our simulated
Rossby waves are large enough in amplitude to themselves be
nonlinear; just as finite amplitude acoustic waves commonly
travel faster than the sound of speed, so too these Rossby
waves travel faster than their linear counterparts. The results
that the medium initial perturbation in the kinetic energy of
high m modes are faster than the Haurwitz waves by about half
the amount for the high initial kinetic energy modes supports
this interpretation.

By contrast to solid rotation, for the case with unstable
differential rotation present, the Rossby waves are a little
slower retrograde than the Haurwitz formula (see the orange-
filled circles in Figure 10). This is because the positive
differential rotation in low latitudes reduces the retrograde
propagation speed by a small amount. But these waves are still
propagating retrograde. Herein lies a possible paradox. It is
well known that in rotating shear flow in channels, differential
rotation is unstable to nonaxisymmetric (m> 0) perturbations
only if the phase speed of the growing wave falls within or
close to the range of differential rotation; see, e.g., the so-called
semicircle theorem of Drazin & Howard (1962), (Pedlosky
1987, see Chapter 7, p. 514). For a thin spherical shell like the
Sun’s supergranule layer, this means unstable Rossby waves
must have phase speeds less than the maximum rotation rate at
the equator, but not much less than the rotation rate at the poles
(the limit being set by a factor proportional to the latitude
derivative of the Coriolis parameter, the β-effect in meteo-
rological parlance). Certainly the very retrograde speed for
m, l= 1 modes in the Haurwitz formula are ruled out as
unstable modes. So what Rossby waves are appearing in

Figure 10 for this case? They are in fact a set of neutral Rossby
waves, much like those for the solid rotation cases. Examina-
tion of a time sequence of synoptic maps for this case indeed
shows that both neutral and unstable waves are present, with
very large variations with time in phase speed and mode
structure with latitude, as unstable and neutral waves compete
with and interact to produce the total map. The unstable waves
have their origin in the initial differential rotation, while the
neutral, retrograde propagating waves are driven by the inverse
energy cascade, just as in the solid rotation cases. The
competition between these waves of different origin is most
intense for the m = 3 and 4 modes, each supplying energy
respectively from lower and higher m, leading to the peak
energies seen there.
It is worth emphasizing that the difference in longitudinal

phase speeds between energetically neutral Rossby waves
uninfluenced by differential rotation, and Rossby waves excited
by instability of differential rotation, is very large: the m= 1
neutral wave has a retrograde phase velocity equal to the
rotation rate of the system itself, which means to an observer
looking at the Sun from faraway the wave would appear to not
be rotating at all. By contrast, the unstable wave would be
rotating with the Sun with a rate less than the maximum rate at
the equator, likely a rate between that and the minimum rate at
the poles, or perhaps slightly less than the polar rate.
Given the phase velocity results described just above, some

comments about implications of these results for interpreting
the various observations of solar Rossby waves are in order.
Since unstable Rossby waves must have phase velocities within
the range of differential rotation, meaning they cannot have fast
retrograde speeds, the fast retrograde waves observed in the
supergranule layer must be energetically neutral waves, which
from observations appears to be so. While this does not rule out
the possibility that unstable Rossby waves are present but not
yet helioseismically observed, it makes such a discovery
unlikely. Rossby waves in the tachocline excited by instability
of the combination of differential rotation and toroidal field

Figure 8. Evolved mean-square vorticity and horizontal divergence after about 4 days for each m.
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there acquire a phase speed equal to the rotation rate of the
latitude where the narrow-banded toroidal field, from which
sunspots likely emerge, peaks. This property may explain the
Rossby wave speeds detected from coronal bright points
(McIntosh et al. 2017; Krista et al. 2018). Since a strong
toroidal field (say 10–15 kGauss) is needed to produce this
result, this is strong evidence of tachocline origin of Rossby

wave properties seen in the corona, and of the strength of the
toroidal field in the tachocline.

