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ABSTRACT

Context. For moderate and slow rotation, the magnetic activity of solar-like stars is observed to strongly depend on rotation, while
for rapid rotation, only a very weak or no dependency is detected. These observations do not yet have a solid explanation in terms of
dynamo theory.
Aims. We aim to find such an explanation by numerically investigating the rotational dependency of dynamo drivers in solar-like stars,
that is, stars that have a convective envelope of similar thickness to that of the Sun.
Methods. We ran semi-global convection simulations of stars with rotation rates from 0 to 30 times the solar value, corresponding to
Coriolis numbers, Co, of 0 to 110. We measured the turbulent transport coefficients contributing to the magnetic field evolution with
the help of the test-field method, and compared with the dynamo effect arising from the differential rotation that is self-consistently
generated in the models.
Results. The trace of the α tensor increases for moderate rotation rates with Co0.5 and levels off for rapid rotation. This behavior is in
agreement with the kinetic α based on the kinetic helicity, if one takes into account the decrease of the convective scale with increasing
rotation. The α tensor becomes highly anisotropic for Co & 1. Furthermore, αrr dominates for moderate rotation (1 < Co < 10), and
αφφ for rapid rotation (Co & 10). The effective meridional flow, taking into account the turbulent pumping effects, is markedly
different from the actual meridional circulation profile. Hence, the turbulent pumping effect is dominating the meridional transport of
the magnetic field. Taking all dynamo effects into account, we find three distinct regimes. For slow rotation, the α and Rädler effects
are dominating in the presence of anti-solar differential rotation. For moderate rotation, α and Ω effects are dominant, indicative of
αΩ or α2Ω dynamos in operation, producing equatorward-migrating dynamo waves with a qualitatively solar-like rotation profile. For
rapid rotation, an α2 mechanism with an influence from the Rädler effect appears to be the most probable driver of the dynamo.
Conclusions. Our study reveals the presence of a large variety of dynamo effects beyond the classical αΩ mechanism, which need
to be investigated further to fully understand the dynamos of solar-like stars. The highly anisotropic α tensor might be the primary
reason for the change of axisymmetric to non-axisymmetric dynamo solutions in the moderate rotation regime.
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1. Introduction

The magnetic activity of stars shows a strong dependency on
rotation, which is most pronounced in their coronal X-ray flux
(e.g., Pizzolato et al. 2003; Vidotto et al. 2014; Reiners et al.
2014; Wright & Drake 2016) and their chromospheric Ca II
H&K emission (e.g., Noyes et al. 1984; Brandenburg et al.
1998; Boro Saikia et al. 2018; Olspert et al. 2018). Higher rota-
tion, usually measured using the Coriolis number, Co, describ-
ing the rotational influence on convection, leads to stronger
coronal and chromospheric emission. For rapidly rotating stars
with Co & 10 (e.g., Wright & Drake 2016), the emission
becomes independent of rotation, which is often referred to
as the “saturated” regime. This terminology is somewhat mis-
leading, as it may be confused with the nonlinear saturation
of the dynamo; all the dynamos in these stars are indeed
expected to be saturated dynamos. The coronal and chro-
mospheric emission can be linked to the surface magnetic
field (e.g., Pevtsov et al. 2003; Vidotto et al. 2014), and there-
fore to the underlying dynamo process. Therefore, it is very
important to study the dependency of the dynamo process on
rotation.

The most important dynamo effect in astrophysical systems
is the α effect (Steenbeck et al. 1966), which describes the ability
of small-scale velocity with a twist, for example due to rotation
in a stellar convection zone, to amplify the magnetic field. Using
mean-field theory with the second-order correlation approxima-
tion (SOCA) and assuming isotropic homogeneous turbulence,
Steenbeck et al. (1966) found that α increases linearly with rota-
tion in the slow rotation regime because the α effect is directly
related to the kinetic helicity under these assumptions. An exten-
sion of the theory to higher rotation predicts that the α will level
off in this regime (e.g., Ruediger & Kichatinov 1993). Differen-
tial rotation, the other important ingredient of a stellar dynamo
process, is predicted to depend only weakly on rotation using
the models by Kitchatinov & Rüdiger (1999). In them, turbulent
effects generating the differential rotation are parametrized and
obtained from mean-field theory; hence the common reference to
“mean-field models”. The weak rotational dependence of differ-
ential rotation is confirmed by observational studies of the sur-
face latitudinal differential rotation (e.g., Reinhold et al. 2013;
Lehtinen et al. 2016).

Global convective dynamo simulations have been able to
identify three distinctive regimes in terms of rotation. At
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moderate rotation, where the Coriolis number is between
three and ten, these simulations produce cyclic dynamo waves
propagating towards the equator (e.g., Ghizaru et al. 2010;
Käpylä et al. 2012; Augustson et al. 2015; Strugarek et al. 2017;
Warnecke 2018), a basic feature of the solar magnetic field evo-
lution. Recently some of these simulations have even repro-
duced dynamo solutions with multiple modes with shorter and
longer periods than the dominant cycle (Beaudoin et al. 2016;
Käpylä et al. 2016, 2017). Most of these cyclic dynamo solutions
can be explained by an αΩ dynamo wave following the Parker-
Yoshimura rule (Parker 1955; Yoshimura 1975) as shown in
the studies by Warnecke et al. (2014, 2018), Käpylä et al. (2016,
2017), and Warnecke (2018). In a classical αΩ dynamo, the
poloidal magnetic field is generated by the α effect from the
toroidal magnetic field, which is produced from the shear of
the differential rotation (Ω effect). To excite an equatorward-
migrating wave, such as the one seen in the Sun, the prod-
uct of α and the radial shear must be negative(positive) in
northern(southern) hemisphere. In these simulations, the sign
of α is unfavorable for the correct migration direction of the
dynamo wave in the bulk of the convection zone. Instead, most
of the simulations produce a local minimum of negative shear,
which results in the correct migration direction. However, such
a feature is not seen in solar observations, although negative
shear is present in the very topmost layer of the convection
zone, called the near-surface shear layer (Thompson et al. 1996;
Barekat et al. 2014). In the work of Duarte et al. (2016), has
equatorward migration been seen in thick convection zones. This
was found to result from the reversed sign of kinetic helicity,
hence the α, in the bulk of the convection zone.

At Coriolis numbers around unity and below, the differ-
ential rotation profile develops fast poles and a slow equator,
which is opposite to the Sun, with its fast equator and slow
poles; hence the name, anti-solar differential rotation profile. In
this regime, most of the simulations produce irregular in-time
dynamo solutions (Karak et al. 2015; Warnecke 2018). However,
Viviani et al. (2018, 2019) discovered a cyclic solution in this
regime. None of these dynamo solutions can be explained by
a pure αΩ dynamo as in the moderate rotation case. The study
of Viviani et al. (2019) revealed that the α effect generating the
toroidal magnetic field is comparable to or even larger than the
Ω effect of differential rotation. In the Coriolis number range
between the regime described above, we often find a mixture of
both dynamo types (e.g., Viviani et al. 2018; Warnecke 2018).

For large Coriolis numbers, mean-field dynamo models pre-
dict dynamo solutions with non-axisymmetric large-scale mag-
netic field which is often associated with a strong anisotropy
of the α tensor (e.g., Rädler et al. 1990; Elstner & Rüdiger
2007; Pipin 2017). However, non-axisymmetric dynamo solu-
tions have also been obtained with an isotropic α (e.g.,
Moss & Brandenburg 1995; Moss et al. 1995; Tuominen et al.
2002). Observational studies also indicate strong nonaxisym-
metric surface field (e.g., Morin et al. 2010) or photometric spot
distribution (Lehtinen et al. 2016) for stars with a high Cori-
olis number. Global convective dynamo simulations confirm
nonaxisymmetric dynamo solutions for moderately and rapidly
rotating stars (Käpylä et al. 2013; Cole et al. 2014; Viviani et al.
2018). The dynamo drivers have not yet been systematically
measured as a function of rotation for these simulations. In par-
ticular, we are interested in whether or not the α tensor becomes
anisotropic in these simulations. These are the main purposes of
the present paper.

