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Abstract

This thesis is concerned with the structure and properties of magnetic fluxtubes in the solar photosphere. After

a brief introduction outlining the importance of magnetic fields for the Sun and the stars, with particular

emphasis on the role of fluxtubes, a description of polarized light, its properties, production, radiative transfer

in a stellar atmosphere, and measuremént is given. There follows an overview of spectroscopy and polarimetry
with a Fourier transform spectrometer (FTS). The data forming the basis of the thesis, FTS spectra of Stokes

I, V, and partly also Q in the visible and the infrared (1.5-1.7u), are described and their advantages (high

spectral resolution, broad spectral range) and disadvantages (low spatial and temporal resolution) relative to

other data sets are discussed.

The analysis procedure is outlined. It is based on the identity V = AAgy dI/d) valid for weak fields (i.e.
Adg <€« AXp), where A)y is the Zeeman splitting and AAp is the Doppler width. This relation is derived,
interpreted, and tested both analytically and numerically. Its integrated form is used to determine the Iy
profile, an approximation of the magnetically unsplit Stokes I inside the fluxtubes. It is also shown that similar
relations for the Q and U profiles (e.g. @ ~ d2I/dA2) are only valid in the limit of very weak lines, and are
therefore of no practical value.

The lines to be analysed (a set of 450 unblended Fe I and II lines) are listed and, wherever possible, their
effective Landé factors are determined from laboratory measurements, thus making the analysis independent of
the validity of LS coupling. The line profiles are parameterised and a statistical analysis of these parameters
is carried out. With the help of regression equations the dependences of individual parameters on Zeeman
splitting, line strength, excitation potential, and wavelength are partially separated, allowing some qualitative
conclusions to be drawn directly. Quantitative results are derived from detailed radiative transfer calculations
in model fluxtubes. Some of the main results and conclusions are listed below:

1. The temperature in the fluxtubes of the observed active regions is found to be lower than in the fluxtubes
of the quiet network, in particular in the deeper photospheric layers. Detailed models of the temperature
are derived and compared to earlier models published in the literature. New diagnostic techniques for the
fluxtube temperature are proposed. The importance of velocity broadening for the empirical determination
of temperature is demonstrated.

2. An upper limit of 0.25 km sec™? is set on stationary flows in fluxtubes from a detailed analysis of many lines
at disk centre and, additionally, the centre-to-limb variation (CLV) of a few selected lines. Both, absolute
wavelengths of Stokes V' and wavelength shifts relative to Stokes I, give the same result. The absence of
downflows is in contrast to most earlier measurements in the literature, which typically show downflows
2 0.5 km sec™?,

3. It is proposed that the observations of downflows published in the literature may be explained by the
low spectral resolution of such observations combined with the blue-red asymmetry in Stokes V. As a
quantitative verification, V profiles, recorded with high spectral resolution, are smeared by convoluting
them with model apparatus functions. If appropriate amounts of spectral smearing are used then the
redshifts published in the literature are reproduced. Spectral smearing is found to influence other fluxtube
properties determined from Stokes V quite strongly as well.

4. Extensive observations of Stokes V asymmetry, with the area and amplitude of the biue wing being different
from the area and amplitude of the red wing, are described. Mechansims for producing the asymmetry are
discussed and some indirect observational evidence for a connection between asymmetry and velocity is
presented. The simplest mechanism giving rise to asymmetry, a stationary flow inside the fluxtube with a
vertical gradient, is shown to produce profiles incompatible with the observations and is thus ruled out.

5. The presence of strong non-stationary motions in fluxtubes is deduced from the large line widths of the I
profiles. RMS velocities of 3—4 km sec™! are obtained from the most broadened lines at disk centre. These
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values are considerably larger than in the quiet sun,

Relatively model independent statistical methods of determining the magnetic field strength in fluxtubes as
well as their filling factors are proposed. Their application to the data gives values compatible with those
published in the literature.

The importance of velocity broadening for the Stokes V' 5250/5247 line ratio is demonstrated. It is also
shown that the CLV of the line ratio contains little significant information on the height variation of the
magnetic field. Thus both a constant magnetic field with B = 1140 G and a magnetic field calculated with
the thin tube approximation with B(r=1) ~ 2000 G, are consistent with the data.

Finally, MHD models of cylindrically symmetric fluxtubes are presented. The effects of magnetic tension are
included via an expansion technique. Particular attention is given to the problem of merging. Thus a simple,
and self-consistent formalism is developed to take the influence of neighbouring fluxtubes into account. The
dependence of the merging height on various parameters of the fluxtubes is discussed. It is shown that the thin
fluxtube approximation is quite reliable for fluxtubes with radii less than approximately 100 km near r = 1.




Zusammenfassung

Diese Dissertation befasst sich mit der Struktur und den Eigenschaften von solaren magnetischen Flussrohren.
Zuerst wird die Rolle des Magnetfeldes der Sonne und anderer Sterne, unter besonderer Beriicksichtigung seiner
fibrilen Struktur, kurz skizziert. Es folgt eine Beschreibung des polarisierten Lichts, dessen Eigenschaften,
Entstehungsmechanismen, Transport dirch eine Atmosphire und Messung. Besonderes Gewicht wird auf die
Polarimetrie mit einem Fourier Transform Spektrometer (FTS) gelegt, da die hier beniitzten Daten, Spektren
von Stokes I, V und teilweise auch @ im sichtbaren und infraroten (1.5-1.7u) Wellenlaingenbereich, mit einem
FTS aufgenommen worden sind.

Die Analysemethode wird umrissen. Sie beruht auf der fiir schwache Felder (d.h. Algy <« AMp) gilltigen
Identitdt V = AAgdl/dA. Dabeiist Aly die Zeemanaufspaltung und AAp die Dopplerbreite. Diese Identitit
wird hergeleitet, interpretiert und sowohl analytisch wie numerisch geprift. Unter Benutzung ihrer integrierten
Form wird das Iy Profil bestimmt. Dieses stellt eine Approximation des magnetisch unaufgespaltenen Stokes
I Profils innerhalb der Flussrohre dar. Es wird auch gezeigt, dass dhnliche Beziehungen fiir die Stokes @ und
U Profile (2.B. @ ~ d?I/d)?) nur im Grenzfall sehr schwacher Linien giiltig sind und ihnen deshalb keine
praktische Bedeutung zukommt.

Die effektiven Landé-Faktoren der 450 ungestorten Fe I und II Linien, welche fiir die weitere Analyse beniitzt
werden, werden wo immer mdglich aus Labormessungen bestimmt. Dadurch wird die Analyse unabhingig von
der Giiltigkeit der LS-Kopplung. Die Linienprofile werden parameterisiert, und es wird eine statistische Analyse
dieser Linienparameter durchgefiihrt. Anhand von Regressionen werden die Einflisse von Zeemanaufspaltung,
Linienstarke, Anregungspotential und Wellenlinge auf die einzelnen Linienparameter teilweise voneinander ge-
trennt, so dass daraus direkt einige qualitative Schlisse iiber Eigenschaften von Flussrohren gezogen werden
kénnen. Quantitative Resultate werden aus dem Vergleich von detaillierten Strahlungstransportberechnungen
in Flussrohrenmodellen mit den Beobachtungen erzielt. Einige der Hauptresultate sind im Folgenden zusam-
mengefasst.

1. Die Temperatur in den Flussrdhren der beobachteten Netzwerk-Gebiete ist hdher als in den Flussréhren der
beobachteten aktiven Gebieten, vorallem in den tieferen Schichten. Detaillierte Modelle der Temperatur-
struktur werden aufgestellt und mit dlteren Modellen verglichen. Neue diagnostische Hilfsmittel zur Be-
stimmung der Flussrohrentemperatur werden vorgestellt. Die Wichtigkeit der Geschwindigkeitsverbre-
iterung der Spektrallinien fir die empirisch bestimmte Temperaturstruktur wird gezeigt.