4.5. No Rotation

For comparison with cases with rotation, we ran a brief T21
simulation with rotation switched off. This is done by simply
setting ωc= 0 in Equations (1) and (2) so Coriolis forces are

Figure 9. T21 model evolution of kinetic energy spectra in spectral space, for a pole-to-equator differential rotation of 28% that is unstable to hydrodynamic
perturbations.
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absent. With Coriolis forces present, the factor fcos couples
modes of different spherical harmonic index l. Without Coriolis
forces, the nonlinear coupling of modes comes only from the
velocity advection terms. Without rotation we see no evidence of
an inverse cascade that piles up energy at the lowest m.
Obviously without rotation, there are no nonlinear mode-mode
interactions involving different mʼs, and hence an inverse cascade
is not possible. The energy spectra in this case fail to show an
organized pattern over the duration of the simulation. This should
not be surprising because without rotation the fluid does not
know where the poles are. Any orientation is equally likely; the
system is rather degenerate, with many patterns of modes equally
likely. The organizing effect of rotation is missing.

5. Possible Comparisons to Observations

It is tempting to compare the energy spectra from our
simulations with the observed spectra of Rossby waves
reported. But it is important to realize that those Rossby wave
frequencies were found from power spectra of the local vertical
component of vorticity, which should isolate Rossby waves
because in them vorticity dominates over horizontal diver-
gence. Since vorticity involves the horizontal derivatives of
velocity, such a power spectrum for Rossby waves with l=m
should vary like m2 relative to a kinetic energy spectrum of the
same Rossby waves. So for the same modes, we should find
that the mean-square vorticity spectrum, which is related to the
vorticity power spectrum, should peak at a higher m than does
the kinetic energy spectrum for the same waves. From the

observational plots of the power spectrum, this appears to be
the case, but power spectra peaks are more reliable for finding
frequencies than mean-square amplitudes.
Typical Rossby wave velocity amplitudes were estimated

from helioseismic observations to be a few meters/second, but
no information has been given so far about how this varies with
m. Furthermore, given the differences between the physics of
our model and the solar supergranule layer, detailed compar-
isons seem premature. But our results show that, under the
influence of rotation, energy in horizontal motions with
supergranulation scales can readily inverse cascade to global-
scale Rossby waves. This inverse cascade starts from super-
granulation scale high m modes that themselves contain very
little vorticity, while the Rossby waves induced by the inverse
cascade contain much more vorticity than horizontal diver-
gence, as we should expect.
It is also worth noting that the inverse-cascade mechanism

we have described here is so efficient that kinetic energy is
cascaded to global from supergranule scales in a time very
close to the observed lifetimes of supergranules, i.e.,
approximately 1 day. Since supergranules do not decline in
amplitude much during that time, if this inverse-cascade
mechanism is at work in the Sun, supergranules must be
converting some other form of energy, probably potential
energy of the superadiabatic stratification, into kinetic energy at
a similar rate. Inverse cascade from granules to supergranules
must be on this timescale or even shorter because the typical
granule lifetime is 5–10 minutes.

Figure 10. Retrograde phase speed of each m measured in degrees per day. To avoid crowding, the error bar is put in only one plot, namely, in the high-perturbation
case with solid rotation.
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6. Comparisons to Other Related Models

We are not aware of another global model that has been
applied to the supergranule layer to explore the possibility of
inverse energy cascades. However, there exists a set of global
model simulations, applied instead to the solar tachocline, that
has some similar characteristics, but also differences. A thin,
stably stratified spherical shell model, which includes finite
turbulent diffusivities (Miesch 2001), generates both Rossby
and gravity waves, and also does not make the geostrophic
assumption. It, too, simulates the effect of introducing kinetic
energy at the highest resolved wavenumbers, and produces an
inverse energy cascade, in this case driven by penetrative
convection coming from the bottom of the convection zone,
just above the tachocline. The relative strength of Rossby and
gravity waves generated is a function of the rotation rate and
degree of subadiabaticity.

