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ABSTRACT

Context. Observations show that the coronal X-ray emission of the Sun and other stars depends on the surface magnetic field.
Aims. Using power-law scaling relations between different physical parameters, we aim to build an analytical model to connect the
observed X-ray emission to the surface magnetic flux.
Methods. The basis for our model are the scaling laws of Rosner, Tucker & Vaiana (RTV) that connect the temperature and pressure
of a coronal loop to its length and energy input. To estimate the energy flux into the upper atmosphere, we used scalings derived
for different heating mechanisms, such as field-line braiding or Alfvén wave heating. We supplemented this with observed relations
between active region size and magnetic flux and derived scalings of how X-ray emissivity depends on temperature.
Results. Based on our analytical model, we find a power-law dependence of the X-ray emission on the magnetic flux, LX ∝ Φm, with
a power-law index m being in the range from about one to two. This finding is consistent with a wide range of observations, from
individual features on the Sun, such as bright points or active regions, to stars of different types and varying levels of activity. The
power-law index m depends on the choice of the heating mechanism, and our results slightly favor the braiding and nanoflare scenarios
over Alfvén wave heating. In addition, the choice of instrument will have an impact on the power-law index m because of the sensitivity
of the observed wavelength region to the temperature of the coronal plasma.
Conclusions. Overall, our simple analytical model based on the RTV scaling laws gives a good representation of the observed X-ray
emission. Therefore we might be able to understand stellar coronal activity though a collection of basic building blocks, like loops,
which we can study in spatially resolved detail on the Sun.
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1. Introduction

The Sun, other solar-like stars, and, in particular, other more
active stars are sources of X-ray emission. These X-rays are
mostly of a thermal nature and originate from stellar coronae
due to the high temperatures, well above 1 MK, in their outer
atmospheres. Observational studies show a clear dependence of
the X-ray emission on the surface magnetic field for individual
structures on the Sun as well as for stars as a whole. Combin-
ing measurements from the Sun and other stars, Pevtsov et al.
(2003) found this dependence to be slightly steeper than linear
following roughly a power law, LX ∝ Φ1.15. Here LX and Φ are
the X-ray luminosity and the unsigned surface magnetic flux.
Different studies found different power-law relations, depending
on the structures and stars that were investigated. For exam-
ple, studying the X-ray emission and the surface magnetic field
of solar-like stars, Kochukhov et al. (2020) found a relation
of LX ∝ Φ2.68. Observations of different solar magnetic struc-
tures, such as active regions, bright points, or microflares, and
of stars with various levels of activity, reveal power-law rela-
tions between X-ray emission and the magnetic field. Mostly
the power-law indices range from about one to two (see Table 1
for a non-complete list). There is quite a large scatter in the X-
ray observations of other stars, in part because the data usually
used for a statistical analysis of the X-ray emission might capture
different phases of stellar activity (e.g., Vidotto et al. 2014).

On the Sun, most of the total X-ray emission originates from
coronal loop systems, and it is widely assumed to be also true

for other (solar-like and more) stars (e.g., Güdel 2004). The gen-
eral properties of these loops can be described using the Rosner,
Tucker & Vaiana (RTV) scaling laws, named after the authors of
the original study (Rosner et al. 1978). These scaling relations
connect the temperature and pressure of a loop to the (volumet-
ric) heating rate and the length of the loop through power laws
and will be described in more detail in Sect. 4. To derive the scal-
ing laws, one usually assumes a one-dimensional coronal loop in
hydrostatic equilibrium with a constant volumetric heating rate
where the loop length is smaller than the pressure scale height.
An analytical analysis of the balance between energy input, heat
conduction, and radiative cooling then yields the scaling laws
(e.g., Sect. 6.5.1A of Priest 1982). Even though they were devel-
oped for simple static coronal loops, the RTV scaling laws still
capture the average properties of quite complex situations as
found in three-dimensional coronal models (Bourdin et al. 2016).
The RTV scaling laws have also been used extensively in stellar
coronal studies (e.g., Güdel 2004) and can thus be considered as
a basis for our understanding of stellar coronae.

The RTV scaling relations require some information on the
heating rate (and the loop length) to determine the temperature
and pressure (and thus the density) of a loop. The exact form of
the mechanism to heat a stellar corona to temperatures in excess
of 1 MK is still open to debate. In our study, we employ two
widely used proposals, mainly for illustrative purposes, namely
the Alfvén wave model (e.g., van Ballegooijen et al. 2011) and
the nanoflare or field-line braiding model (Parker 1972, 1983).
For both scenarios, the upward-directed Poynting flux, and by
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Table 1. Observed relations of X-ray luminosity and X-ray flux to surface magnetic flux and magnetic field.