2. Fir die Geschwindigkeit stationarer Stromungen wird eine obere Grenze von 0.25 km sek ™' gesetzt. Dies
folgt sowohl auns einer statistischen Analyse aller Linien bei Sonnenmitte, wie auch aus der Mitte-Rand-
Variation einiger ausgewahlter Linien. Ferner geben sowohl die absolute Wellenlinge von Stokes V, wie
auch deren Wellenlingenverschiebung gegeniiber Stokes I dasselbe Resultat. Dieses Resultat steht im
Widerspruch zu fritheren Arbeiten, welche Abwirtsstromungen von = 0.5 km sek ™! beobachteten.

3. Als mogliche Erklarung dieser Diskrepanz wird die schlechte spektrale Aufldsung in Kombination mit der
Asymmetrie des Stokes V Profils vorgeschlagen. Um diese These zu iiberpriifen, wird das mit hoher spek-
traler Auflésung gemessene V' Profil kiinstlich verschmiert. Bei geeigneter Wahl der Verschmierung werden
die alteren Beobachtungen von Abwartsstromungen reproduziert. Auch einige andere Eigenschaften von
Flussrohren, welche aus Stokes V' bestimmt werden, hingen stark von der spektralen Auflésung ab.

4. Umfangreiche Beobachtungen der Stokes V Asymmetrie werden vorgestells. Bei diesen Daten unterscheiden
sich Flache und Amplitude des blanen Fligels von denjenigen des roien. Mogliche Entstehungsmechanismen
werden besprochen und Hinweise auf einen Zusammenhang mit den Massenbewegungen in den Flussrohren
werden diskutiert. Der einfachste Mechanismus, eine stationire Stromung in der Flussrohre mit einem ver-
tikalen Gradienten, wird im Detail untersucht. Es wird gezeigt, dass dieser Mechanismus mit den Beobach-
tungen inkompatibel ist.
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5. Aus den grossen Breiten der beobachteten Iy Profile wird auf nichtstationdre Strémungen in den Flussréhren
geschlossen. Die Linien mit den grossten Verbreiterungen liefern RMS Geschwindigkeiten von 3—4 km sek ™+
in der Nihe der Sonnenmitte. Diese Werte liegen um einiges hoher als bei der ruhigen Sonne (d.h. in
magnetfeldfreien Gebieten) und lassen auf das Vorhandensein von Wellen und Oszillationen mit grossen
Amplituden in Flussrohren schliessen.

6. Es werden modellunabhdingige statistische Methoden zur Bestimmung der Magnetfeldstarke in Flussrdhren
sowie des Fillfaktors (Bedeckungsgrad) vorgeschlagen und angewandt. Die Resultate stimmen gut mit
denjenigen in der Literatur iberein. :

7. Der starke Einfluss der Geschwindigkeitsverbreiterung auf das Stokes V' 5250/5247 Linienverhaltnis wird
untersucht. Ferner wird gezeigt, dass die Mitte-Rand-Variation dieses Linienverhiltnisses nur wenig In-
formation iber die HBhena.bhéi.ngigkeit”\ der Magnetfeldstarke liefert. Dementsprechend konnen die Daten
sowohl mit einem konstanten Magnetfeld von B = 1140 G als auch einem Magnetfeld welches mit der Hohe
abnimmt (Diinne Flussrohren Approximation mit B(r=1) a 2000 G) wiedergegeben werden.

Schliesslich werden MHD Modelle von zylindersymmetrischen Flussrohren beschrieben. Der Einfluss der mag-
netischen Spannung wird durch eine Reihenentwicklung beriicksichtigt. Besonderes Gewicht wird auf das Prob-
lem der Fusion zweier Flussrohren (merging) gelegt. Es wird ein einfacher, jedoch selbstkonsistenter Formal-
ismus entwickelt, um den Einfluss benachbarter Flussréhren zu beriicksichtigen. Die Abhangigkeit der Ver-
schmelzungshohe von verschiedenen Flussrohrenparametern wird beschrieben. Es wird auch gezeigt, dass die
diinne Flussrohren Approximation fiir Flussrohren mit Radien kleiner als etwa 100 km relativ gut erfiillt ist.
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1. Introduction

The magnetism of the Sun was definitively established by Hale (1908b) when he presented conclusive evidence for
the Zeeman effect in sunspots, thereby ending centuries of theorizing on their possible nature. Earlier, Lockyer
(1866) had noticed split spectral lines in sunspots, but could not find any explanation for them {note that this was
30 years before Zeeman’s laboratory expériments). Bigelow (1889) had also been led to hypothise on the possible
existence of a solar magnetic field by photographic studies of the solar corona during the eclipse of January 1889.
For many years the Sun remained the only magnetic star observed, and except for the ‘invisible sunspots’ of Hale
(1922a, b), even it was thought to have a magnetic field largely restricted to sunspots (we disregard the spurious
dipolar field of 50 G found by Hale, 1913).

A new age was heralded near the middle of the century, when Babcock (1947) discovered a strong magnetic
field on the A2p star 78 Vir and the invention of the photoelectric magnetograph {Babcock and Babcock, 1952;
Thiessen, 1952; Kiepenheuer, 1953) allowed the first systematic investigations of non-sunspot solar magnetic
fields (Babcock and Babcock, 1955). Since then both solar and stellar magnetic fields have played an increasingly
important role in the context of solar and stellar physics.

For the measurement of solar magnetic fields a wide variety of techniques have been used, and a wealth
of detailed information has been obtained. The largest body of observations exists for the solar photosphere,
where extensive observations in sunspots, facul®, and the network have been carried out using the Zeeman
effect, mostly via the polarization it induces in the spectral lines (cf. chapter 2). Since such observations will
be quoted extensively in later chapters of this thesis, no references will be given here. A smaller number of
photospheric observations also exist which make use of the Hanle effect (e.g. Stenflo, 1982; Harvey, 1986). The
Hanle effect has also been used to carry out direct measurements of chromospheric magnetic fields in, for example,
prominences (e.g. Bommier et al., 1981; Querfeld et al. 1985; for a review see Leroy, 1985). Above sunspots, the
Zeeman effect polarization in transition region lines has yielded field strengths of 1000 G (Henze et al., 1982).
The chromosphere also contains strong indirect indicators of magnetic activity, e.g. Ho structures and Ca II H
and K plages. It was spectroheliograms in He, which first led Hale (1908a) to suspect that sunspots may be
magnetic in nature. Skumanich et al. (1975) have shown that a good correlation exists between photospheric
magnetic flux and Ca II emission, a result of great importance for the interpretation of stellar Ca II observations
in terms of magnetic activity. Coronal fields have been measured via the Hanle effect (Querfeld, 1977). Radio
observations also provide good diagnostics of the magnetic field in the higher atmosphere (Lang and Willson,
1979; Lang, 1983; see also Stenflo, 1978, for a review of older observations) and Xanthakis (1969) has derived
a relation between photospheric magnetic fields and the radic emission. Another indicator of coronal magnetic
fields is the X-ray flux. Golub et al. (1980, 1982) find a good correlation between coronal pressure and thermal
energy content, as derived from Skylab X-ray data, and photospheric magnetic field density. In the solar wind
the magnetic field has been measured tn situ from satallites. Finally, magnetic fields are expected to penetrate
to considerable depths in the convection zone (cf. Schiissler, 1984b, for a theoretical overview). So far no direct
method of measuring these fields exists, although Zweibel and Bogdan (1986) point out that it is in principle
possible to measure magnetic fields in the convection zone through their influence on solar oscillations. Thus,
magnetic fields have been detected in all the observable layers of the Sun. Their fundamental importance for
‘active’ phenomena: sunspots, plages, prominences, spicules, flares, etc., is undoubted. It is also generally agreed
that the transition region and the corona are magnetically heated (cf. Schmieder and Mein, 1981; Golub et al,,
1980, 1982; recent reviews have been given by Heyvaerts, 1985, and Hammer, 1987). It has recently also been
suggested that the solar wind is partly magnetically driven, since the high speed streams cannot be produced by
gas pressure alone (Pneuman, 1985).