We use the test-field method (Schrinner et al. 2005, 2007) to
determine the turbulent transport coefficients. This method has

been shown to give a good description of the dynamo processes
in global dynamo simulations at moderate Reynolds numbers
(Schrinner 2011; Schrinner et al. 2011, 2012; Warnecke et al.
2018; Warnecke 2018; Viviani et al. 2019). As the current test-
field method only works for cases where the large-scale mag-
netic field is axisymmetric, we restrict our setup to azimuthal
wedges of one-quarter of a sphere. Hence, large-scale non-
axisymmetric modes are suppressed and we can study the
rotational dependency of the turbulent transport coefficients
independently of other parameters. The dataset containing the
turbulent transport coefficients as well as the mean flows for all
runs is available online1.

2. Model and setup

We model the stellar convection zone in a spherical wedge
(r, θ, φ), with the same depth as the Sun, (r = 0.7 R to r = R),
where R is the stellar radius. We restrict our domain to a quarter
of a sphere (0 ≤ φ ≤ π/2) without poles (θ0 ≤ θ ≤ π − θ0, where
θ0 = 15◦) for numerical reasons. We solve equations of magne-
tohydrodynamics in a fully compressible regime, including the
induction equation for the magnetic field B in terms of the vec-
tor potential A, which ensures the solenoidality of B = ∇ × A,
the momentum equation in terms of the velocity u, the continu-
ity equation for the density ρ, and the energy equation in terms
of the specific entropy s together with an equation of state for
an ideal gas with temperature T . Rotation is included via the
Coriolis force Ω0 × u, where Ω0 = Ω0(cos θ,− sin θ, 0) is the
rotation vector with the bulk rotation Ω0, and gravity via Kep-
lerian acceleration. The plasma is heated by a constant heat flux
at the bottom of the convection zone and is cooled at the top
by invoking a black-body boundary condition. We use a periodic
boundary condition in the azimuthal direction for all quantities, a
stress-free condition for the velocity on all other boundaries, and
a perfect conductor condition for the magnetic field at the bottom
radial and the latitudinal boundaries. At the top radial boundary,
the magnetic field is radial. Further details of the model setup are
described in Käpylä et al. (2013) and will not be repeated here.

Our model is characterized by non-dimensional input param-
eters: the normalized rotation rate and the resulting Taylor
number,

Ω̃ = Ω0/Ω�, Ta = [2Ω0(0.3R)2/ν]2, (1)

where Ω� = 2.7×10−6 s−1 is the rotation rate of the Sun, and ν is
the constant kinematic viscosity, and the sub-grid-scale thermal
and magnetic Prandtl numbers are

PrSGS =
ν

χSGS
m

, PrM =
ν

η
, (2)

where χSGS
m is the sub-grid-scale thermal diffusivity in the middle

of the convection zone, and η is the constant magnetic diffusivity.
Additionally, we define a turbulent Rayleigh number calculated
from a hydrostatic one-dimensional model

Ra=
GM(0.3R)4

νχSGS
m R2

(
−

1
cP

dshs

dr

)
(r=0.85R)

, (3)

where shs is the specific entropy in the hydrostatic model, G is
the gravitational constant, M is the mass of the star, and cP is the
specific heat capacity at constant pressure.

1 http://doi.org/10.5281/zenodo.3629665
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Table 1. Summary of runs.

Run Ω̃ Ta[106] Ra[107] PrSGS Re Co DR Etot
kin Edif

kin Emer
kin Eflu

kin Etot
mag Etor

mag Epol
mag Eflu

mag

H0 0.0 0.0 4.0 2.0 52 0.0 ? 4.863 0.127 0.706 4.031
H0.005 0.005 1.3(−4) 4.0 2.0 52 0.006 ? 4.884 0.124 0.677 4.083
H0.01 0.01 5.4(−4) 4.0 2.0 52 0.011 AS 4.873 0.134 0.652 4.087
H0.1 0.1 5.4(−2) 4.0 2.0 47 0.12 AS 10.307 6.727 0.293 3.298
H0.5 0.5 1.3 4.0 2.0 47 0.62 AS 11.203 7.608 0.292 3.303
H1 1.0 5.4 4.0 2.0 49 1.2 AS 54.087 50.976 0.554 2.557
H1.5 1.5 9.7 4.0 2.0 41 1.9 AS 62.036 60.103 0.337 2.364
H2 2.0 21.6 4.0 2.0 44 2.7 AS 14.515 11.699 0.051 2.765
H2.5 2.5 33.7 4.0 2.0 43 3.4 S 9.541 6.811 0.041 2.689
H3.0 3.0 48.6 4.0 2.0 41 4.3 S 10.669 8.109 0.035 2.526
H5 5.0 125 4.0 2.0 34 8.4 S 5.402 3.569 0.018 1.815
H7 7.0 190 3.4 2.4 26 13.6 S 4.381 3.078 0.011 1.129
H10 10.0 260 2.8 2.9 18 22.9 S 3.107 2.176 0.005 0.926
M0.5 0.5 1.3 4.0 2.0 44 0.7 AS 7.141 3.910 0.199 3.032 0.362 0.032 0.019 0.311
M1 1.0 5.4 4.0 2.0 40 1.5 AS 4.084 1.259 0.074 2.751 0.775 0.074 0.063 0.638
M1.5 1.5 12 4.0 2.0 39 2.2 AS 3.163 0.691 0.045 2.427 0.789 0.107 0.077 0.605
M2 2.0 22 4.0 2.0 40 2.9 AS 3.065 0.483 0.036 2.547 0.479 0.055 0.048 0.376
M2.5 2.5 34 4.0 2.0 40 3.7 S 2.992 0.524 0.029 2.438 0.506 0.087 0.044 0.375
M3 3.0 49 4.0 2.0 39 4.5 S 3.584 1.268 0.026 2.290 0.593 0.120 0.050 0.423
M4 4.0 86 4.0 2.0 36 6.6 S 3.741 1.741 0.019 1.981 0.801 0.144 0.100 0.557
M5 5.0 35 4.0 2.0 34 8.6 S 3.600 1.804 0.015 1.780 0.987 0.190 0.136 0.660
M7 7.0 264 4.0 2.0 31 13.4 S 2.481 1.040 0.009 1.432 1.109 0.206 0.198 0.704
M10 10.0 540 4.0 2.0 27 21.5 S 1.550 0.465 0.005 1.079 1.159 0.212 0.242 0.705
M15 15.0 1897 7.4 2.0 27 40.3 S 0.746 0.066 0.002 0.677 1.216 0.126 0.290 0.799
M30 30.0 13488 16.1 2.0 26 110.9 S 0.392 0.021 0.001 0.370 2.007 0.305 0.462 1.241

Notes. Second to fourth columns: input parameters. Columns 6 to 15 show the output parameters, which are calculated from the saturated stage of
the simulations. DR indicates the type of differential rotation, either it is anti-solar (AR), or solar (S)-like or inconclusive (?) differential rotation.
The energies E are given in 105 J m−2 and their definitions are given in Eqs. (5)–(9). All runs have a density contrast of Γρ ≡ ρ(r = 0.7R)/ρ(R) = 31
and the MHD runs (Set M) PrM = 1. The resolution is 180 × 256 × 128 grid points for all runs, except it is 360 × 512 × 256 for Run H10.

We use the fluid and magnetic Reynolds numbers together
with the Coriolis number

Re =
urms

νkf
, ReM =

urms

ηkf
, Co =

2Ω0

urmskf
, (4)

to characterize our simulations. Here, kf = 2π/0.3R ≈ 21/R is an
estimate of the wavenumber of the largest eddies in the convec-

tion zone and urms =

√
(3/2)〈u2

r + u2
θ〉rθφt is the rms velocity and

the subscripts indicate averaging over r, θ, φ and a time interval
covering the saturated state. These non-dimensional input and
characteristic parameters are given in Table 1.