The model we are presenting here is ideal HD with very
small numerical viscosity. However, since inverse cascade was
found even when turbulent diffusion was included in the model
by Miesch (2001), it is expected that we should also get inverse
cascade when our model operates in diffusive regime instead of
ideal HD. Perhaps the inverse cascade will take longer to
generate Rossby waves when we include turbulent diffusion;
how much longer will be explored in the future.

We found in our simulations almost all of the kinetic energy
initially at high m, representing horizontal velocities in
supergranules, has migrated in wavenumber space to Rossby
wave scales. In the Sun, of course, this supergranule scale
kinetic energy would be continually resupplied by convection
on supergranules and smaller scales, namely, by conversion
from potential energy of the unstable stratification in the
supergranule layer. This has to operate fast enough to keep the
supergranules at their observed amplitudes—this is possible
because the transfer to the largest scales takes place on a
timescale of a few days, longer than the lifetime of a
supergranule. In the future a more general model could include
resupply of supergranule energy and dissipation in the form of
drag on the global scales.

7. Integrated Picture of Rossby Waves in the Sun

Here we briefly paint a conceptual picture of Rossby waves
in the Sun, and how their roles may be different at different
radii from the solar core.

Tachocline: Here Rossby waves are likely generated by
global MHD instability of the combination of differential
rotation and toroidal magnetic fields present. Therefore, these
waves are energetically active, taking energy from the long-
itude averaged state to grow, followed by saturation and return
of energy to the mean differential rotation and toroidal field.
These waves have shown demonstrated potential to organize
global patterns of magnetic activity at the solar surface, such as
active regions and active longitudes (see, e.g., Dikpati &
McIntosh 2020). Nonlinear mode-mode interactions among
MHD Rossby waves have also been demonstrated to simulate
time variations of magnetic activity within a sunspot cycle (see,
e.g., Raphaldini et al. 2019). When the frequencies and
longitudinal wavenumbers of individual modes are different,
they interact as triads to produce other modes of distinct
amplitude variations on both longer and shorter timescales.

Lower and mid-convection zone: MHD Rossby waves
excited below may penetrate some distance into the convection

zone. In addition, global-scale convection there may have some
longitudinal propagation characteristics of Rossby waves. From
globally averaged effects of nonlinear convection, these depths
may be slightly subadiabatic, further favoring the presence of
Rossby waves. An additional possibility for generating Rossby
waves is that turbulent convection at the bottom of the
convection zone penetrates into the overshoot part of the
tachocline and creates there its own reverse energy cascade to
generate energetically neutral Rossby waves. These would be
distinct from those created by instability of the differential
rotation and toroidal field in the tachocline. But at these depths
helioseismic evidence says the largest scales of convection
have amplitudes of only a few tens of meters per second, an
order of magnitude smaller than for supergranules. To compete
with Rossby waves from global HD and/or MHD instability of
toroidal field and differential rotation, almost all the kinetic
energy in the convection would have to be cascaded into larger
scale Rossby waves, which seems unlikely. By contrast, only
10−4 to 10−3 of the kinetic energy of supergranules is needed
to generate Rossby waves of the observed amplitude in the
supergranule layer.
Supergranulation layer: Here we have argued that nonlinear

inverse cascades of kinetic energy from horizontal motions in
supergranules will excite energetically neutral, hydrodynamic
Rossby waves detectable by helioseismic and feature tracking
techniques, as are observed. The Rossby waves observed at
these levels in the Sun cannot be unstable to the differential
rotation found there, since they are propagating retrograde too
fast for instability to occur.
Solar atmosphere: Particularly in the magnetically domi-

nated corona there are patterns of rotating coronal structures,
such as bright points, on global and much smaller scales that
have some properties of Rossby waves, particularly their
longitudinal propagation speeds. It is very unlikely these
represent Rossby waves generated in the corona, but rather
properties of Rossby waves propagated vertically along field
lines from levels below. The patterns of largest spatial scale
could be coming from deeper regions like the tachocline.
While we have in this discussion considered the role of