The solar magnetic field changes on all so far observed time scales, ranging from a few minutes to hundreds
of years. In 1611 Galilei noticed the first indications of this variability, when he observed that sunspots have
everchanging shapes and sizes (Secchi, 1871). Discovery of variability on a longer time scale followed in 1843, when
Schwabe first announced a periodicity of about 10 years in the occurence of sunspots (Secchi, 1871; Clerke, 1885).
This sunspot cycle has since been extensively studied. It is now known to have an average period of approximately
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11.1 years, subject to considerable scatter (Wolf, 1877; Waldmeier, 1961, 1976) and a modulation over even longer
periods (Eddy, 1980). However, the major discovery relating to the sunspot cycle was its correspondance to half
a cycle of the solar magnetic field found by Hale et al. (1919). Today the manifold indications of the solar cycle
(sunspot number, coronal shape, strength of radic emission, frequency of active regions and flares, distribution
of surface magnetic flux, etc.) are interpreted as the surface manifestations of an internal change in the magnetic
field geometry. A theoretical description of this evolution of the large scale structure of the Sun’s magnetic field
is given by the dynamo theories (Schissler, 1983; Gilman, 1983; Belvedere 1985), which attempt an explanation
in terms of induction effects in conducting fluid masses. According to these theories the main forces responsible
for the generation of magnetic fields are solar differential rotation and (turbulent) convection.

Is the Sun a special case, or do magnetic fields play a similar role in other stars as well? Many stars below
the main sequence, e.g. white dwarfs, have been observed to have magnetic fields considerably stronger than the
Sun (Angel, 1978). But, except for Ap and Bp stars with their usually simple dipole-like magnetic field structure
(e.g. Stibbs, 1950; Babcock, 1958; Borra et al., 1982; Mathys and Stenflo, 1986) no stars on or above the main
sequence in the HR diagram readily show Stokes V' polarization signals indicative of photospheric magnetic fields
(a possible exception is & Boo A, which shows a weak field of 25 G; cf. Borra et al.,, 1984). However, this does
not imply the absence of magnetic fields for all other stars, since due to the tangled nature of its magnetic
field, with many bipolar regions scattered over its disk, the Sun also exhibits disappearingly small (B) values
for magnetograms averaged over the whole disk. If the magnetic field of other stars were also in this tangled
state, then it would necessarily be unobservable with polarization methods. An alternative is to search for the
change in the unpolarized line profile due to magnetic fields. One such method, the so-called Robinson technique
(Robinson, 1980), has been successfully applied to detect the presence of strong magnetic fields in a number of
late type stars (Robinson et al., 1980; Marcy, 1983, 1984). Other similar techniques have been developed and
applied by Giampapa et al. (1983), Gray (1984), Saar and Linsky (1985), and Saar et al. (1986). According
to Linsky (1985) strong tangled magnetic fields have now been measured directly on main sequence stars with
spectral types ranging from GOV to dM3.5e. On the other hand, Marcy and Bruning (1984) failed to find direct
evidence for magnetic fields on late type giants.

Nevertheless, the full significance of magnetic fields for, in particular, late type stars (including giants) only
becomes evident when we include the manifold indirect indicators of stellar magnetic fields. One of the most
widely used of these indicators is the Ca II H and K flux (Zwaan, 1983; Noyes, 1985). Its variation over a time
span of years has provided clear evidence of the presence of stellar activity cycles with periods similar to the solar
cycle (Wilson, 1978; Vaughan, 1983; Baliunas and Vaughan, 1985). Short term variations of the Ca Il H and K
flux, visual magnitude, and flux in UV lines have been used to diagnose the presence of starspots (e.g. Baliunas
and Dupree, 1982; Marstad et al., 1982; Vogt, 1983). Even their approximate position on the stellar disk and
its differential rotation have in some cases been deduced (Vogt and Penrod, 1983a, b; Baliunas et al., 1985).
Measurements with the EINSTEIN satellite have shown that stars of practically all spectral types along the main
sequence emit significant amounts of X-rays (Vaiana, 1983). Whereas, for early type stars these observations
can be explained by shocks in massive radiatively driven winds (e.g. Rosner et al., 1985), for late type stars the
observed X-rays require the presence of coronz (Vaiana, 1983; Rosner, 1986). EUV spectra obtained with the
IUE satellite have also proved the existence of chromospheres and transition regions in late type stars (Linsky,
1985; Noyes, 1985). Furthermore, both EUV and X-ray measurements have shown that the coronal heating
mechanism has to be magnetic in nature for all late type stars (Linsky and Ayres, 1978; Basri and Linsky, 1979;
Vaiana et al., 1981). Finally, microwave emission from stellar coronz has also been detected (Gary and Linsky,
1981, Dulk, 1985).

Fig. 1.1 gives an overview of stars which are directly or indirectly thought to be of ‘solar type’. Linsky (1985)
defines a ‘solar type’ star as a star which has a turbulent magnetic field sufficiently strong to control the dynamics
and energetic in its outer atmospheric regions. ‘He summarises the present situation as follows, “. . . evidence
is accumulating rapidly that magnetic fields lie at the heart of much of the rich phenomenology of ‘activity’ in
cool stars. This is not to say that magnetic fields control all phenomena, but rather that magnetic fields usually
determine the geometry, time variability, non-radiative heating rates, inhomogeneity, and ultimately the global
energy balance in stars lJocated in a wide range of the cool half of the H-R diagram.”

That the dynamo mechanism is also responsible for the magnetic fields of ‘solar type’ stars is indicated by
the correlation between the stellar rotation rate and the X-ray emission (Pallavicini et al., 1981), and between
rotation and Ca II emission (Kraft, 1967; Middelkoop and Zwaan, 1981; Middelkoop, 1982). The theory of stellar
dynamos is reviewed by Schiissler (1983) and Belvedere (1985).
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Fig. 1.1 : An H-R aiagram showing schematically which types of stars are definitely or probably solar-like on
the basis of direct or indirect indicators of strong, turbulent magnetic fields. Also indicated are the regions of
i the H-R diagram where massive winds occur and hot plasma is apparently absent (from Linsky, 1985).

So far we have briefly reviewed measurements of magnetic fields on the Sun and stars, as well as some of the
consequences of such fields. An important open question is the structure of the magnetic field. In this respect
the Sun, being the only star resolvable in any detail, must for the time being provide most of the information
for all ‘solar type’ stars (with the possible exception of those few highly active stars whose rotation light curves
yield some rough indirect information on the large scale geometry of their magnetic field).

Let us therefore summarize the presently accepted picture of the structure of the photospheric magnetic
field on the Sun. Almost all of the magnetic field is bundled into structures with field strengths in excess of 1 kG
(Stenflo, 1973; Harvey, 1977; Zwaan, 1978). Depending on the diameter or the magnetic flux of these structures,
they result in sunspots, pores or (small) fluxtubes (often also called magnetic elements, or magnetic fibrils).
Fluxtubes, in contrast to the much rarer sunspots and pores, are found everywhere on the solar disk, both in
active regions and in quiet regions at the boundaries of supergranule cells (e.g. Leighton et al., 1962, Simon and
Leighton, 1964). Since this thesis is concerned with the structure of these small magnetic elements let us briefly
discuss some of their properties and the role they play in the context of solar physics and therefore also of other
‘solar type’ stars.

Theoretically, fluxtubes are thought to form as a result of the interaction of convection with the magnetic
field. The field is expelled from the centres of turbulence elements towards their boundaries (Proctor and Weiss,
1982). This mechanism works both at the level of the supergranulation and the granulation (Nordlund, 1983,
1986; Title et al., 1987). The final concentration takes place by a convective instability. If the instability
starts out as a downdraft, then the magnetic field will be greatly strengthened by the resulting evacuation of
the tube. The magnetic field has a stabilising influence and once the field has been sufficiently strengthened a
stable configuration can result (Spruit, 1979). Recent numerical calculations suggest that the final state is one
of overstable oscillations (Hasan, 1984, 1985, 1986) as initially proposed by Spruit (1979).