For our analysis we divide each field into a mean (axisym-
metric) part and a fluctuating part, the mean being denoted
with an overbar and the fluctuations with a prime, for example,
B = B + B′ and u = u + u′. We note that this axisymmetric
mean follows the Reynolds rules. As we are using the wedge
approximation in the azimuthal direction, the large-scale non-
axisymmetric modes with azimuthal degrees of 1, 2, and 3 are
suppressed. Hence, the adopted azimuthal mean can be reliably
used to compute the mean fields, which accurately describes the
large-scale magnetic field evolution. With this azimuthal mean,
we define a r- and θ-dependent turbulent velocity as u′rms(r, θ) =〈

u′ 2
〉

t
1/2 and the corresponding turnover time of the convection

τtur = HpαMLT/u′rms, where Hp = −(∂ ln p/∂r)−1 is the pressure
scale height and αMLT = 5/3 is the mixing length parameter.

We define the total kinetic energy as

Etot
kin = 1

2

〈
ρu2

〉
V
, (5)

which can be decomposed into energies of the fluctuating veloc-
ities, the differential rotation, and the meridional circulation:

Eflu
kin = 1

2

〈
ρu′ 2

〉
V
, Edif

kin = 1
2

〈
ρuφ

2
〉

V
(6)

and Emer
kin = 1

2

〈
ρ
(
ur

2
+ uθ

2
)〉

V
, (7)

where 〈〉V indicate a volume average. In a similar way, the total
magnetic energy,

Etot
mag =

〈
B2

2µ0

〉
V
, (8)

can be decomposed into energies of the fluctuating fields, and
the toroidal and poloidal magnetic fields:

Eflu
mag =

〈
B′ 2

2µ0

〉
V
, Etor

mag =

〈 B
2
φ

2µ0

〉
V

and Epol
mag =

〈
B

2
r + B

2
θ

2µ0

〉
V
. (9)

To determine the turbulent transport coefficients from our
simulations, we use the test-field method (Schrinner et al. 2005,
2007; Brandenburg et al. 2008; Warnecke et al. 2018) with the
new convention introduced in Viviani et al. (2019). In the test-
field method, nine independent test fields are used to calculate
how the flow acts on these fields to generate a small-scale mag-
netic field and therefore an electromotive force E. It is important
to note that these test fields do not have a feedback effect on the
simulated hydromagnetic quantities, and are therefore only diag-
nostics of the system. With the electromotive forces for each test
field at hand, we have a large enough set of equations to solve
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for the turbulent transport coefficients from the ansatz expand-
ing the E in terms of the mean magnetic field (Krause & Rädler
1980):

E = α · B + γ× B− β · (∇× B)− δ× (∇× B)− κ · (∇B)(s), (10)

where (∇B)(s) is the symmetric part of the magnetic diffusivity
tensor. Here we have neglected contributions of higher-than first-
order derivatives. Also, α and β are two-rank tensors, γ and δ
are vectors, and κ is a three-rank tensor. These five coefficients
can be associated with different turbulent effects important for
the magnetic field evolution: the α effect (Steenbeck et al. 1966)
can lead to field amplification via helical flows, for example in
stratified convection influenced by rotation; the γ effect describes
turbulent pumping of the mean magnetic field in the same way as
a mean flow; β describes turbulent diffusion; and the δ effect, also
known as the Rädler effect (Rädler 1969), can lead to dynamo
action in the presence of other effects, for example the α effect
or shear, although it alone cannot lead to the growth of magnetic
energy (Brandenburg & Subramanian 2005), and the κ effect, the
physical interpretation of which is currently unclear. However,
the κ effect can contribute, in theory, to both the amplification
and diffusion of magnetic fields.

In most cases, we express the measured quantities in a nondi-
mensional form by normalizing them appropriately. For exam-
ple, we define α0 = u′rms/3 and ηt0 = τturu′ 2rms/3 as normalizations
for α tensor, and β and δ tensors, respectively. However, some-
times we transfer them into physical units by defining the unit
system based on the solar rotation rate Ω� = 2.7×10−6 s−1, solar
radius R = 7 × 108 m, density at the bottom of the convection
zone ρ(0.7R) = 200 kg/m3, and µ0 = 4π · 10−7 H m−1. All simu-
lations including the test-field method were performed using the
Pencil Code2.

3. Results

All simulations were run to the saturated stage and then contin-
ued with the test-field method switched on for another 50–100
years. All the computed diagnostic quantities and plots shown
below are obtained from this time interval. The hydrodynamic
(HD) runs are labeled with an “H”, and magnetohydrodynamic
(MHD) ones with an “M”, while the number in the run label
represents these rotation rates normalized to the solar one, Ω̃.

We aimed at keeping all input parameters the same and only
changed the rotation rate as shown in Table 1, but for some runs
this strategy partially failed. For Runs H7 and H10, we had to
increase the viscosity to stabilize the simulations against strong
shearing motions. For Runs M10 to M30 we decreased all dif-
fusivities (ν, η, χSGS

m ) but kept the Prandtl numbers (PrSGS,PrM)
unchanged in order to have roughly constant Reynolds numbers
(Re, ReM).

The Rayleigh number for Run M5 is around 100 times the
critical value (Warnecke et al. 2018). However, the critical Ra
is known to increase as a function of rotation (Chandrasekhar
1961). Hence, our slower(faster) rotating runs can be expected
to exceed the critical value of the onset of convection by a
larger(smaller) margin than M5. This might not be the ideal
modeling strategy; a better approach would be to fix the level of
supercriticality in each run, but this is currently computationally
too expensive for such a large parameter study. Furthermore, as
verified by Warnecke et al. (2018) for a run similar to Run M5,
we do not expect a small-scale dynamo to be operating in our
simulations.
2 https://github.com/pencil-code/

Finally, referring back to our earlier studies, we note the
following. Runs M0.5 to M10 have already been discussed
in Warnecke (2018) to determine the dynamo cycle prop-
erties, but not all the turbulent transport coefficients were
presented in that study. Run M5 is similar to Run I in
Warnecke et al. (2014), Run A1 in Warnecke et al. (2016),
Run D3 in Käpylä et al. (2017) and Warnecke et al. (2018), and
Run GW in Viviani et al. (2018). Furthermore, Run M3 is similar
to Run B1 in Warnecke et al. (2016) and Runs M10 and M15 are
similar to Runs IW and JW of Viviani et al. (2018).

3.1. Rotational influence on kinetic and magnetic energies

First, we discuss how the different energies are influenced by
rotation. As shown in Figs. 1a and b, the total kinetic energy
increases for slow rotation, with a maximum for the runs with
strong anti-solar differential rotation. For rapidly rotating cases,
the kinetic energy drops strongly because of the rotational
quenching of convection. For the MHD runs, we do not find a
maximum during the anti-solar differential rotation phase, but
rather exhibit a dip during the transition; otherwise they also fall
off, as in the HD runs. For the HD runs, the kinetic energy is
dominated by the differential rotation, the fluctuating fields con-
tribute around 10–30% for most of the runs, and the contribution
of the meridional circulation is weak for all runs, in particular for
high rotation. For MHD runs, the contribution of the fluctuating
field is dominating, and energy related to differential rotation and
meridional circulation becomes even weaker with higher rota-
tion. This is consistent with the findings of Viviani et al. (2018),
where the energy of the fluctuating field is also dominating the
kinetic energy for most of the runs. This is why we see that
relaxing the wedge assumption does not strongly influence the
energy balance in the flow field itself; the most dominant factor
is the inclusion or exclusion of the magnetic fields. In the MHD
cases, the energy of the meridional flow and differential rota-
tion decreases roughly linearly overall, whereas the energy of
the fluctuating and total fields decreases with a less steep slope.