Rossby waves separately in each radial interval, Rossby waves
driven in one layer, for example, the supergranulation layer,
may well extend in layers above and below. For the
supergranule layer, waves should penetrate below to some
depth. However, since the fluid density increases rapidly with
depth (density scale height small), the velocity amplitude for
such waves should decline rapidly, since the kinetic energy of
the waves cannot increase with depth without an additional
energy source in the layer below. By the same reasoning in
reverse, we might expect Rossby wave amplitudes to increase
with radius just above the supergranule layer in the lower solar
atmosphere, but there the dominant forces are changing rapidly
with increasing radius, due to magnetic fields increasingly
filling the space.
If the above picture of Rossby waves in the Sun is essentially

correct, then it follows that measurements of Rossby waves by
different techniques at different radii in the solar interior and
atmosphere could easily give somewhat different answers,
without necessarily being inconsistent with each other.

8. Summary and Conclusions

Rossby waves are now being observed and/or modeled in
multiple domains of the Sun: tachocline, convection zone, and
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corona. Most recently they have been observed in the
supergranule layer. These Rossby waves have retrograde phase
speeds very similar to classical Rossby waves derived for a thin
rotating spherical shell by Haurwitz (1940), despite the fact the
supergranule layer is full of small-scale convection (granules
and supergranules) that are very unlike Rossby waves. Rossby
waves in the Earth’s atmosphere and oceans are typically found
in subadiabatically stratified thin layers, where vertical motions
tend to be inhibited, clearly a different dynamical situation. The
Sun apparently does not need subadiabatic stratification as a
precondition for Rossby waves. How does the Sun do this?

We have used hydrodynamic rotating shallow-water model
simulations to show how substantial kinetic energy in small-
scale horizontal motions leads quickly to an inverse cascade of
energy to global-scale Rossby waves that excites waves of
retrograde phase speeds and other characteristics similar to the
linear Haurwitz modes. Depending on the initial kinetic energy
included, these Rossby waves are more or less nonlinear, with
phase velocities that somewhat exceed that of the classical
linear waves, as would be expected, by analogy with linear and
nonlinear acoustic waves. These results are about the same for
solidly rotating and differentially rotating initial states. They
are also similar for simulations with the T21 and T42 models. If
the differential rotation present initially is known from linear
instability theory to be unstable to hydrodynamic perturbations,
these modes also appear, but with very different phase speeds,
as required to be unstable. Observations of the supergranule
layer have not yet detected this class of waves, perhaps because
the differential rotation observed there is not unstable, or
quickly push back energies from unstable Rossby waves with
low m to the neutral ones with higher mʼs.

Given that there are three to four orders of magnitude more
kinetic energy in the horizontal motions in supergranules than
in the observed amplitudes of Rossby waves in the super-
granule layer, only a small amount of supergranule kinetic
energy needs to be inverse cascaded to global scales to excite
the Rossby wave amplitudes observed. The results reported
here support the concept that supergranulation itself is the
source of excitation of Rossby waves in the supergranulation
layer. These results also motivate the need to do well resolved
global rotating convective simulations for realistic super-
granules to achieve the same inverse-cascade effect to excite
Rossby waves similar to those observed. But the computing
power needed to do that may be multiple supercomputer
generations away from becoming reality. Short of that more
distant goal, we have already found a similar inverse cascade
when doubling the resolution of the shallow-water model,
which allows inclusion of truly supergranule scale horizontal
motions, but T42 model simulations to obtain inverse cascade
is too expensive to perform many experiments. Within the
physics of this model, there appears to be no limit on the range
of spatial scales the inverse cascade can cross to get to global
scales.

Taking a step back from our simulations at the supergranule
layer, we have surveyed how Rossby waves are being
manifested in the Sun all the way from the tachocline to the
corona. Rossby waves do different things in the different radial
domains. These include destabilizing the latitude gradient of
rotation and toroidal fields in the tachocline, leading to surface
patterns of magnetic activity and seasons of space weather, to
creating a spectrum of neutral Rossby waves in the super-
granule layer exited by supergranules themselves, to causing

longitudinally propagating coronal structures, linked magneti-
cally to MHD Rossby waves in the tachocline and bottom of
the convection zone.
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