From an observational point of view the critical property of fluxtubes is their size. A diameter of often
less than the best presently available spatial resolution of 200-300 km {Mehltretter, 1974; Ramsey et al., 1977)
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makes the rest of their properties very hard to determine by direct methods. This has led to the development
of a few powerful indirect techniques which have yielded information on some of the fundamental parameters
of fluxtubes, for example that they have field strengths of 1000-1500 G (Stenflo, 1973; Harvey and Hall, 1975)
and that they are hotter than their surroundings (Chapman and Sheeley, 1968; Harvey and Livingston, 1969).
The limits of the methods available until recently are clearly demonstrated by the following few examples of the
many unanswered questions relating to fluxtubes. Very little is known about how the magnetic field and the
temperature vary with height. The velocity structure in fluxtubes, their diameters, lifetimes, and evolution are
even less certain. All in all, our knowledge of many aspects of these structures is very fragmentary. The main
aim of this thesis is to develop new indirect methods of-analysis, improve older methods (often involving model
calculations), and apply these to the problem of the internal structure of solar magnetic fluxtubes in order to
obtain a better idea of their magnetic field, temperature and velocity stratification.

Finally, we list a few points summarising the role of fluxtubes on the Sun.

e Over 90% of the non-sunspot magnetic flux is concentrated into small fluxtubes (Howard and Stenflo, 1972;
Frazier and Stenflo, 1972). '

e They are the most likely candidates for transporting the energy needed to heat the corona from the convection
zone into the higher atmosphere (Spruit and Roberts, 1983). It has also been recently proposed that the
chromosphere may actually exist only in fluxtubes (Ayres et al., 1986).

e They form the footpoints of chromospheric and coronal magnetic structures (cf. Altschuler and Newkirk,
1969; Altschuler et al., 1977, who calculate potential coronal fields, using the magnetic field distribution
obtained from photospheric magnetograms as the lower boundary cndition).

e Spicules are concentrated in the network and are thus also associated with the magnetic fine structure
(e.g. Dunn, 1972; Beckers, 1972). Theoretical calculations suggest that spicules may be one observable
chromospheric manifestation of fluxtube waves (Hollweg et al., 1982; Hollweg, 1982).

e The fibril structure of the field affects the dynamo mechanism (Schiissler, 1983).

e Fluxtubes also affect solar convection, thereby changing the structure of the granulation and the heat
transport, at least locally, in the upper part of the convection zone (e.g. Spruit, 1977; Deinzer et al., 1984b;
Cavallini et al., 1985; Brandt and Solanki, 1987; Title et al., 1986). As a result they also affect the total
luminosity of the Sun (Willson, 1984).

Perhaps, the fundamental role that small fluxtubes play for our understanding of many phenomena on the Sun
and late type stars, is best described in the words of Parker (1985), “Observations show that the activity has
its origin at the small scales (50~100 km) of the individual magnetic fibrils in the Sun. Hence, the observational

study of stellar activity begins with the microscopy of the surface of the Sun.” Such microscopy is the subject of
this thesis.




2. Polarized Light

The empirical study of solar magnetic fields is intimately linked to the measurement and the interpretation of
spectra in polarized light. In the presence of a magnetic field light becomes polarized through the Zeeman effect.
If the light passing through the magnetic field is already polarized, then its polarization ellipse can be rotated
as a result of the Faraday and Voigt effects,” and the radiation can also be partially depolarized via the Hanle
effect, which we shall not discuss further; see e.g., Stenflo (1971) and Leroy (1985) for additional information.
In this chapter we shall consider the description of polarized light (Sect. 2.1}, some processes giving rise to
it and affecting it (Sects. 2.2 and 2.3), its transfer in a stellar atmosphere (Sect. 2.4) and some aspects of its
measurement (Sect. 2.5).

The study of polarized radiation has a long history (cf. e.g. Robson, 1974; Clarke and Grainger, 1971).
Bartholinus (1670) and Huygens (1690) discovered polarization, when they noticed that light which had passed
through a piece of (doubly refracting) calcite behaved differently from ordinary light. He was able to describe
the behaviour of the ordinary ray with his wave construction, but not that of the extraordinary ray. Around
1817, Young suggested that light waves are transverse rather than longitudinal vibrations, and in 1824 Fresnel
showed that they are exclusively transverse waves. The resulting transverse vector theory allowed for the first
time a description of polarization phenomena. The term ‘polarization’ was introduced by Malus in 1810 when
describing the production of polarized light by reflection and was derived from the word ‘polarity’ employed
earlier to describe the two-fold nature of magnetic poles.

2.1. Description of Polarized Light: Stokes Parameters

Four parameters are required for a complete and consistent description of polarized radiation (including partial
.polarization), and since the work of Chandrasekhar (1947, 1950) the system of four Stokes parameters has
established itself as the standard representation in optical solar physics and stellar astronomy. This system has
sthe advantage that it only contains real numbers which are directly measureable, which all have the same physical
.dimensions, which have a direct relationship to the physical processes of the studied object, and which allow the
radiative transfer equation to be written in a straightforward manner.

In Cartesian coordinates the vibration of the electric field vector, (&5, &y), of light propagating in the 2-
direction can be written as

€z = €z, cos(wt — €,),
€y = Eyo cos(wt — ¢y),
where w is the circular frequency of the vibration, &;, and &, are the maximum amplitudes of the electric vector
in the z and y directions, and ¢, and ¢, are its respective phases. In a basis of two mutually orthogonal linearly

polarized vectors (e.g. the vectors with (&;, §y) = (coswt,0) and (0,coswt) respectively), the Stokes parameters
for an arbitrarily polarized beam of light can be written as

(2.1)

I=1I+ 1,

Q=1 - Iy;

U = 2 (€a §yo co8(e5 — €))

Vo= 2 (€g Eyo sinfey — €y)) .
In Eq. (2.2) I, @, U, and V are the Stokes parameters named after Sir George Gabriel Stokes (1819-1903), who
first introduced them {Stokes, 1852}. According to his principle of optical equivalence, beams of light which have
the same “Stokes parameters” are indistinguishable as regards intensity, degree of polarization and polarization

form. I, = (€2 ), I, = <§30 ), and the brackets ( ) denote averaging over time in Eq. {2.2). For totally polarized
light the averaging over time is not necessary. It then follows directly from Eq. (2.2) that

(2.2)

P=Q*+U%+ V2, (2.3)
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Therefore only three Stokes parameters are required to describe totally polarized light. In order to clarify the
meaning of the different Stokes parameters somewhat more (specially U and V, whose interpretation is not
obvious from Eq. (2.2)), we introduce the quantities § and ¢, such that tan 3 = €ao/ Ebey Where €q, and &y, are
the magnitudes of the major and minor semi-axes, of the polarization ellipse described by the electric vector. If
a and b are the direction vectors of the major and minor semi-axes respectively, then ¢ is defined as the angle
between a and the z-direction. Fig. 2.1 illustrates these definitions.

Fig. 2.1 Polarization ellipse for the electric vector
(€2, €y)- The major and minor semi-axes
have lengths £,, and &,, respectively; ¢ is
the angle between the major axis and the
z-axis (adapted from Robsor, 1974).

v

We can now write the Stokes parameters for the general case of partially polarized light as (e.g., Wittmann,
1973b)
I=I+ Ip,

Q = I, cos2f cos2p,
U= I,co82f sin2¢p,
V = I, sin 20.