All magnetic energy contributions show a weak increase
with rotation, as shown in Fig. 1c. The fluctuating field is also
dominating the total energy here, whereas the contribution from
mean fields (Etor

mag + Epol
mag) increases from 10% for slow rotation

to around 40% of the total magnetic energy for the highest rota-
tion. This is mostly because the poloidal contribution becomes
stronger for larger rotation, whereas the toroidal contribution
remains roughly constant. Also the magnetic energy shows a
small enhancement for the runs with anti-solar differential rota-
tion, however this happens in only one run. This seems to be in
contradiction to the work by Brandenburg & Giampapa (2018),
where they re-plotted the data of Karak et al. (2015), finding a
stronger increase with decreasing Co than in the present study.
However, in the original work of Karak et al. (2015), the change
in the magnetic field as a function of rotation appears insignif-
icant with respect to the large error bars. It is also noteworthy
that there is a difference between how the Co is changed in
Karak et al. (2015) and how it changes in our study: these lat-
ter authors change the thermal Prandtl number and therefore the
strength of convection, in which case their Taylor number did
not change, in contrast to our strategy. Furthermore, the setup of
these latter authors is different from ours in terms of the radial
extent being somewhat smaller. These differences also lead to a
transition from anti-solar to solar-like differential rotation at a
quite different Co.

The ratio of magnetic energy to kinetic energy gives an indi-
cation for the dynamo efficiency for each run; see Fig. 1d. We
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Fig. 1. Dependence of kinetic and magnetic energies on rotation in
terms of Coriolis number Co. We show the total kinetic energy Etot

kin
(black lines), which is composed of the energy of the fluctuating flows
Eflu

kin (red lines), the differential rotation Edif
kin (blue lines), and the merid-

ional circulation Emer
kin (purple lines) for the HD runs (Set H) in panel

a and for MHD runs (Set M) in panel b. Additionally, we show the
total magnetic energy Etot

mag (black line) composed of the energy of the
fluctuating magnetic field Eflu

mag (red), of the toroidal Etor
mag (blue), and

poloidal magnetic field Epol
mag (purple) in panel c and normalized by total

kinetic energy Etot
mag in panel d. The dotted lines show the following rela-

tions between energies and Coriolis number: Ekin ∝ Co−1 in panel b,
Emag ∝ Co0.3 in panel c, and Emag/Ekin ∝ Co1 in panel d. The transition
from anti-solar to solar-like differential rotations occurs in between the
vertical lines (left line: last anti-solar run, right line: first solar-like run).
See Eqs. (5)–(9) for the definition of the energies.

find that this ratio increases roughly linearly with rotational
influence on covection, measured by Co. However, this is not
only due to the fact that the kinetic energy decreases; the increase

in magnetic energy as seen in Fig. 1c also plays a role. However,
the decrease in kinetic energy seems to be the dominant behavior
here. This is consistent with the findings of Viviani et al. (2018),
where their Fig. 8 shows a linear tendency, but with a larger
spread, and the work of Augustson et al. (2019), in which the
authors collect data from a variety of simulations and also find a
linear dependency with Co. We note here that the MHD runs are
probably a more realistic representation of stars, as they have
magnetic fields with similar strengths to those in our models.
Hence, the dominance of the energy contribution of the differ-
ential rotation in HD, in particular in the anti-solar differential
rotation cases, might be an artifact.

Comparing these modeling results with observations of stel-
lar magnetic activity reveals fundamental differences. X-ray lumi-
nosity (e.g., Pizzolato et al. 2003; Wright & Drake 2016), Ca II
H&K emission (e.g., Brandenburg et al. 1998), and surface mag-
netic field measurements using either Zeeman-Doppler imaging
(ZDI; e.g., Vidotto et al. 2014) or Doppler imaging (e.g., Saar
2001) show an increase with Co with a power of around one or two
for Co . 10. Our models show a weak increase of the magnetic
energy with a power of around 0.3 over all runs; see Fig. 1c. This
corresponds to an increase of around 0.15 in terms of the magnetic
field strengths. This is in conflict with the observational results in
two respects. First of all, the increase of magnetic field strength
with Co is too low to be comparable with observations by a fac-
tor of between four and ten. Second, our models do not reproduce
any two-dependency behavior, where for slow and moderate rota-
tion (Co . 10) the magnetic field increases with rotation and for
rapid rotation (Co & 10) the energy is independent of rotation. Our
results are only consistent with the latter behavior as our magnetic
energy is only weakly increasing with Co. However, our models
show this behavior already for slow and moderate rotation. One
of the reasons for this discrepancy is the rotational dependence
of supercriticality of convection (Chandrasekhar 1961). Because
our Rayleigh number remains mostly constant, the convection is
highly quenched by rotation as seen in the rotational dependence
of the kinetic energy; see Fig. 1b. In real stars, the supercritical-
ity is so high that the rotational quenching will not be important.
Hence, the kinetic energy will be most likely independent of rota-
tion. However, even if we take this into account and use the ratio
of kinetic to magnetic energy as a function of Co to calculate the
increase in magnetic field strength with Co, our models are still
wrong by a factor of between two and four.

Furthermore, we want to note that even if the magnetic field
strength increases only mildly as a function of rotation, its sur-
face topology can influence coronal X-ray emission. Higher rota-
tion leads to more helical fields, as it is also shown in Sect. 3.3,
and this in turn can lead to higher X-ray luminosity as shown by
Warnecke & Peter (2019). Therefore, a weak increase in mag-
netic field strength might not be in contradiction with the strong
increase in X-ray luminosity as a function of rotation for small
and moderate rotation.

3.2. Differential rotation and shear

As already mentioned in the previous section, the differential
rotation is strongly affected by rotation. As shown in Fig. 2,
for no or very slow rotation (Runs H0 and H0.005) the differ-
ential rotation is very weak showing an inconclusive pattern;
see also Table 1 and an overview of all differential rotation
profiles in Figs. A.1 and A.2. For slow to moderate rotation
(Ω̃ = 0.01 to 2.0), we find anti-solar differential rotation. For
runs with higher rotation, this switches to solar-like differen-
tial rotation, where the equator rotates faster than the poles.
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Fig. 2. Normalized local rotation profiles Ω/Ω� with Ω = Ω0 + uφ/r sin θ for Runs H0, H0.1, H1, M1, M4, M10, M30 and the rms values of
the radial r sin θ∂Ω/∂r (black line) and latitudinal shear sin θ∂Ω/∂θ (red) versus Coriolis number Co. The values have been calculated as a time
average over the saturated state, and we have omitted the 5 closest grid points to the latitudinal boundary to remove boundary effects from the rms.
The values of the HD runs (Set H) are shown with a solid line with plusses and the MHD runs (Set M) with dashed line with diamonds. The zero
rotation run has been moved to Co = 10−4 to be visible in the lower panel. The transition from anti-solar to solar-like differential rotations occurs
in between the vertical lines (left line: last anti-solar run, right line: first solar-like run) and is shown as solid (Set H) and dashed (Set M) lines.

This transition has already been found in previous stud-
ies of stellar and planetary dynamos (Gastine et al. 2014;
Käpylä et al. 2014; Fan & Fang 2014; Featherstone & Miesch
2015; Karak et al. 2015; Viviani et al. 2018). For rapidly rotat-
ing runs, the differential rotation becomes very weak and mostly
pronounced at the equator and at the latitudinal boundaries.

As we are mostly interested in the analysis of the dynamo
drivers in these runs, we focus next on how the shear acting
on the magnetic field changes with rotation rate. As shown in
the lower panel of Fig. 2, the rms value of the latitudinal and
radial shear averaged over the whole convection zone increases
for slow rotation when the differential rotation builds up. For
the HD runs (Set H), this value has a maximum for the anti-
solar differential rotation runs, and decreases during the differ-
ential rotation transition. The radial differential rotation also has
a maximum in the solar-like differential rotation regime, while
the latitudinal one remain roughly constant. For all HD runs,
the radial differential rotation is 1.5 to 3 times larger than the
latitudinal one, where the largest differences are seen for the
rapidly rotating runs. For the MHD runs (Set M), the latitudi-
nal shear is roughly independent from rotation rate, while the
radial shear increases for the solar-like differential rotation cases
and decreases for rapidly rotating runs. Also, for the MHD runs
the radial shear is stronger than the latitudinal one, except for the
runs with Co = 20 and larger. Hence, the weak increase of mag-
netic energy with rotation cannot be explained by an increase in
shear, as the shear either remains constant or declines for large
rotation rates.