Index m in Index p in
Objects LX ∼ Φm FX ∼ Bp Reference

Solar active regions 1.19 Fisher et al. (1998)
Solar X-ray bright points 0.89 Longcope et al. (2001)
Solar microflares 1.48 Kirichenko & Bogachev (2017)
Solar disk averages 1.86 Wolfson et al. (2000)
Solar disk averages 1.5–2.2 Benevolenskaya (2007)
Solar-like stars (mostly G type) 2.68 Kochukhov et al. (2020)
Low mass stars (F, G, K, M) 1.80 Vidotto et al. (2014)
Sun and large sample of stars 1.15 Pevtsov et al. (2003)

this, the heating rate can be scaled as a function of the sur-
face magnetic field (see Sect. 3). With that scaling of the energy
input with the surface magnetic field, we have the critical input
to derive the temperature and density from the RTV scaling
relations.

Based on the temperature and density of a loop one can esti-
mate the X-ray emission to be expected from the structure. Under
coronal equilibrium conditions, essentially, the optically thin
emission is proportional to the density squared, and is a function
of temperature, often called the temperature response function or
contribution function (e.g., Del Zanna & Mason 2018). Using the
appropriate atomic data, one can then calculate the X-ray emis-
sion over a given wavelength region, for the continuum emission
alone (Culhane 1969) and also including emission lines (Landini
& Monsignori Fossi 1970). For different wavelength regions the
temperature response functions will be different, with emission
from shorter wavelength intervals having the tendency to origi-
nate from hotter plasma (e.g., Mewe & Gronenschild 1981, their
Fig. 3; or Mewe et al. 1985, their Fig. 1). In order to evalu-
ate the temperature response for a given instrument one should
use a modern atomic data base tool (e.g., CHIANTI; Dere et al.
1997) and the wavelength dependence of the effective area of the
instrument. We employ both in our considerations in Sect. 2.

In this study, we use the temperature response function of
various X-ray detectors (Sect. 2) and two of the main coronal
heating mechanisms (Sect. 3) together with the RTV scaling laws
(Sect. 4) to derive an analytical model describing how the X-ray
emission depends on the unsigned surface magnetic flux. Finally,
in Sect. 5 we compare our model with stellar observations and
discuss the consequences for stellar surface magnetic fields as
well as for stellar coronal heating mechanisms.

2. Temperature dependence of X-ray radiation

Optically thin X-ray radiation is a combination of emission lines
and continua that both change with the temperature of the source
region. In general, both line and continuum emission are also
proportional to the (electron) density squared, so that

FX = n2 R(T ) , (1)

where FX is the loss of energy (per volume and time) through
optically thin X-ray radiation, and n is the number density. The
function R(T ) characterizes the temperature dependence. When
considering only one single emission line, this would be the
contribution function, typically including collisional excitation
rates, ionization fraction, and other factors. When considering
the total emission from a number of lines (plus the continuum),

R(T ) would essentially be the sum of all contribution functions
involved. Then, one has to consider that these lines are spread
over a wavelength region and hence one has to account for the
efficiency of the instrument as a function of wavelength. In those
cases, R(T ) is usually called temperature response, and we will
use this term in the remainder of this paper.

To calculate the temperature response for a number of X-ray
instruments we use the CHIANTI atomic data package (v9.0.1;
Dere et al. 1997, 2019). We first calculate the radiances of
the emission lines in a range of wavelengths λ from 0.1 to
250 Å for an isothermal plasma at temperature T . For this we
employ the CHIANTI routine ch_synthetic.pro. In the sec-
ond step we use make_chianti_spec.pro to calculate the
resulting spectrum IT (λ) in this same wavelength range, which
also includes the calculation of the continua. We do this for a
number of temperatures T in the range from log10 T [K] = 5.5
to 8.0. For the calculation of the spectra, we use the standard
CHIANTI ionization equilibrium and photospheric abundances.
In the final step we multiply the spectrum at each temperature
by the effective area Aeff(λ) of a number of instrument-filter-
detector combinations (see Table 2). Here we use the values as
stored in CHIANTI1. The response at temperature T is then sim-
ply given by the integral of intensity and effective area over
wavelength,

R(T ) =

∫
IT (λ) Aeff(λ) dλ . (2)

Typically, the response of an X-ray instrument peaks at
temperatures around (or slightly below) 10 MK. For lower tem-
peratures the response drops quickly (see Fig. 1). This is the case
for a wide range of X-ray instruments, including major instru-
ments for stellar observations, such as XMM-Newton (Jansen
et al. 2001), Chandra X-ray observatory (Weisskopf et al. 2000),
Röntgensatellit (ROSAT; Pfeffermann et al. 1986), and Einstein
observatory (Giacconi et al. 1979). The current main instrument
for solar studies behaves in a similar way (Hinode/XRT; Golub
et al. 2007).