(2.4)

Here Ip and I, represent the intensities of the unpolarized and the polarized fractions of the light respectively.
‘In Eq. (2.4) the expressions for Q, U, and V bear a close resemblence to the description of a vector in three
dimensional spherical coordinates. This analogy can be used to construct a simple geometrical representation of
the polarized fraction of light, a representation introduced by Poincaré (1892) and which is consequently named
the Poincaré sphere. We shall not consider it further here, but refer to, e.g., Robson (1974) for a short description.
For partially polarized light Eq. (2.3) has to be replaced by the inequality

P>R=Q*+U*+V2 (2.5)

From Egs. (2.2) and (2.4) the meanings of the four Stokes parameters can be easily reconstructed. Stokes I is
obviously just the total intensity of the light, while Stokes Q, U, and V can be interpreted as follows:

Q = hin(p = 0) = Lin(p = 7/2),
U = Iin(p = 7/4) ~ Lin(p = 37/4), (2.6)
V = Lipe{right) — Lipc(left).
Right circularly polarized light is defined as light with an electric vector rotating clockwise when viewed from
the front at a fixed point in space. It is clear from Eqgs. (2.4) and (2.6) that V = 0 is a necessary condition for

light to be linearly polarized. Similarly @ = U = 0 is required for light to be circularly polarized. The quantities
on the right-hand-side of Eq. (2.6) are not totally independent, since

I= Ilin(o) + I]in('ﬂ'/Z) = I]in('n'/‘i) -+ Inn(31r/4) = Icim(right) + Icirc(left). (2.7)

The polarization state of a light beam can be written in a compact form by introducing the Stokes vector
17 = (1,Q,U, V'), where the symbol T represents the transpose. The effect of an optical device on a polarized beam
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of light is equivalent to a linear transformation of the Stokes vector, as was discovered by Soleillet and expressed
in matrix form by Perrin in 1942. However, it was Mueller who carried out the first extensive calculations with
this formalism and solved many problems previously considered intractable. As a consequence the formalism of
applying 4 x 4 matrices on Stokes vectors has come to be known as Mueller calculus. An example is given below.
Further examples follow in Sect. 2.5.

In observational practice the angle ¢ is usually measured with respect to the direction of a linear polarizer.
A rotation of the polarizer by the angle &, which is equivalent to a rotation of the coordinate system, will affect
the Stokes vector in the following manner

10 0 0

v | 0 cos2a sin2a 0

U= 0 —sin2a cosZa 0 L (28)
0 0 0 1

According to Eq. (2.8) @ and U are interchangeable, so that, for example on the Sun, the information content
of Stokes @ and U depends strongly on the instrument and the observational procedure.

2.2. Zeeman Effect

In 1896 Pieter Zeeman (1865-1943) discovered the splitting of spectral lines in the presence of a magnetic field
(Zeeman, 1897a,b,c). Although he only discussed observations of the magnetic broadening of the Na I D lines in
his first paper, Zeeman nevertheless realised their significance due to the unique polarization signature, which was
in accord with the classical theory of radiation of Lorentz. In the following two papers he described experiments
in which he was finally able to observe complete splitting. A first (incomplete) quantum mechanical description
of the normal Zeeman effect was given by Debye (1916) and Sommerfeld (1916). It was later extended to include
the selection and polarization rules by Rubinowicz (1918a,b) and Bohr (1918). In the following we shall give a
brief description of the effect and of its influence on a spectral line.

2.2.1. Zeeman Effect for an Atomic Energy Level

:The Hamiltonian of an atom in an external magnetic field is to first order in B given by (e.g. Baym, 1969)
H=Ho+H; = Hy + ——(L +25)B, (2.9)
2mce

where Ho is the Hamiltonian of the atom without any external field, e is the (positive) charge of an electron, m
is its mass, ¢ is the speed of light, L is the orbital angular momentum operator with L? having the eigenvalues
R*L(L+1) (with L = 0,1,2,...), S is the spin angular momentum operator with §2 having the eigenvalues
hZS(S +1) (with § =0, %, 1, g—, 2,...), and B is the vector of the external magnetic field. We have assumed that
LS-coupling is valid, that the magnetic moment of the nucleus can be neglected (it is at least three orders of
magnitude smaller than the electronic part according to Sobel’man, 1972), and that the coupling of the atom to
the external field is small compared to the spin-orbit interaction (as is the case for the magnetic field strength
found on the Sun). First order time-independent perturbation theory can then be applied. It is found that the
(2J + 1)-fold degeneracy in the energy of each level disappears (here A%2J(J + 1) [with J = 0, %, 1, %,2,...] is
the eigenvalue of the squared total angular momentum operator J2, with J = L + 8), due to its splitting into
magnetic sublevels whose energy is given by

Erp=Er+ pogMB. (2010)

In Eq. (2.10) E; is the energy of the atomic level in the absence of a magnetic field (i.e. E; is an eigenvalue
of Hy), AM (with M = —J,—J + 1,...,J) is an eigenvalue of J,, which is the component of the total angular
momentum operator in the direction of the magnetic field, u¢ is the Bohr magneton: uo = e¢h/(2mc), B is the
absolute value of B, and ¢ is the Landé factor. In LS-coupling the Landé factor can be written as

J(J+ 1)+ S(S+1) - L(L+1)
2J(J + 1) )
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A first version of this equation was derived by Landé (1923), but the correct physical meaning of the different
quantum numbers, specially of the spin, was not realised until 1925 (Uhlenbeck and Goudsmit, 1925, 1926). If
S = 0 (i.e. no spin) then g = 1, if L = 0 (i.e. only spin) then g = 2. For some levels (e.g. *Dy /s, 5F,) the
Landé factor is zero and these levels do not split in the first order perturbation theory carried out here. Condon
and Shortley (1964) tabulate the terms of interest, including those without Zeeman splitting. The calculation
of g-factors becomes considerably more complicated when LS-coupling no longer applies. Formule and methods
for their calculation in jj-coupling are given by e.g. Sobel’'man (1972).

2.2.2. Normal and Anomalous Zeeman Effect

The normal Zeeman effect is exhibited 19/ lines which are either formed by transitions between two levels that
have equal Landé factors, for example between two singlets (which implies g = 1), or between a J = 1 and a
J = 0 level. In the former case the two levels will split into a different number of sublevels, since the J values of
the two levels are different. This is due to the dipole radiation selection rule: AL = 41 and because L = J for
S = 0. However, the separation between two sublevels of consecutive M will be the same for both levels. The
M selection rules for electric dipole radiation,

AM =0,+£1, ' (2.12)
with the additional constraint that
M=0—-M=0 Iisforbidden for AJ=0, (2.13)

cause the spectral line to split into exactly three components (see Fig. 2.2, taken from Herzberg, 1944), having
the frequencies vo and vo &= uogB. g is now the Landé factor of the line and is in this case identical to the g-factor
of any one of the two levels. The unshifted (AM = 0) component is called the m-component, while the AM = %1
components are referred to as the o¥-components. The AM = +1 component is shifted towards the red, while
the AM = —1 component is shifted towards the blue (for a positive Landé factor).

In the case of a J = 1 — J = 0 transition it is obvious that the line splits into exactly three components,
~since J = 0 does not split while the J = 1 level splits into three components. The g-factor of the line in this case
is identical to the g-factor of the J = 1 level.

In the more common case of anomalous Zeeman splitting, the upper and lower levels of the transition have
‘different g-factors. The spectral line will then usually have more than three components. However, the distinction
between o- and w-components is still made (see Fig. 2.3, taken from Herzberg, 1944). In analogy to the g-factor
for a Zeeman triplet, an effective Landé factor, geg, is defined for spectral lines showing anomalous Zeeman
splitting (Shenstone and Blair, 1929), which can be written as

gert = %—(gz + gu) + %(gx = 9u)(Ni(J1 +1) = Ju(Ju +1)). (2.14)

In Eq. {2.14) the subscripts | and u denote the lower and upper levels involved in the transition respectively.
The effective Landé factor geg is a measure of the wavelength shift of the centre of gravity of the s-components
(for example for AM = +1) with respect to the wavelength of the unsplit line, Ao. It should be noted that Eq.
(2.14) is symmetrical with regard to the exchange of the upper and lower levels (g, Ji «* gu, Ju), and that it is
also valid for the normal Zeeman effect (if we set g = O for a J = 0 level). Neither is its validity restricted to
the case of LS-coupling as long as the g, and g values taken are the correct ones, as has been noted by Landi
Degl’Innocenti (1982). We shall use this property of Eq. (2.14) to determine empirical geg values for a number
of unblended solar iron lines, and thus take the effects of departure from LS-coupling on our analysis partially
into account (cf. Sect. 4.3.3). Beckers (1969¢) has tabulated the g.g values for transitions between levels of many
different J, L, and S values.