3.3. Rotational dependency of αs

Now, we investigate the rotational dependence of α and first
focus on its general properties. We compute the trace of the α

tensor, αtr = αrr + αθθ + αφφ using the test-field method. For
comparison, we also calculate α based on the kinetic and current
helicity, following Steenbeck et al. (1966) and Pouquet et al.
(1976):

αK = −
τcor

3
ω′ · u′, αM =

τcor

3
j′ · b′/ρ, αKM ≡ αK + αM,

(11)

where αK and αM are the kinetic and magnetic α coefficients,
respectively, ω′ = ∇×u′ is the fluctuating vorticity, ω′ · u′ is the
azimuthally averaged small-scale kinetic helicity, j′ = ∇× b′/µ0

is the fluctuating current density, j′ · b′ is the azimuthally aver-
aged small-scale current helicity, ρ is the mean density, and τcor
is the turbulent correlation time, which we now set equal to the
convective turn-over time, τcor = τtur. In Fig. 3, we show the
meridional profiles and the rms values of the αtr computed both
from the HD (Set H) and MHD (Set M) runs, together with αK or
αKM, respectively, as a function of Co. We find that αtr from HD
runs closely follows αK for slow and moderate rotation (Co = 0
to 4) in distribution and amplitude. αtr from MHD runs is some-
what weaker than the other quantities. However, all the differ-
ent measurements show very similar spatial distributions, and all
show growth consistent with Co0.5. The magnetic part, αM, is an
order of magnitude weaker than αK, but is growing with a sim-
ilar power law as a function of rotation. αtr, αK and αKM show
profiles that are positive(negative) in the northern hemisphere in
the upper(lower) part of the convection zone; the signs are oppo-
site in the southern hemisphere. This spatial pattern seems to be
roughly independent of rotation for αtrs in this moderate rotation
regime.

For higher rotation, αtr and αKM significantly decouple, and
the HD and MHD test-field results start following each other
tightly. While αKM and αK still continue growing with the same
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Fig. 3. Rotational dependence of the α profiles calculated with test-field method and calculated from helicities. In the first row, we plot the traces
of the α tensors, αtr, which were determined using the test-field method for a selection of HD (Set H) and MHD runs (Set M). In the second row,
we plot the kinetic αK and the sum of kinetic and magnetic alpha αKM for the corresponding runs of Set H and Set M, respectively. In the last row,
we show the root-mean-square values of the trace of the α tensor, αtr (black lines), the kinetic αK (red), the magnetic αM (blue), and their sum αKM
(orange) for all runs. The values of the HD runs are shown with a solid line and crosses, whereas the MHD runs are shown with a dashed line with
diamonds. The greed dotted line indicates a power law with an exponent of 0.5. All values are normalized by α0 = u′rms/3. The zero rotation run
has been moved to Co = 10−4 to be visible in the lower panel.

power law as in the moderate rotation regime, both the test-field-
measured quantities no longer depend on rotation. Here, αM
shows a much stronger dependence on rotation (∝ Co) than any
of the other quantities, and becomes comparable to αK for the
most rapidly rotating case. This difference in between the theo-
retical prediction and test-field measurements could be explained
by us not modeling the rotational dependence of τcor = τtur cor-
rectly. The convective scale entering the calculation of τtur is
known to be dependent on rotation. The theoretical calculation
of Chandrasekhar (1961) predicts a dependence of Co−0.3, while
the models of Featherstone & Hindman (2016) and Viviani et al.
(2018) show a dependence of Co−0.5. If we take this into account,
the increase of αKM mostly vanishes.

Also the strongly growing αM contributes to the increase of
αKM. In our most rapidly rotating runs αM can, locally, even
exceed the value of αK, as is evident from Fig. 4. We see that
αM is mostly negative (positive) in the northern (southern) hemi-

sphere in the upper part of the convection zone, and positive
(negative) below, and therefore it has the opposite sign com-
pared to αK. The peak values of αM are larger than αK for rapidly
rotating runs, but these locations are not those where αK is the
strongest. This leads to a more complicated distribution of αKM,
where at high latitudes in the middle of the convection zone, the
sign of αKM changes due to αM, but at low latitudes αKM is still
dominated by αK. Hence, in the most rapidly rotating cases, the
αKM profiles no longer closely match with the test-field mea-
sured profiles. The formula of Eq. (11) has been introduced by
Pouquet et al. (1976) for cases where αM is small and acts as a
perturbation to αK. In our case, in contrast, αM is even stronger
than αK at some locations, so we cannot expect this expression
to be valid in this regime. One possible inconsistency in our
approach is to regard the correlation times, τcor, of the kinetic
and magnetic parts of the α effect as equal. In reality, this might
not be the case, and our analysis should be refined. In any case,
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Fig. 4. Kinetic αK and magnetic αM for three of the runs shown in Fig. 3,
which have a significant contribution from αM. All values are normal-
ized by α0 = u′rms/3.

our current results show that αKM, using the procedure adopted
here and very commonly by other authors analyzing their MHD
simulations, should be only used as a proxy of the α effect with
some caution.

In summary, we find from our simulations that quenching of
the α effect in terms of rotation can be mostly explained by the
changes in the turbulent correlation length. In addition, we note
that, due to the increasing ratio of magnetic to kinetic energy as a
function of rotation, we may also be seeing magnetic quenching
reducing the α effect. By comparing the HD and MHD test-field
measurements, however, we obtain very similar rms values in the
regime where the magnetic field should be dominant. Hence, the
magnetic quenching seems to be weak in these particular runs.
However, even if the differences in the rms values can be small,
locally there can be strong differences between the HD and the
MHD runs, as found by Warnecke et al. (2018).

According to the Parker-Yoshimura rule (Parker 1955;
Yoshimura 1975), an αΩ dynamo will produce an equatorward
migrating dynamo wave if αφφ and radial shear have different
signs on opposite hemispheres. Typically, convection simula-
tions produce positive αφφ in the north, while the radial shear
is weak and positive in the bulk of the convection zone. There
is often a narrow layer of reversed sign of αφφ in the bottom
of the convection zone, as is also the case in the simulations
presented here, but this is not large enough to contribute to the
correct migratory properties of the wave. Instead, equatorward
migration is driven by an additional local region of negative
radial shear together with the positive αφφ in the bulk. Only in
the thicker shell simulations in the planetary context has there
been success in producing a thick-enough layer of reversed sign
of helicity to drive the equatorward dynamo wave with a pos-

Fig. 5. Radial inversion of αφφ as a function of Co for two latitudi-
nal strips for the HD runs (Set H) (top row) and MHD runs (Set M)
(bottom row). In the first column we average αφφ at low latitudes, i.e.,
∆Θ1 = 10◦−20◦, and in the second column we average over mid lati-
tudes ∆Θ2 = 50◦−60◦. The zero values are indicated with a white line.
All values are normalized by α0 = u′rms/3.

itive radial shear (Duarte et al. 2016). To investigate how the
thickness of the inversion layer changes as a function of rota-
tion, we plot in Fig. 5 the radial distribution of αφφ for two
latitudinal bands at low (∆Θ1 = 10◦−20◦) and mid latitudes
(∆Θ2 = 50◦−60◦). At low latitudes, the HD runs do not show
an inversion layer at all, but at the higher latitude band, an inver-
sion layer extending roughly one fourth of the convection zone
is visible, becoming somewhat wider as a function of rotation.
However, the magnitude of αφφ in this layer is very weak. In
the MHD runs, αφφ is always negative in the lower fourth of the
convection zone, but for values of Co of between 4 and 30 this
region reaches up to half of the convection zone at low latitudes.
Increasing rotation even more, the inversion layer again becomes
narrower. For the mid latitudes, the region of negative αφφ is also
located in the lower third of the convection zone. We find a ten-
dency for this region to increase for larger rotation. Here, αφφ
is stronger in the inversion layer in the MHD cases than in the
HD ones. Hence, we do not find inversion layers extending close
to the surface from our simulations, as is found by Duarte et al.
(2016).