Coronae of the Sun and other stars harbor mostly plasma in
the range from about 1 to 10 MK. To implement the tempera-
ture response into a power-law estimate (in Sect. 4) we consider
a simplified variant. The change of the temperature response
below 10 MK is reasonably well characterized by a power-law

1 In the CHIANTI database: dbase/ancillary_data/instrument_responses/.
For Hinode/XRT, CHIANTI does not list effective areas so
we use values supplied in the XRT branch of SOLARSOFT
(www.lmsal.com/solarsoft).
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Table 2. Overview of selected X-ray instruments and the resulting power-law indices.

Power-law (c) m for: LX ∝ Φm (d)

Energy range (b) index α for: Nanoflares Alfvén waves
Instrument Detector/Filter (a) [keV] R ∝ Tα (β= 2) (β= 1)

XMM/EPIC pn_med 0.05–12 0.7± 0.03 1.0± 0.3 0.8± 0.2
Einstein ipc 0.1–5 0.7± 0.04 1.0± 0.3 0.8± 0.2
Chandra/LETG acis-s_order0 0.07–10 1.2± 0.1 1.1± 0.3 0.9± 0.2
ROSAT pspc_brn 0.1–2.3 1.6± 0.1 1.2± 0.3 0.9± 0.2
XMM/RGS rgs2_o1 0.3–2.5 1.8± 0.2 1.3± 0.3 1.0± 0.3
Hinode/XRT Al-poly 0.2–3 2.1± 0.2 1.3± 0.4 1.0± 0.3
Chandra/HETG acis-s_heg1meg1 0.4–10 3.1± 0.3 1.6± 0.4 1.2± 0.3

Notes. (a)The detector or filter type refers to the naming convention as used in the CHIANTI database for the effective area for the respective
instrument-detector-filter combination. (b)The energy ranges are estimates based on the effective areas as listed in CHIANTI or as available in
SOLARSOFT (in the case of Hinode/XRT). (c)The power-law fits to the temperature responses R(T ) as shown in Fig. 1 have been performed in the
range of log10 T [K] from 5.9 to 6.9 (for ROSAT the lower end of the fit range is 6.2 to avoid the bump at lower temperatures). (d)The power-law
indices m as defined in Eq. (13), are calculated for γ= 1 as in Eq. (5) and δ= 0.819 as in Eq. (7) for the two heating processes (nanoflares, Alfvén
waves; see Sect. 3).
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Fig. 1. Temperature response R(T ) for several X-ray instruments. The
naming convention for the detector-filter combinations corresponds to
the CHIANTI database (also see Table 2). Each curve is multiplied by
a constant to get the curves nicely into the same plot. For comparison,
we plot two power laws with power-law indices of 0.7 (dotted) and 2.0
(dashed). See Sect. 2.

fit,

R(T ) ∝ Tα, (3)

with a power-law index α. We apply a power-law fit to each of the
instruments in a temperature range from log10 T [K] = 5.9 to 6.9
and list the resulting power-law indices in Table 2. Only for the
ROSAT case, the lower limit (in log10T ) is 6.2 to avoid the bump
at low temperatures. In general, the power-law indices α range
from 0.7 to about 2 (see sample power laws in Fig. 1), with few
exceptions giving also indices α of 3 or more. When considering
the (often many) different filters of one single instrument, power-
law indices α are found in the same range. As an example, we
show XMM filters in Appendix A.

Based on the above discussion for a wide range of
instrument-filter-camera combinations we can conclude that in

general a power law as in Eq. (3) is a reasonable fit to the tem-
perature response functions. In general, the power-law indices
range from α= 0.7 to 2.

3. Magnetic field and heating of coronal plasma

The plasma in the corona of the Sun and other stars is heated to
temperatures of well above 1 MK. In view of the scaling laws
to be discussed in Sect. 4, we first consider how to relate the
heat input into the corona to the magnetic field on the surface
of the Sun or a star. For this we consider two of the main heat-
ing mechanisms, namely Alfvén wave heating (van Ballegooijen
et al. 2011) and field-line braiding (or nanoflare heating Parker
1972, 1983). In order to get a scaling of the energy flux into the
upper atmosphere, the Poynting flux, we follow the discussion
in Fisher et al. (1998). In general, one can relate the Poynting
flux in the vertical direction, S z, to the vertical surface unsigned
magnetic field B by

S z ∝ Bβ with
{
β= 2: braiding/nanoflares,
β= 1: Alfvén waves. (4)

In the case of braiding, the magnetic field B at the surface
is driven by convective flows with a velocity u. Neglecting
resistivity, the Poynting flux S = − (u× B)× B/µ0 in the verti-
cal direction can be approximated by S z ∝ v B2 (Fisher et al.
1998, Eq. (3)), where v is the horizontal photospheric velocity.
Hence the exponent β= 2 in Eq. (4) for field-line braiding (or
nanoflares).