2.2.8. Polarization, Intensity, and Splitttng of the Zeeman Components

The polarization rules for the different Zeeman components result from a straightforward derivation of the
selection rules for M; cf. Eq. (2.12). However, for the sake of brevity we refer to Herzberg (1944) for a simple
derivation and restrict ourselves to listing the results.
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Fig. 2.2 Normal Zeeman effect for a transition J =

3 — J = 2. The arrows representing
the transitions form three groups of equal
AM. The arrows in each group have equal
length and therefore give rise to one and
the same line in the splitting pattern visi-
ble in the lower part of figure (from Herz-

Fig. 2.3

Anomalous Zeeman effect of the Na I Dy
line, ?P3/; — 28 ,5. Note that contrary
to Fig. 2.2, arrows indicating transitions
with equal AM no longer have the same
length, because of the difference in split-
ting in the upper and lower states (from
Herzberg, 1944).

berg, 1944).

¢ Transversal Zeeman effect: When the angle between the line of sight and the magnetic field vector,
4 = 90°, then the m-components are linearly polarized parallel to B and the o-components are linearly
polarized perpendicular to B (o for “senkrecht”).

¢ Longitudinal Zeeman effect: For v = 0° or y = 180° no m-components are visible and the o-components
are circularly polarized. For an emission line and 4 = 0° the AM = —1 component is left circularly polarized,
while the AM = +1 component is right circularly polarized (Condon and Shortley, 1964). For an emission
line and ~ == 180°, or for an absorption line and v = 0° the polarizations are reversed. Note: The Zeeman
effect in absorption spectra is often called the reverse Zeeman effect.

¢ For a general direction the light is usually elliptically polarized, with the major axis of the polarization ellipse
of the o-components being perpendicular to that of the w-components.
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effects for the normal Zeeman triplet M= +1 S0 -1

(from Condon and Shortley, 1964).

7, T
ransverse o | 1

Let S,(M,~) be the unnormalised relative strengths of the different Zeeman components, when viewed at
the angle -y to the field, in an optically thin medium, under the assumption that all Zeeman sublevels are equally
populated. n =AM = 0,%1 and —J < M £ J. However, the exact limits to the value of M depend on AM
and AJ. Both J and M refer to the initial state of the atom. S,{M,v = =/2) values for dipole radiation are
listed in Table 2.1, which has been taken from Condon and Shortley (1964). The S,(M,~v = 7/2) values were
first derived theoretically by Honl (1925) and Kronig (1925) independently. Strengths for quadrupol radiation
are listed by Beckers (1969b). It should be noted that the relative intensities of the Zeeman components are
independent of the coupling scheme, in contrast to their shifts (i.e. the g-factor plays no role in determining the
intensities). S, should not be confused with the spin quantum number S.
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Table 2.1 Unnormalised intensities Sp (M, = n/2) of the Zeeman components

M->M~-1(AM=-1) M- M(AM =0) M- M+1(AM=+1)

J=J+1 (J-M+1)(J-M+2) 4(J +1)% - M? (J+M+1)(J+ M+2)
J—J (J+M)(J-M+1) 4 M? (J—-M)(J+M+1)
J=J~-1 (J+M)(J+M-1) 4(J? - M?) (J-M)(J-M-1)

For use in radiative transfer calculations, these strengths have to be normalised such that

D Sa(M,7/2)=1  (n=0,%1). (2.15)
M

The strengths of the individual Zeeman components for an arbitrary angle v can be determined from the strengths
at vy = m/2 via the Seares formule (Seares, 1913)

So(M,~) = So(M, n/2)sin?y,
S+1(M,q) = S+1(M,7/2)(1 % cosv)?, (2.16)
S_1(M,7) = S_1(M,7/2)(1 F cos)?,

where upper and lower signs in the right-hand-side of Eq. (2.16) are applicable for right- and left-handed circular
analysers respectively. For the three groups of Zeeman components (AM = 0, *1) the profiles in a stationary,
optically thin medium are

Do =Y _ So(M,/2)H(a,v — vo(M)),
M
®r1= 41(M,m/2)Hla,v = vi1(M)), (2.17)
M
o, = > S_1(M,7/2)H(a,v — v_1(M)),
M

vsfhen viewed perpendicularly to the magnetic field. In Eq. (2.17)

H(a,v) = %/:o ﬁ%dy (2.18)

is the Voigt profile first derived by Voigt (1913), with
v=(A—X)/AMp (2.19)

being the dimensionless distance from the line centre wavelength, A\g. AMp is the Doppler width, which for a

stellar atmosphere can be written as
Ao/ 2T
AAD == 'c— ?nic s Ma . : (220)

Here k is the Boltzmann constant, M, is the mass of the atom, T is the temperature, £;,;c is the microturbulence
velocity (we have assumed the microturbulence to be distributed in the form of a Gaussian as well), and ¢ is the
speed of light. In Eq. (2.18)

.= T'AZ
" 4wcAAp’
where [' is the damping constant (see Sect. 2.4.5 for more information). More details on the physical background
of H(a,v) are given by Mihalas (1978). H(a,v) is symmetric with regard to v,

(2.21)

H(a,—v) = H(a,v). (2.22)

Negative values of a are unphysical. In Eq. (2.17) the quantities

2
gn(M) = 4.6686 x 10—13-2-5%(1\4), (n=0,%£1) (2.23)

_ eAB
vn(M) = 4rmc?Alp
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are the dimensionless wavelength shifts of the Zeeman components. In Eq. (2.23) Ao, AAp arein A,and Bisin
G. The Landé factors of individual Zeeman components of the spectral line g,(M), can be determined from the
g-factors of the upper and lower levels via

go(M) = gM — ¢g'M,
g+1(M) =gM - ¢'(M +1), (2.24)
-1(M) = gM — ¢'(M - 1),

where g and ¢’ are the Landé-factors of the initial and final level of the transition and may be calculated using Eq.
(2.11). The maximum and minimum values-of M depend on AM = n and AJ. Beckers (1969¢c) has tabulated
the strengths, S,(M,n/2), and Landé factors g,(M), for all the Zeeman components of transitions between a
comprehensive set of configurations.

If the medium is not optically thin, the emergent line profiles ha.ve to be determined by solving the radiative
transfer equation. Then the absorption profiles given by Eq. (2.17) are proportional to the absorption coefficients,
i.e. the absorption coefficient of a spectral line formed in a magnetic field splits up into the three components,

n ~ ®@p, (n=0,+1). We shall return to this case in Sect. 2.4.

2.3. Anomalous Dispersion

The Zeeman effect induces not only a change in the absorption coefficient for light in a material, so that the
different polarization states are absorbed differently at a particular wavelength, but alsc in the refractive index,
so that waves in different polarization states travel at different velocities through the material. The medium thus
becomes birefringent and acts similarly to certain crystals which are naturally birefringent, e.g. calcite (linearly
birefringent, i.e. orthogonal linear polarizations travel at different speeds), or quartz (circularly birefringent; cf.
Clarke and Grainger, 1971). This anomalous dispersion gives rise to the so called magnetooptical effects, the
best known of which is Faraday rotation.

In 1845 Micheal Faraday (1791-1867) observed that the plane of polarization of linearly polarized light was
rotated about its propagation axis when it passed through silicated borate of lead glass which was placed in a
magnetic field parallel to the direction of propagation of the light passing through it. He described his discovery
as follows. “. .. I recently resumed the inquiry by experiment in a most strict and searching manner, and
have at last succeeded in magnetizing and electrifying a ray of light . . . » (Faraday, 1855). This effect of a
longitudinal field is now known either as Faraday rotation or as the Macaluso-Corbino effect. If the magnetic
field is perpendicular to the line of sight we have linear birefringence or the so-called Voigt effect, while for an
arbitrary angle we have in general elliptical birefringence. With the discovery of the Faraday effect the influence
of a magnetic field on radiation was observed for the first time.