3.4. Anisotropy of the α tensor

As a next step, we further investigate the α tensor by looking
at each of the diagonal components. For this, we show in Fig. 6
their meridional profiles and the rms values. For slow rotation,
until Co = 0.7, the diagonal components have similar strengths,
but for larger rotation their behaviors diverge. Here, αrr shows a
distribution with positive(negative) values in the upper part and
negative(positive) values in the bottom of the convection zone in
the northern(southern) hemisphere; it has the strongest values at
low latitudes and near the surface. Here, αrr is the dominating
component for moderate rotation (Co = 1 to 11), in particular in
the HD runs. For the highest rotation rates (Runs M10 to M30),
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Fig. 6. Rotational dependency of the diagonal α components. We show meridional profiles of αrr (top row), αθθ (second row), and αφφ (third row),
and their rms values (bottom row), with αrr (black lines), αθθ (red), and αφφ (blue). As in Fig. 3 the values of the HD runs (Set H) are shown with
a solid line and crosses, whereas the MHD runs (Set M) are shown with a dashed line with diamonds. All values are normalized by α0 = u′rms/3.
The zero rotation run has been moved to Co = 10−4 to be visible in the lower panel.

we find a thin layer of opposite sign at the surface. However, in
this regime αrr becomes very weak.

Similarly to αrr, αθθ has its strongest values for moderate
rotation (Co = 1 to 11) with larger values in the HD runs, but it
remains subdominant to the other two diagonal components at all
rotation rates. Interestingly, αθθ is the only diagonal component,
which changes sign as a function of rotation: for Co < 1.5, αθθ
is dominantly negative(positive) in the northern(southern) hemi-
sphere at low to mid latitudes. For Co > 1.5, it becomes positive

(negative), and finally approaches zero, being weaker than αrr
for the highest rotation rates. This change was also reported by
Viviani et al. (2019) by comparing their run with Co = 2.8 to the
run of Warnecke et al. (2018) with Co = 8.3. At high latitudes,
the distribution is similar as for αK.

We find that αφφ follows the sign distribution of αK for all
values of rotation, except for zero rotation. Its maximum val-
ues move from high to low latitudes as the rotations becomes
stronger, similarly to αrr. An interesting finding is that, while αrr
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Fig. 7. Rotational dependency of the γ components. We show meridional profiles of γr (top row), γθ (second row), and γφ (third row), and their
rms values (bottom row), with γr (black lines), γθ (red), and γφ (blue). As in Fig. 3, the values of the HD runs (Set H) are shown with a solid line
and crosses, whereas the MHD runs (Set M) are shown with a dashed line with diamonds. All values are normalized by u′rms. The zero rotation run
has been moved to Co = 10−4 to be visible in the lower panel.

dominates the moderately rotating runs (Co = 1 to 11), αφφ dom-
inates the rapidly rotating ones. For the highest rotation rates, the
peak values are three to four times larger and the rms values are
even five to eight times larger than for αrr and αθθ.

All in all, the α tensor is highly anisotropic for all rotation
rates above Co ≈ 1. The nature of the anisotropy changes from
the moderate dominance ofαrr to the strong dominance ofαφφ for
Co > 10. For rapidly rotating stars, spherical coordinates are not

optimal and the anisotropy of theα tensor is even more easily seen
if we remap it to cylindrical coordinates (ρ, φ, z). Then, as shown
in Fig. A.3, αzz becomes close to zero. This is in agreement with
theoretical predictions (Ruediger 1978; Krause & Rädler 1980)
and also roughly agrees with the axi- to nonaxisymmetric dynamo
solution transition found by Viviani et al. (2018; their limiting Co
having been around 3). However, the latter study did not report
any quantitative change of the dynamo solutions at higher rotation
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Fig. 8. Rotational dependency of meridional circulation and differential rotation and their effective counterparts. We plot the meridional circulation
Uθ (first column) and U

eff

θ (third column) at 25◦ latitude together with the azimuthal mean velocity Uφ (second column) and U
eff

φ (fourth column)
close to the surface at r = 0.99 R as a function Co for the HD runs (Set H) in the top row and for the MHD runs (Set M) in the bottom row.
Positive(negative) values of Uθ are equatorward (poleward) and positive (negative) Uφ are prograde(retrograde). The zero values are indicated
with a white line.

Fig. 9. Variation of radial shear of the mean flow Ω′ and the effec-
tive flow Ω′eff

with rotation. We plot Ω′ (first column) and Ω′eff
(second

column) at 25◦ latitude as a function of Co for the HD runs (Set H) in
the top row and for the MHD runs (Set M) in the bottom row. The zero
values are indicated with a white line.

rates, where according to our results the anisotropies should play
the most important role. In any case, it seems that anisotropies in
the α effect might play some role in the generation of the nonax-

isymmetric modes. This coexistence confirms the mean-field cal-
culation (e.g., Rädler et al. 1990; Elstner & Rüdiger 2007; Pipin
2017), where an anisotropicα tensor can generate nonaxisymmet-
ric fields.

3.5. Turbulent pumping

Now, we investigate the rotational influence of the turbulent
pumping vector γ: see Fig. 7. All of its components have a
much weaker dependence on rotation than those of α. The rms
value of γr increases slightly with rotation up to Co = 2 and
then decreases for higher rotation. For all runs, we find an
upward pumping near the surface, agreeing with previous stud-
ies (Warnecke et al. 2018; Viviani et al. 2019). However, some
changes of the spatial profile can be distinguished as increas-
ing rotation: For slow rotation, we find the tendency for upward
pumping in the bulk of the convection zone and downward
pumping near the bottom. For Co = 6.6, γr is also pointing down-
ward at high latitudes. Furthermore, γθ also does not depend
strongly on rotation. The HD runs exhibit some non-monotonic
behavior in the form of an abrupt increase at around Co = 6.6,
but this bump is absent in the MHD runs. For all runs with rota-
tion, the spatial distribution shows equatorward pumping near
the surface of the upper part of the convection zone and pole-
ward pumping near the bottom. γφ shows the strongest rotational
dependency of all the turbulent pumping coefficients. For rota-
tion rates up to Co = 1.2, γφ increases and for higher Co it
decreases, in particular in the MHD cases. Again, the HD cases
show non-monotonic behavior at the same rotation rate as γθ.
The spatial structure seems to be mostly independent of rota-
tion. For all runs with rotation, the pumping is prograde near the
surface and at the bottom of the convection zone, and weakly
retrograde in the bulk of the convection zone. All values of γ are
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Fig. 10. Rotational dependency of the turbulent diffusion as the trace of β. We show meridional profiles of βtr (top row) and the rms values of the
diagonal component (bottom row), with βrr (black lines), βθθ (red), and βφφ (blue). As in Fig. 3, the values of the HD runs (Set H) are shown with a
solid line and crosses, whereas the MHD runs (Set M) are shown with a dashed line with diamonds. All values are normalized by ηt0 = τturu′ 2rms/3.
The zero rotation run has been moved to Co = 10−4 to be visible in the lower panel.

Fig. 11. Rotational dependency of the Rädler effect. We show the rms
values of the components of δ with δr (black lines), δθ (red), and δφ
(blue). As in Fig. 3, the values of the HD runs (Set H) are shown with
a solid line and crosses, whereas the MHD runs (Set M) are shown
with a dashed line with diamonds. All values are normalized by ηt0 =
τturu′ 2rms/3. The zero rotation run has been moved to Co = 10−4 to be
visible.

weaker than the turbulent velocity u′rms; for most cases they are
only around 10 to 20% of u′rms.