In the case of an Alfvén wave propagating into the corona,
the wave energy flux is given by ρ 〈v2〉 vprop, with density ρ, mean
square velocity amplitude 〈v2〉, and the propagation speed being
the Alfvén speed, vprop = vA. Because the Alfvén speed is propor-
tional to the magnetic field B, so is the energy flux of the Alfvén
wave (Fisher et al. 1998, Eq. (2)). Hence the exponent β= 1 in
Eq. (4) for Alfvén waves.

In the remainder of this study, we will use the values of β= 1
and 2 just to represent the possible ranges of what we might
expect for different heating processes. Other possible param-
eterizations have been suggested and used, such as β= 1.75
based on magnetohydrodynamics (MHD) turbulence models
(Rappazzo et al. 2008; van Wettum et al. 2013), or β= 1 derived
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from full-sun visualizations through 1D parameterized models
(Schrijver et al. 2004).

For the scaling laws discussed in Sect. 4 the volumetric heat-
ing rate H is required. If all the Poynting flux S z injected through
the bottom boundary is dissipated in the corona, then the dissi-
pated energy integrated in height should equal the Poynting flux
at the bottom, that is, S z =

∫
H dz. This has been shown to be

the case in 3D MHD models (e.g., Bingert & Peter 2011). If the
volumetric heating H is constant, then S z = H L, where L is the
length (or height) of the coronal structure. To be more general,
we allow the influx of energy, the Poynting flux, to be related by
a power law to the heating rate,

H L ∝ S γ
z . (5)

In the remainder of this study we will assume γ= 1, but will keep
γ in the equations.

Finally, we have to relate the surface unsigned magnetic field
strength B to the unsigned magnetic flux Φ in the region con-
sidered, for example, a coronal bright point, an active region, or
a whole star. If we consider B to be the average magnetic field
strength, then the magnetic flux would be given by

Φ = B A, (6)

where A is the (weighted) area of the respective region (using the
same terminology as Fisher et al. 1998). The area of an active
region can be related to the magnetic flux through a power law
as

A ∝ Φδ with δ= 0.819. (7)

If δ were unity, this would imply that the (average) magnetic
field strength in each active region is the same. In their analy-
sis of observed solar magnetograms, Fisher et al. (1998) found
a value of δ= 0.819 (their Sect. 4.1.3, following their Eq. (18)).
This value of δ < 1 implies that larger active regions have a
magnetic flux that is large not only because of the greater area
coverage, but also because the (peak or average) magnetic field
strength is higher. We will discuss the special cases of δ= 0 and
δ= 1 in Sect. 5.2

Interestingly, Eq. (7) is also roughly valid for other stars. In a
study of solar-like stars, Kochukhov et al. (2020) found a similar
power-law relation based on the filling factor f and the averaged
surface magnetic field 〈B〉 as f ∝ 〈B〉δ with δ= 0.86 (see their
Fig. 8). This filling factor f is defined as the ratio of the surface
area covered by a magnetic structure (e.g., active region) A to the
total surface of a star Astar. Then with Eq. (6), this relation can be
rearranged to A ∝ A(1−δ)

star Φδ. Since δ ' 1 we can ignore Astar and
retrieve the same equation as Eq. (7).

A similar conclusion can be drawn from a study of stars with
different spectral types and activity levels (See et al. 2019). In
that study, the estimated filling factor f using the large-scale
surface magnetic field and total surface magnetic flux follows a
similar power-law relation as in the work of Kochukhov et al.
(2020) but with δ= 0.78. In conclusion, these results of stel-
lar observations provide further support for using Eq. (7) with
δ= 0.819 in our model.

To estimate the length L of the coronal structure, we assume
that this is related to the square root of the area A, that is, to the
linear scale of the region considered,

L ∝ A1/2. (8)

Basically, this consideration assumes that the separation length
of two (main) magnetic polarities of opposite sign in the active

region is proportional to the linear extent of the active region. In
the case of the Sun this can be confirmed through observations
(see, e.g., Cameron et al. 2010, their Fig. 1). We will discuss this
limitation in Sect. 5.3.

With the relations in Eqs. (4)–(8) we can find how the heating
rate H and length scale L depend on the (average) magnetic field
B or the magnetic flux Φ. This and the discussion in Sect. 2 will
allow us in the following to derive a scaling between the X-ray
emission and the surface magnetic flux.