The relationship between the magnetooptical effects and the Zeeman effect is best illustrated by the disper-
sion relation between the refractive index n and the absorption coefficient «. Dispersion relations are a general
property of many complex functions, and we shall first write a dispersion relation in its general form. Consider
a complex function of a real variable

(=) = p(z) +1q(=), (2.25)
with p(z) = R f(z) and ¢q(z) = & f(z) (Rf and §f denote the real and imaginary parts of the function f,
respectively), which can be extended to cover the whole complex plane by replacing z in Eq. (2.25) by z = z+1y.

If f(2) is analytic in the upper half of the complex plane (i.e. for y > 0) and tends tc zero at large distances from
the origin, so that
£
1)
z

2z -
semi circle
of radius R

z' =0 as R — oo, (2.26)

then it can be shown that the value of the real and imaginary parts of f{z) on the real axis are related by
(Corinaldesi, 1959)

p(z) = %Pf e 4, (2.27)

q(a) = -:;P / n°° PE) g, (2.28)
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where P denotes the Cauchy principal value of the integral. Eqs. (2.27) and (2.28) are the dispersion relations
for p(z) and ¢(z). ‘

Irrespective of the presence of a magnetic field, a medium generally has a complex refractive index defined
as

= n+ ik, (2.29)

where n and k are the real and imaginary parts of n, namely the (real) refractive index and the extinction
coefficient of the medium. They respectively determine the phase velocity and the amount of absorption of
the radiation in the medium. The extinction coefficient k is related to the absorption coefficient x used in the

radiative transfer equation by .
- 4
K= —?k. (2.30)

Corinaldesi (1959) shows that if we consider the (non-magnetic) dispersive medium to be composed of an assembly
of naturally damped oscillators then

n(w) 1--Ne2 1
v T U 2m (wE - w?) — Wl

(2.31)

where w = 2mv which is replaced by & = w+ twiy, in order to cover the complete complex plane. wq is the natural
frequency of the oscillators, I' is their natural damping constant (describing the radiative damping), and N is
the number of oscillators per unit volume. A full quantum-electrodynamical treatment of a radiatively damped
transition also leads to an equation similar to Eq. (2.31), the only difference to the classical result being the
constants of proportionality. Eq. (2.31) satisfies Eq. (2.26) and is analytical in the upper half-plane, since its
poles, the roots of the quadratic equation

@ +46T —w? =0, (2.32)

both lie in the lower half plane. The dispersion, or Kramers-Kronig, relations (Kronig, 1926; Kramers, 1927) for
n can therefore be written as follows (Corinaldesi, 1959; Huber and Sandeman, 1986),

2w [ n(w
5 Bu) = -2 /0 075&:20—2 a, (2.33)
2 (=] Ik. !
n(w) =1+ ;Pfo f;—z—(:u—:;); dw'. (2.34)

The symmetry properties of n—1 allow the integration to be limited to positive values of w. Eqgs. (2.33) and (2.34)
demonstrate the intimate connection between n and k, i.e. between the phase velocity of light in the medium
and its absorption. In particular, the Kramers-Kronig relations are also true when the absorption coefficient in
the vicinity of an atomic resonance or transition (i.e. a spectral line) has a profile the shape of a Voigt function
H(a,v). Then the corresponding profile of n — 1 follows from Eq. (2.34) and is proportional to the Faraday-Voigt
or dispersion profile :

Fla,v) 1 /'°° (v = y) exp(=¢?)

== 5—7; . (U — y)z n a2 dy. (2.35)

This follows from the fact that H(a, v} and 2F(a,v) can be written as the real and imaginary parts of a complex
function which satisfies the conditions required for the existence of the dispersion relations between H and F,

W(z) = H(a,v) +2iF(a, v) = = / A ' (2.36)

O B 1

where z = v + ta. Note that the factor before the integral in Eq. (2.35) differs from the factor of H{a,v) in Eq.
(2.18). In contrast to the Voigt function, F(a,v) is antisymmetric in v, i.e.

F(a,—v) = —F(a,v). (2.37)
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Frequency v Frequency v
Fig. 2.6 Schematic representation of refractivity, Fig. 2.6 Refractivities, ny—1, n_—1 (upper figure)
n—1 (upper figure), and extinction coeffi- and extinction coefficients ki, k- (lower
cient, k (lower figure}, for an isolated spec- figure) for light beams of opposite circular
tral line in the absence of a magnetic field polarization in the presence of a magnetic
(adapted from Huber and Sandemann, field (adapted from Huber and Sandemann,
1986). 1986).

In Fig. 2.5 k(v) and n(v) — 1 are illustrated for a spectral line in the absence of a magnetic field. Note the
antisymmetry of n.

Now consider the case of radiation passing through a medium with a magnetic field. Then a spectral line
will split into its individual Zeeman components, i.e. k(v) — kg ~ Dg, kg ~ Py, K41 ~ Dyy (B, n= 0,21
are given in Eq. (2.17)). According to Eq. (2.34) this means that n(v) will also split into “Zeeman components”,
which we shall call in analogy ng, -1, n4+1. For a simple Zeeman triplet with B parallel to the line of sight the
result is shown in Fig. 2.6. For a general splitting pattern we get equations similar to Eq. (2.17). The normalised
magnetooptical profiles ¥g ~ng ~ 1, ¥4 ~nyy — 1, ooy ~n_y — 1 of the line, when viewing perpendicularly
to the magnetic field, can then be written as

To=2)_ So(M,r/2)F(a,v — vo(M)),
M
V= 223+1(M: m/2)F(a, v~ vy1(M)), (2.38)
M
U1 =2) S_1(M,n/2)F(a,v—v_y(M)).
M

| Note the factor of 2 difference with respect to Eq. (2.17). S,(M, #/2) (n = 0,=£1) values may be obtained from
Table 2.1, with the normalisation, Eq. (2.15), taken into account, while v, (M) values can be calculated with
Eq. (2.23). ¥, values for other angles of the magnetic field can be determined by applying the Seares formule.
The exact relation between n, and ¥,, as well as the manner in which the magnetooptical effects influence the
Stokes profiles and enter into the radiative transfer equation will be discussed in the next section.

°

2.4. Transfer of Polarized Radiation in a Magnetic Field

2.4.1. The Equation of Transfer for the Stokes Vector

The equation of transfer for polarized light in the presence of a magnetic field and in a plane parallel atmosphere
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was first derived by Unno (1956) in the notation using the Stokes parameters. It was extended to include
magnetooptical effects by Rachkovsky (1962), and written to self-consistently account for the effects of departures
from LTE for a two level atom by Domke (1971). In this form it reads:

dI,

,LL-C‘17‘° = (E"i’“n)Iu -8, (2.39)

where I, is the Stokes vector at frequency v, 7, is the continuum optical depth also at frequency v, E is the
unity matrix, g = cosf, § being the angle between the line of sight and the vertical direction in the atmo-
sphere (heliocentric angle), S, is the vector of the total (line and continuum) source function for all four Stokes
parameters,

. '8,=015,+1B,. (2.40)

Here 1 = (1,0,0,0), Sy is the source function of the line given in Eq. (2.48) for a two level atom, and B, is the
Planck function. In Eq. (2.39) £ is the dimensionless absorption matrix at frequency v, which, for a spectral
line formed in the presence of a magnetic field, has the form

nr NQ nr v
Q= nQ nr PV -PU . (2‘41)
nw  —pv nr PQ

v PU TPQ nr

For the case of electric dipole radiation, the elements of the matrix dealing with pure absorption are (e.g., Beckers,
1969b [who has a different sign for V|; Wittmann, 1974; Landi Degl’Innocenti, 1976},

. + -
= 723511127 + 17il—é‘—l—i(l + cos?q),
no = (:722 _ ﬁ-.%.i;.";l) sin?y cos 20,
2.42
_ (o nertn-1\ .2 . ( )
ny = A sin®~ sin 2¢p,
v = N1 = 74 cos,
2
with
Ky KA
N1 = = L( O)Q_l,
Ke Ke
K1 k(Ao
N4-1 = " = —-l-f:,_—lQ-*-l’ (243)
C [+]
Ko _ NL(AO)
Mo=— = Dy
Ke c

®_1, @41, and P can be obtained from Eq. (2.17) for a static atmosphere, «. is the continuum opacity (which
we do not discuss further here), and k1 (Xo) is the line centre absorption coefficient in the absence of a magnetic
field. The angles v and ¢ are illustrated in Fig. 2.7. In LTE and for a = 0 (i.e. for a Gaussian line profile)

_ /me? g fNFAZ he
ki (Ao) = e Mg 1 —exp T ) (2.44)

Here g* is the degeneracy of the lower level, f is the oscillator strength of the transition, and g* N;* is the number
density of atoms in the lower level and can be determined using the Saha-Boltzmann equations (e.g. Mihalas,
1978). The expression in the brackets represents the correction for induced emission.