To investigate how the turbulent pumping influences the evo-
lution of the magnetic field, we calculate the effective velocity,
U

eff
= U + γ, which the magnetic field is sensitive to. As shown

in previous studies (Warnecke et al. 2018; Viviani et al. 2019),
γ can have a large impact on U

eff
. To this end, Fig. 8 shows

the effective meridional and azimuthal flow (differential rota-
tion) together with the original meridional and azimuthal flow.
The azimuthal turbulent pumping is too weak to significantly
alter U

eff

φ . However, we find that the anti-solar differential rota-

tion in the MHD runs is weaker due to γφ. For the HD runs, U
eff

θ
only changes for the solar-like differential rotation. There, the

multi-cellular structure is altered to a noncellular structure. For
the MHD runs, the influence of γθ on U

eff

θ is drastic. The equa-
torward flow in the lower part of the convection zone completely
vanishes and even becomes equatorward for some rotation rates.
Moreover, the other flow structures are significantly altered.

Even though we do not find strong changes in U
eff

φ due to γφ,
the radial shear can nevertheless change (Warnecke et al. 2018).
To check for this possible effect, we plot in Fig. 9 the radial shear
defined as Ω′ = r sin θ ∂Ω/∂r and Ω′eff

= r sin θ ∂Ωeff/∂r with

Ωeff = U
eff

φ /r sin θ+Ω0. For weak rotation, we find that the dom-
inantly negative shear changes to positive values in the bulk of
the convection zone for slow to moderate rotation rates. More
dramatic are the changes near the surface. For nearly all runs,
an additional layer of shear of opposite sign to the overall shear
in the bulk is generated near the very surface. For slow rotation
rates, a positive shear region appears, while for high rotation, a
negative one appears. Hence, our results support the conclusion
of Warnecke et al. (2018) and Viviani et al. (2019), namely that
the turbulent pumping plays an important role for the evolution
of the magnetic field.

3.6. Turbulent diffusion and the Rädler effect

To investigate the rotational dependency of turbulent diffusion,
we limit ourselves to the diagonal components and the trace of
β, βtr = βrr + βθθ + βφφ. As shown in Fig. 10, βtr decreases with
rotation and we find that it is often two times stronger near the
surface than in the lower part of the convection zone. The trace is
always larger than zero, with the exception of some values at the
radial and latitudinal boundaries, which might be artifacts. The
rms values of the diagonal components remain roughly indepen-
dent of rotation until Co = 7. In this regime, all components have
strengths close to ηt0. For higher rotation, all three diagonal com-
ponents decrease with rotation up to Co = 22, the decrease being
most pronounced for the θθ component whose values become
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Fig. 12. Dynamo effects generating Bφ for Runs M1, M4, and M15. We
show the α effect (top row), the Rädler/δ effect (middle), and the Ω effect
(bottom), where we overplot as white contours the rms values of Bφ

above half of the maximum, indicating the magnetic field region used
in the calculation of the dynamo effects shown in Fig. 13. All values are
given in kG yr−1.

roughly four times smaller than βrr and three times smaller than
βφφ. For even higher rotation, the β components remain roughly
constant. As for the α tensor, we also map the β tensor to cylin-
drical coordinates and plot its diagonal components in Fig. A.4.
The differences between the presentations in the two coordi-
nate systems are not large. Now βzz is the weakest of all three
diagonal components, whereas βρρ and βφφ have similar values.
This is in agreement with the theoretical prediction, according
to which βzz should be most highly quenched for rapid rotation
(Krause & Rädler 1980).

Now, we turn to the Rädler effect, expressed by δ. As shown
in Fig. 11, all components of δ increase for slow and decrease
for fast rotation. For HD runs, δθ becomes strong for the runs
with a strong energy in differential rotation Edif

kin: in the anti-solar
regime, Run H1.5, and in the solar-like regime, Run H3. Further-
more, δr is also strong in the former run and δφ in the latter. For
Co > 4, δθ is dominating the other components in both HD and
MHD runs. The values of all δ components are of the order of
10–30% of ηt0.

Fig. 13. Rotational dependence of the main dynamo effects related to the
radial field (top panel), the latitudinal field (middle), and the azimuthal
field evolution (bottom) with the α effect (red), the turbulent diffusion
(purple), the turbulent pumping (blue), the meridional circulation (black
dashed), the Rädler effect (green), and the Ω effect (black solid). The
vertical dashed lines indicate the transition from the anti-solar to solar-
like differential rotation. See Sect. 3.7 for the calculation details.

3.7. Rotational dependency of the dynamo mechanism

To test which dynamo effects are responsible for the generation
and evolution of the magnetic field, we individually monitor the
following terms in the induction equation:

∇ × α · B α effect, (12)

∇ × γ × B turbulent pumping, (13)

∇ × β · ∇ × B turbulent diffusion, (14)

∇ × δ × ∇ × B Rädler effect, (15)

∇ × (udif × B) Ω effect, (16)

∇ × (umer × B) meridional circulation, (17)

where udif = (0, 0, uφ) and umer = (ur, uθ, 0). We then take the
temporal rms

√〈
·2
〉

t of each of these terms. In Fig. 12, we show
an example of the field generators for Bφ from the α, Rädler,
and Ω effects from three different runs. We see for Run M1 that
the strongest effect is the Rädler effect, which acts on the same
location as the α effect. The mean azimuthal field, the strongest
field regions being indicated with white contour lines, actually
concentrates closer to the equator and nearer to the bottom of
the convection zone than the distribution of the field generators.
This can be explained by the meridional pumping which is equa-
torward at these locations, added with downwards-directed γr in
the bottom parts of the convection zone. For M4 and M10 with
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Co = 6.6 and 22, oscillatory magnetic fields with clear equator-
ward migration are excited, as can be seen from Fig. A.5. From
Fig. 12 we see that the Ω and the α effects are strong in the areas
where the azimuthal field is also strong. For even higher rotation
in Run M15, the field generation near the surface near the equa-
tor is mostly due to the α effect with a contribution from the δ
and Ω effects. For the high-latitude fields, α and Rädler effects
have stronger contributions. The magnetic field evolution shows
an irregular solution with an indication of poleward migrating
field which might fit to this kind of dynamo. This result also
shows that even if the α tensor is highly anisotropic with very
low values for αrr and αθθ, the α effect generating the azimuthal
field is still strong and can sustain a strong large-scale dynamo.

To further refine our analysis, we adopt the approach by
Warnecke (2018) to measure the dynamo effects only from the
locations where the magnetic field component that they are act-
ing on is larger than the half maximum of its rms value (indicated
by white contour lines in Fig. 12). We average each dynamo
effect over these locations and plot all of them as a function of
rotation in Fig. 13.

From Fig. 13 we find that the dynamo effects show a
strong rotational dependence. The effect of turbulent diffusion
decreases for all runs for increasing rotation, even though the
diagonal components of β become constant. This is most likely
due to the decrease of turbulent intensity with rotation, which
is used as a normalization in Fig. 10. Except for slow rota-
tion (Co = 0.7–1.5), the effect of the turbulent pumping is sig-
nificantly stronger than the effect on the meridional circulation.
Both effects decrease with increasing rotation.

For the other effects, we find three distinct regimes. The first
regime is for slow rotation, where the differential rotation is anti-
solar. There, the Rädler and the α effects are dominating even
over the Ω effect for azimuthal field generation. This would rule
out an αΩ effect and suggest an α2-type dynamo with a strong
δ contribution. From our method of using averaged rms values
without signs, we cannot conclude whether the Rädler effect
contributes to the magnetic field enhancement or the diffusion
of the field, but nevertheless our analysis indicates a strong role
of this effect in the evolution of the magnetic field. This is consis-
tent with the finding of Viviani et al. (2019), where the authors
find indications for an α2-type model with a strong δ contribu-
tion in their run with Co = 2.8. However, these latter authors find
a cyclic magnetic field solution in contrast to our stationary or
irregular ones, as shown in Fig. A.5. For the runs in the transi-
tionary phase of the differential rotation (Runs M2 to M3, with
Co = 2.9 to 4.5), the Ω effect is even weaker than for slow rota-
tion, and the dynamo is dominated by an α2 contribution with
a much weaker δ. However, we see clearer indication of cycles,
which are nevertheless not yet very pronounced; see Fig. A.5.