4. Scaling laws: Coronal emission versus magnetic
flux

The thermal properties of coronal loops, their temperature, den-
sity, and pressure structure were described in 1D models more
than 40 yr ago. An early key finding that still is a pillar of coro-
nal physics are the so-called RTV scaling laws. These relate the
length L and (volumetric) heating rate H of a loop to its tem-
perature T and pressure p (Rosner et al. 1978). In this section,
we will employ these scaling laws together with the discussions
in Sects. 2 and 3 to derive a scaling between X-ray emission and
surface magnetic flux.

The original scaling laws presented by Rosner et al. (1978)
are T ∝ (pL)1/3 and H ∝ p7/6L−5/6. They are commonly known
as the RTV scaling laws named after the initials of the authors.
Essentially, these can be derived by comparing energy input,
energy redistribution through heat conduction, and radiative
losses (see, e.g., Priest 1982, Sect. 6.5).

The RTV scaling relations can be rearranged to express
temperature and density in terms of heating rate and loop
length,

T ∝ H2/7 L4/7, (9)
n ∝ H4/7 L1/7. (10)

Here we used the number density n through the ideal gas law,
n ∝ p/T . While originally derived for static 1D loops, these
scaling laws still give a good representation in more complex
situations. For example, these RTV relations capture quite well
the average properties of time-dependent 3D MHD models of an
active region (Bourdin et al. 2016).

Observations show that the coronal density n depends on the
stellar rotation rate Ω. While the RTV scaling laws do not explic-
itly take into account this dependency, they implicitly include
it. The heating rate H depends on the surface magnetic field B
(see Eqs. (4) and (5)), which itself depends on the stellar rota-
tion rate Ω. Hence, through Eq. (10) the coronal density depends
implicitly on rotation and thus would change from star to star.
We assume B ∝ Ω1, which is representative of observations that
give a range of power-law indices from 0.7 to 1.3 (Kochukhov
et al. 2020; Vidotto et al. 2014). Together with Eqs. (4), (5), and
(10) this yields n ∝ Ω0.57 (for β= γ= 1 and neglecting the depen-
dence on the length L). Thus, for Alfvén wave heating (β= 1)
this model result is consistent with observations by Ivanova &
Taam (2003) who found a power-law relation n ∝ Ω0.6. Thus we
conclude that our model properly treats the change in the coro-
nal density due to the variation of stellar activity introduced by
rotation, even though only implicitly.

We can now derive the relation between X-rays and (surface)
magnetic field. In the first step we express the X-ray emission
FX as given in Eq. (1) through magnetic field B and length of the
loop structure L. For this we use Eq. (3) to replace the temper-
ature response and substitute the temperature and density from
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Eqs. (9) and (10). Using then Eqs. (4) and (5) we can replace
the (volumetric) heating rate by the magnetic field strength. This
yields

FX ∝ Bp Lq with


p =

β γ

7

(
2α + 8

)
,

q =
1
7

(
2α − 6

)
.

(11)

With the values of α listed in Table 2, mostly |q| is much smaller
than 0.5. Consequently, the X-ray emission FX is mainly depen-
dent on the magnetic field B but only weakly depends on the
length L of the coronal structure because β, γ ≥ 1. This result
for FX essentially applies for a single structure, for example, one
coronal loop.

In the second step, we express the total X-ray luminosity LX
in terms of the surface magnetic flux Φ. The total X-ray loss LX
from a region on the Sun (the X-ray luminosity in the case of a
whole star) is given by integrating the X-ray emission FX over
the respective area A (or the whole star). Assuming that FX is
constant (or represents an average value), we simply have

LX = FX A. (12)

If A is considered to be the surface of a whole star, Eqs. (7)
and (8) are not necessarily applicable. However, we expect the
surface area of a star contributing to the X-ray luminosity to obey
a similar relation as an active region (see Eq. (7)).

Substituting Eqs. (6)–(8) into Eqs. (11) and (12) yields our
final result,

LX ∝ Φm with

m =
β γ

7

(
2α + 8

)
+ δ

(
4
7

+
1
7
α −

8
7
β γ −

2
7
α β γ

)
. (13)

Technically, LX in Eq. (12) represents the X-ray luminosity
per unit length and needs to be integrated along the line of sight
to get the total X-ray luminosity. However, choosing an appro-
priate length scale to perform the line of sight integration is
not trivial. There are at least two natural choices for the length
scale. One way would be to use the coronal pressure scale height,
which is proportional to the coronal temperature T . Multiplying
Eq. (13) by the pressure scale height and replacing the tempera-
ture in a similar way as before will add two extra terms in each
of the two brackets in Eq. (13). This will, however, change the
power-law index m by only roughly 5% for both heating models.
Compared to the uncertainty range in m (cf. Table 2) we consider
this insignificant. Another possibility to account for the line of
sight integration would be to multiply Eq. (13) with the coronal
loop length L = A1/2. This would add 0.5 δ to m in Eq. (13). In
that case, the changes in m are larger, around 30–40% higher for
both heating models. Still this would be comparable to the uncer-
tainty range of m. Overall, we conclude that the line of sight
integration will not significantly alter the quantitative results for
the power-law indices m. Hence, we can consider LX roughly
independent of the integration along the line of sight and Eq. (13)
a valid expression for the total X-ray luminosity.

The power-law indices m resulting from Eq. (13) are listed
in Table 2 for different X-ray instruments, that is, their different
temperature responses parameterized by α (Sect. 2), and for two
different choices of the heating mechanism (β= 2 for nanoflares
and β= 1 for Alfvén waves). In Table 2 we keep γ= 1 (cf. Eq. (5))
and use δ= 0.819 as found in observations of the Sun and solar-
like stars (see Eq. (7)).

The overall errors in the power-law index m are on the order
of 20% to 40% (see Table 2). We estimated these errors from
the uncertainties in the fits to the instrument response functions
(errors in α, see Table 2) and the uncertainty in the parameteri-
zation of the area coverage (errors in δ). For δ we use the value
derived by Fisher et al. (1998), but unfortunately they do not
quote an error for δ. Thus we estimate that error by taking the dif-
ference of the minimum and maximum slopes from their Fig. 4.
Through this we estimate their error in δ to be 0.2. For β we can-
not provide an error, because this is the theoretical expectation
for the nanoflare or Alfvén wave heating. Also, we cannot give
an error for γ, because we assume γ= 1.

5. Discussion

The most important and central result of our study is that the
power-law indices, as derived from our simple analytical model,
match the observed values well. The values of the power-law
indices m from Eq. (13) listed in Table 2 are generally in the
range from about 1 to almost 2. Thus they match the values
found in observations (Table 1) remarkably well, maybe with the
exception of the study by Kochukhov et al. (2020). Based on
this, we conclude that our analytical approach, and hence the
RTV scaling laws, can capture the processes in stellar coronae
qualitatively and quantitatively well.

In the following, we will first discuss the implications of the
main result in terms of discriminating different heating mecha-
nisms (Sect. 5.1). We will then consider special (limiting) cases
of our approach. In particular, we will address the question of
whether or not changes of active region size or peak magnetic
field strength can alone be responsible for the changes in X-ray
emission (Sect. 5.2), and what role the spatial structuring of the
magnetic field on the surface might play (Sect. 5.3).

5.1. Discriminating heating mechanisms

With our simplified approach, it is hard to distinguish between
different heating mechanisms. Mainly, this is because of the
large scatter found in the power-law index m for LX ∝ Φm in
Eq. (13) introduced by different X-ray instruments. As seen from
Table 2, m differs by only 20–30% between the cases of nanoflare
(β= 2) and Alfvén wave heating (β= 1). However, combining
observations from different sources (as necessarily done in data
compilations), will imply having different responses of the X-ray
emission to the coronal temperature, here quantified by the
power-law index α (Sect. 2). This can lead to differences in the
index m by almost a factor of two (cf. Table 2). Consequently,
when mixing data from different instruments, the imprints of
different heating mechanisms would be swamped by the noise
introduced by the different temperature responses.

To distinguish different heating mechanisms, future observa-
tional studies would have to carefully evaluate the impact of the
temperature response of the instruments used. One could use (a)
just one single instrument, (b) show the different instruments in
a combined study separately, or (c) use a theoretical approach
to normalize the observed X-ray emission of each instrument
according to its temperature response.

With all these uncertainties, our analysis would slightly favor
nanoflare heating over the Alfvén wave model. The values for
the power-law index m we find in Table 2 for Alfvén waves range
from 0.8 ± 0.2 to 1.2 ± 0.3. As such, they seem to be at the
lower end of what is found in observations that show mostly val-
ues from just below 1 to below 2 (except for the recent study of
Kochukhov et al. 2020, see Table 1). Hence, the indices m for
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nanoflare heating ranging from 1 ± 0.3 to 1.6 ± 0.4 seem to be a
better fit to observational studies.

Considering the uncertainties, the values of m derived by our
model largely overlap with the observations. (see Table 1). There
is the tendency in the observations to show values of m in the
upper range of what is predicted by our model (Alfvén wave and
nanoflare) and typically the nanoflare model yields larger val-
ues of m than the Alfvén wave model. Hence, we consider the
nanoflare model to be a slightly better candidate for the stellar
X-ray activity than the Alfvén model.

5.2. Magnetic flux and area coverage

Another key element in our scaling for LX ∝ Φm in Eq. (13) is
the relation of magnetic flux and area as parameterized in Eq. (7)
by δ. While we know from the Sun and solar-like stars that this
should be on the order of 0.8 (Fisher et al. 1998; Kochukhov et al.
2020), it is instructive to consider two limiting cases, namely
δ= 0 and δ= 1.