The second regime is one where the runs exhibit solar-like
differential rotation profiles. There, the Ω effect is comparable
to or even dominates the α effect in generating the azimuthal
field. Runs in this regime (M4 to M10 with Co = 6.6 to 22)
show clear equatorward migration of the oscillating magnetic
fields. Previous analyses of similar runs have revealed that these
dynamo waves can be explained by the Parker-Yoshimura rule
(Warnecke et al. 2018; Warnecke 2018) for αΩ dynamos. This
is consistent with our finding of the Ω effect being large in
Fig. 13. The strong contribution that we find for α in generat-
ing the azimuthal field can still contribute to the magnetic field
evolution, but it does not necessarily influence the period and
propagation direction of the dynamo wave, as was the case also
in the studies of Warnecke et al. (2018) and Warnecke (2018).

The third regime is observed for runs with the highest rota-
tion rates (M15 & M30, with Co = 40 & 111). The Rädler effect
has decreased with rotation for the poloidal components of the

field, while the α effect has remained roughly constant. For the
azimuthal component, the Ω effect drops to much lower values,
as already indicated by the decrease of the overall energy in the
differential rotation in Fig. 1. The Rädler effect for this compo-
nent is comparable to the α effect. This indicates an α2 dynamo
with a weak δ contribution for the azimuthal magnetic field.

With the rotational dependence of the dynamo effects, we
can now understand why the ratio of magnetic to kinetic
energy increases even though the shear and normalized α tensor
remain constant for moderate to high rotation. This is because
simultaneously turbulent diffusion decreases as a function of
rotation, enabling a more efficient dynamo action. This is in very
good agreement with the results of Käpylä et al. (2009), who find
similar behavior from turbulent convection in Cartesian domains
where rotational influence was varied.

4. Conclusions

We performed a comprehensive study of how turbulent
transport coefficients measured from global convective dynamo
simulations depend on rotation in solar-like stars. For this, we
varied the rotational influence of convection in terms of Coriolis
number from Co = 0 to Co = 110. We found that the normalized
trace of α only increases up to Co = 4, with an approximate
power law of Co0.5, and then levels off. The trace of α shows a
very similar spatial profile in comparison to an expression of α
based on the kinetic helicity, αK. However, this quantity does
not level off, but continues its growth even in the rapid rota-
tion regime. However, if we take into account that the length
scales of convection become reduced with increasing rotational
influence, the effect of which could result in a decrease of the
correlation time with a power law of Co−0.5 according to theo-
retical considerations (Chandrasekhar 1961) and recent numeri-
cal results (Featherstone & Hindman 2016; Viviani et al. 2018),
then αK also levels off. The magnetic correction to the α effect,
expressed in terms of αM based on the current helicity, becomes
anomalously strong in the cases of rapid rotation, even exceeding
the value of αK locally. Therefore, it is not justified to consider
αM as a perturbation, as in the original analysis of Pouquet et al.
(1976). However, we treated the turbulent correlation times for
the flow and magnetic fields equally in our analysis, which might
explain the discrepancy. This issue requires further investiga-
tion, but even at this stage it is clear that some caution is needed
when deriving the turbulent transport coefficients from convec-
tion simulations using these proxies.

We further find that the α tensor becomes highly
anisotropic for Co >1, as expected from theoretical predictions
(Krause & Rädler 1980). In the moderate rotation regime, αrr
dominates over the other diagonal components. The nature of
the anisotropy changes for Co >10, when αrr and αθθ become
strongly reduced, while αφφ strongly increases. Anisotropies in
the α tensor are one of the candidates leading to nonaxisym-
metric large-scale dynamo solutions (e.g., Rädler et al. 1990;
Elstner & Rüdiger 2007; Pipin 2017). However, the transition
to nonaxisymmetry was seen at somewhat elevated Coriolis
numbers of roughly three in the study of Viviani et al. (2018),
where similar runs to those here were reported, but with the full
longitudinal extent and therefore capable of naturally exciting
nonaxisymmetric large-scale modes. The difficulty in analyzing
such runs with the test-field method arises from the fact that
the axisymmetric averages are not suitable for nonaxisymmetric
dynamo solutions. Confirmation of the importance of α effect
anisotropies in the excitation of nonaxisymmetric modes must
therefore await further development of the test-field method
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and/or appropriate 3D mean-field modeling taking into account
the dynamo effects measured here.

The turbulent pumping components do not strongly depend on
rotation. In all runs, we measure upward pumping near the surface,
in contrast to what is needed for the surface-flux-transport mod-
els to agree with solar observations (e.g., Cameron et al. 2012).
The latitudinal pumping is mostly equatorward in the upper part
of the convection zone and poleward in the lower part, and there-
fore it could be able to advect a dynamo wave equatorward if it
overcame diffusion. However, this is not seen in any of our mod-
els. The presence of the latitudinal pumping completely alters the
effective meridional circulation, which has strong implications for
flux-transport dynamo models that rely on certain types of merid-
ional circulation profiles and do not fully consider all the turbulent
effects. The azimuthal pumping leads to a sharp sign change for
the effective shear near the surface for all runs.

We find that the normalized turbulent diffusion decreases
slightly with rotation before it levels off at around Co >10 and
becomes weakly anisotropic. δ, describing the Rädler effect, is
the strongest for moderate rotation, where differential rotation is
also the strongest.

Analyzing the dynamo effects as a function of rotation
reveals three distinct regimes. For slow rotation, we find strong
α and Rädler effects together with anti-solar differential rotation,
consistent with the work of Viviani et al. (2019). For moderate
rotation, where differential rotation is solar-like and the mag-
netic field develops equatorward migration with clearly defined
cycles, we find a strong contribution from both α and Ω effects
for the generation of the toroidal component and from the
α effect for the generation of the poloidal component, while
the other effects remain subdominant. This is consistent with
an αΩ or α2Ω dynamo, in agreement with previous studies
(Warnecke et al. 2018; Warnecke 2018). For high rotation, the
α effect contributions remain strong, while the Ω effect is signif-
icantly reduced. Therefore, our interpretation is that a dynamo of
α2 type, with some influence of the Rädler effect for azimuthal
field, is operating in this regime. The dynamo efficiency, defined
as the ratio of magnetic energy to kinetic energy, increases lin-
early with Co, in agreement with previous studies (Viviani et al.
2018; Augustson et al. 2019). This can be explained by the α
effect being almost independent of rotation, whereas the effect
of turbulent diffusion decreases with rotation in agreement with
the Cartesian models of Käpylä et al. (2009).
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Appendix A: Rotation profiles and butterfly
diagrams for all runs

Fig. A.1. Normalized local rotation profile Ω/Ω� with Ω = Ω0 +

u/r sin θ for all HD runs (Set H), except run H 10. The values
of Ω have been calculated as a time average over the saturated
state.

For completeness, in this Appendix we present the rotation pro-
files (Fig. A.1 for HD runs (Set H) and Fig. A.2 for MHD runs
(Set M)) and butterfly diagrams (Fig. A.5) from all the runs ana-

Fig. A.2. Normalized local rotation profile Ω/Ω� with Ω = Ω0 +

u/r sin θ for all MHD runs (Set M). The values of Ω have been cal-
culated as a time average over the saturated state.

lyzed in the main part of the paper. In Figs. A.3 and A.4, we
additionally show the diagonal components of the α tensor and
β tensor, respectively, in cylindrical coordinates to aid compari-
son with theoretical studies.
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Fig. A.3. Same plot as the bottom panel of Fig. 6 but for the diago-
nal components of α in cylindrical coordinates (ρ, φ, z) with αρρ (black
lines), αzz (red) and αφφ (blue).

Fig. A.4. Same plot as the bottom panel of Fig. 10 but for the diago-
nal components of β in cylindrical coordinates (ρ, φ, z) with βρρ (black
lines), βzz (red) and βφφ (blue).

Fig. A.5. Mean azimuthal magnetic field Bφ as a function of time in years and latitude near the surface (r = 0.98R) for all MHD runs (Set M). The
time interval shows the full duration of the saturated state for all runs. The black and white dashed horizontal line indicates the equator.
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