We first consider the case δ= 1. According to Eq. (7) this
implies that the magnetic flux is strictly proportional to the area
covered by an active region, Φ ∝ A. Hence the (average) mag-
netic field strength in each active region would be the same, and
the magnetic flux would only change by changing the area. Then
the expression for the power-law index m for LX ∝ Φm as given
in Eq. (13) simplifies to

δ= 1 −→ m =
1
7

(
4 + α

)
. (14)

Interestingly, in this case there is no dependence on β for S z ∝ B β

in Eq. (4). Our result does not depend on the actual choice of the
heating mechanism. Instead, the relation of the coronal emis-
sion to the magnetic flux would only depend on the choice of
the instrument through α, the wavelength range that is consid-
ered (see Eq. (3) and Table 2). For values of α in the range of
0.7–3.0 (cf. Table 2) the values of m would be in the range of
0.7–1.0. These values fall short of the observations. Thus we
conclude that increasing the magnetic flux just by increasing the
area (δ= 1) would not provide a sufficiently steep increase of the
coronal emission with magnetic flux in LX ∝ Φm.

In the other limiting case, δ= 0, the change in the mag-
netic flux would only be due to the increase in the (average or
peak) magnetic field strength. This implies that the magnetic flux
in Eq. (7) would be independent of the area and we find from
Eq. (13)

δ= 0 −→ m =
β γ

7

(
2α + 8

)
. (15)

This gives a much steeper dependence of LX ∝ Φm than for
δ= 1. Again using α in the range 0.7–3.0 (cf. Table 2) we find
values of m in the range 1.3–4.0. Of course, considering the stud-
ies of, for example, Fisher et al. (1998) and Kochukhov et al.
(2020), a value of δ= 0 is unrealistic for the Sun and solar-like
stars. However, the steep dependence of the coronal emission
LX on the magnetic flux Φ that we find in this case might help
us to understand the high levels of observed X-ray emission of
rapidly rotating stars, which still show an increase of X-ray activ-
ity with increasing rotation (e.g., Pizzolato et al. 2003; Reiners
et al. 2014; Wright & Drake 2016). Should the star be (more or
less) completely filled with active regions, then the only way to
increase the magnetic flux, and therefore its X-ray luminosity,
further would be to increase the surface magnetic field strength.
Observations of very high average magnetic field strengths on

the order of several 1000 G on more active stars (Reiners 2012)
indicates that this scenario could be realistic.

5.3. Spatial structure of the magnetic field

So far, we assumed that the length scale L of the coronal struc-
tures, namely the loops, is directly proportional to the linear
extent of the active region. Now we explore the effects on the
scaling of coronal emission with magnetic flux if the length scale
were independent of the active region size.

The assumption that the length scale is given through the
active region size is expressed through Eq. (8), L ∝ A1/2, and is
justified for solar active regions (e.g., Cameron et al. 2010). In
general, this does not have to be the case, and stellar observa-
tions suggest that large starspots have an internal structure (e.g.,
Solanki 2002). Thus, it is plausible that generally in (stellar)
active regions the distances between opposite magnetic polari-
ties might not be related to the active region size. Consequently,
Eq. (8) would no longer hold. To explore an extreme case, in the
following we assume that loop length L would be independent of
the area, and in particular assume that L would be a constant. For
example, one might argue that for an active star the size of the
coronal structures we see might be related to the coronal pressure
scale height.

Assuming a constant loop length L, therefore not considering
Eq. (8), we can repeat the derivation of Eq. (13) for the scaling
between coronal emission and magnetic flux, LX ∝ Φm. Then we
find for the power-law index

constant
loop length: −→


m = δ + p

(
1 − δ

)
with p =

β γ

7

(
2α + 8

)
.

(16)

As expected, for δ= 0 this gives the same result as discussed
above with Eq. (15). For δ= 1 we find that coronal emission is
strictly linear with the magnetic flux. Quantitatively, this is sim-
ilar to the result above with Eq. (14), where we found m to be a
bit smaller but close to unity.

For the case of the Sun, it is well established that the total
magnetic flux (integrated over the whole solar surface) during
the maximum activity is mostly increasing through the number
of active regions and not by increasing their size (e.g., Tang et al.
1984). Hence, we can also expect the length of coronal loops on
the Sun not to change (significantly) with activity level. There-
fore, Eq. (16) might be the appropriate description for the relation
of X-ray emission to magnetic field for the Sun and its cycle.

In general, the values for the power-law index m found here in
Eq. (16) are quantitatively similar to the values when not assum-
ing constant loop length as given through Eq. (13). The values of
m listed in Table 2 would change typically only by about 20%.
This shows that within the limitations of our analytical approach
for the scaling laws, the loop length does not have a significant
impact.

Still, numerical models of active regions will be needed
to investigate the applicability of our simplified analytical
approach. For example, if the size of the active region is
increased, the total magnetic energy of the volume associated
with the active region will also increase. This increase can be
expected to be steeper than proportional to the magnetic flux at
the surface. This is similar to increasing the separation of oppo-
site polarities in a magnetic dipole. The work done to separate
the two poles (like separating two magnets) goes into magnetic
energy stored in the volume, even though the magnetic flux at
the surface stays the same. While we find a good match between
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our simple model and observations, future numerical models
will have to show if the basics of the analytical considerations
presented here will hold.

5.4. X-ray emission for rapid rotators

For rapidly rotating stars the coronal X-ray emission becomes
independent of their rotation rate (see, e.g., Pizzolato et al. 2003).
Sometimes this is called the saturation regime, but it remains
unclear what causes this behavior (e.g., Reiners et al. 2014).
Assuming that in this regime also the surface magnetic flux is
increasing with increasing rotation rate, our model would have
to predict that the X-ray emission does not change with magnetic
flux. Consequently, m in Eq. (13) would have to vanish.

So, to test if our model is applicable in this saturation regime,
we simply set m = 0 in Eq. (13). As before, we assume that γ= 1,
meaning that the heating rate is proportional to the Poynting flux
(cf. Eq. (5)). With this we can solve for δ,

δ=
2β

2β − 1
. (17)

The result does not depend on α, meaning that in this regime
it would not matter which instrument or filter was used for the
diagnostics.

Interestingly, for both types of our heating model we find
that δ > 1. More precisely, for the nanoflare model (β= 2) we
get δ= 1.33 and for the Alfvén model (β= 1) we get δ= 2. This
would imply that an increase in the total surface magnetic flux
would lead to a decrease in the magnetic active area, meaning
that the magnetic flux would concentrate in smaller and smaller
regions. Such peculiar behavior would require an additional
effect to operate that needs to overcome the strong magnetic
pressure forces. However, this seems rather unphysical, and to
our knowledge is without observational support.

Overall, we can conclude that the X-ray emission of very
active rapidly rotating stars is not governed by the same relations
as for solar-like stars. Not surprisingly, our model is not suitable
to describe the stellar X-ray emission in that specific regime.

6. Conclusions

We derived an analytical scaling relation of the coronal X-ray
emission with the unsigned surface magnetic flux, LX ∝ Φm in
Eq. (13). Previously, this relation had only been derived using
observations, without the backing of a theoretical framework.
We based our approach on the coronal loop scaling laws of
Rosner et al. (1978) (see Eqs. (9) and (10)), and the idea that
the heating of the corona is mainly driven by an upward-directed
Poynting flux generated in the photosphere.

The power-law index m that we derive in Eq. (13) depends
on the area of the active region, the heating mechanism, and the
wavelength range covered by the respective X-ray instrument,
namely, its temperature response function. Each of these factors
can be represented by power laws. The active region area impact
is constrained observationally (δ= 0.819, Eq. (7)), the heating
mechanism is inspired by basic considerations (β from 1 to 2;
Eq. (4)), and the temperature response between 1 and 10 MK is
based on atomic data (α in the range of 1–3, Table 2).

The power-law indices m we find through our analytical
approach are generally in a range between just below m ≈ 1 and
almost 2 (see Table 2). This is within the range found by most
observations, which are mostly composed of a combination of
stellar studies with different instruments (see Table 1; a larger

value only found by Kochukhov et al. 2020). As such, we con-
sider our simple analytical model approach to be a good first
step to build a theoretical foundation for the observed power-law
relations between X-ray emission and magnetic field. However,
with our simplified model approach it is difficult to distinguish
between different heating mechanisms, mainly because the dif-
ferent X-ray instruments have quite different responses to the
temperature of the coronal plasma.
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Appendix A: Temperature response for different
filters in the same instrument

Naturally, we do not show all the possible combinations of
instrument, filter and detector here. Instead Table 2 and Fig. 1
show a representative selection. There is quite a range of power-
law indices α for R(T ) ∝ Tα also within one instrument. To
illustrate this we plot in Fig. A.1 the temperature response for the
six combinations of the MOS and pn cameras of the EPIC instru-
ment on XMM (Turner et al. 2001; Strüder et al. 2001), each with
the thin, medium and thick filters. There, the power-law indices
of the temperature responses range from 0.4 to 1.8.
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Fig. A.1. Temperature response for the MOS and pn cameras of EPIC
on XMM. Similar to Fig. 1, but now all the curves are multiplied with
the same constant. See Sect. 2 and Appendix A.
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