The terms containing pg, pu, and pyv in {2 are due to magnetooptical effects. The following expressions for
them have been given, again in the case of an electric dipole, for example by Landi Degl’Innocenti (1976),

po= (22— Br1 T Po1 ) in% cos 20,
2 4
+ p- R .
oy = (%9. _ &1_4_&&) sinn sin 2, (2.45)
pv = it S e 2 PP v,

2
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Fig. 2.7 llustration of the angles v and
¢ (from Landi Degl'Innocenti,
1976).

wi

31 w
9 _ observer

/
where po, p+1, and p_q are
2 kr{Ao)
- == -] = v.. 3
p-1 fce)\o(n 1—1) p 1
, _ 2 _ k(o)
| P41 = Rc/\o(nﬂ 1) = py Uiy, (2.46)
27 ’CL(AO)
= no ~— 1 =3
po=—=(no—1) o

The ¥..;, ¥4, and ¥, are taken from Eq. (2.38) and x1()o) from Eq. (2.44). The analogues to Eqs. (2.42) and
(2.45) for magnetic dipole and electric quadrupole radiation have been published by Beckers {1969b}.

Let us now find a more explicit form of the source function. Using Eq. (2.41) we can rewrite Eq. (2.40) as
{Domke and Staude, 1973; Stenholm and Stenflo, 1978)

8 = (By + n15L, n@SL, nu Sy, nv S)- (2.47)
For a two level atom
Sy =(e+eB)/(1+¢), (2.48)
where e is the scattering term,
o ’ ’ ’ ; dw'
e= (ntLy +ngQu + nyUu + ny Vi) dv o (2.49)
0
and ¢ is a measure for the importance of collisions,
| - Cz‘j
¢ = —=(1 — exp(—hv/kT)). (2.50)

[ At’ g

; In Eqgs. (2.49) and (2.50) w is a solid angle, Cj; is the collision induced transition probability from level ¢ to level

\ 7, and A;; is the Einstein coefficient for spontaneous emission between those levels.

| In LTE, which is the approximation in which the work presented in this thesis has been almost exclusively

! carried out, the scattering terms disappear (i.e., ¢ — oo and ¢/¢ — 0), so that Sy, — B,. The equation of transfer
Eq. (2.39) then reduces to (Unno, 1956; Beckers, 1969a; Wittmann, 1974),

di,
;LE;:-‘ = (E -+ ﬂ)(I,, - 13,,)» (2»51)

This set of four coupled equations was first derived by Unno (1956) and is often referred to as the Unno equations.
A quantum mechanical derivation of the equation of transfer and of the absorption matrix has been presented
by Landi Degl’Innocenti and Landi Degl’Innocenti (1972) (see also the Errata to this paper published by Landi
Degl’Innocenti and Landi Degl’Innocenti, 1973, Solar Phys. 29, 528), and a derivation from more general
quantum electrodynamical principles has been carried out by Landi Degl’Innocenti (1983) (cf. the Errata to this
paper published by Landi Degl’'Innocenti, 1983, Solar Phys. 88, 391), and Mathys (1983).
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2.4.2. Symmetry Properties of the Stokes Parameters

The symmetries of the Stokes profiles with regard to their central wavelengths are best derived from the symmetry
properties of the matrix (2 defined by Eq. (2.41). The symmetry properties of the Stokes profiles have been
discussed by Auer and Heasley {1978) in the absence of magnetooptical effects. Their discussion was extended by
Landi Degl’Innocenti and Landi Degl’Innocenti (1981) to include magnetooptical effects. For a static atmosphere
and an equal population of all the Zeeman sublevels (i.e., Eq. (2.43) is assumed to be valid) the symmetries
exhibited by 79, 7—1,7+1 can be derived by noting that the Zeeman pattern is symmetric around the central
wavelength of the unsplit line, i.e.,

g:i:l(—'M) = _'g'-'Fl(M): VM)

Ago(—M) = —go(M), VM,
as follows directly from Eq. (2.24), and

Sx1(—M) = Sx1(M), M,
SO(‘“M)=SO(M): VM,

(2.52)

(2.53)

as has been shown by, e.g., Condon and Shortley (1964), or can be seen from Table 2.1. t Since the Voigt
function is symmetric, cf. Eq. (2.22), it follows that

no(vo & Av) = no(vo F Av),

2.54
ﬂj:l(VO + AI/) = ﬂq:l(Uo ¥ Al/) ( )

The symmetries of po, p—~1,p+1 follow from Egs. (2.52), (2.53), and the antisymmetry of the Faraday-Voigt
function (cf. Eq. (2.37)),
po(l/o + AU) = “PO(VO ES AV),

px1(vo £ AvV) = —px, (1o F Av).
In Egs. (2.54) and (2.55) we have assumed that x, does not vary over the frequency intervall 2Av. Using Egs.
(2.54) and (2.55) the symmetry properties of 71,71, nv,nv, and pg, pr, pv can be determined via Eqs. (2.42)

‘and (2.45). Thus under the transformation Ay — —Av the opacity matrix Q2(vo + Av), given by Eq. (2.41),
‘becomes

(2.55)

. e v TN
=1 " nr pv pU
Qv — Av) = o -y o —pa | (2.56)
-nv  —PU P NI
where n; = n7(vo + Av), ng = ng(vo + Av) etc. We see that in the special case of a static atmosphere in LTE,
a substitution of {3(vo + Av) by ((vo — Av) in the transfer equation (2.51) results in the substitution of the
solution vector I(vp + Av) = (I,@,U, V) of the former case by I(vg ~ Av) = (1,Q,U, -V), i.e.

I(vo + Av) = I{vo ~ Av),

Qvo + &v) = Q(vo — Av),

U(Vo + AI/) (1/0 - AV) (2.57)
Vi{vo + Av) = =V (v — Av).

We have neglected the variation of B, over the frequency intervall 2Av. If one or both of the main assumptions
(i.e., LTE and no mass motions) are relaxed, then Eq. (2.57) need no longer be valid. However, a velocity field
independent of optical depth in a plane parallel atmosphere simply shifts vy — v + Av, (A, is the velocity
expressed in frequency units, with Ay, # Av,(r)), leaving Eq. (2.57) unaffected if we take v + Av, as the new
symmetry centre. Therefore, at least a horizontal, vertical, or temporal gradlent in velocity, or departures from
LTE are required to violate Eq. (2.57).

Since it plays a major role in chapter 8, let us next consider the integral symmetry relation for Stokes V'

vo <o
/ Vdv = -—/ Vdvy, (2.58)
- O3 Vo

+ Care has to be taken when dealing with molecular lines since these need not show symmetnc splitting
patterns (cf. Harvey, 1973b and Illing, 1981).
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or equivalently

/ Vdv=o0. (2.59)

For the sake of simplicity, we assume a vertical line of sight (u = 1). Horizontal velocity gradients in LTE are
no longer sufficient to violate Eqs. (2.58) and (2.59) since the average profile of a horizontally inhomogeneous
atmosphere can be written as

W)= /y y f V(sy)dzdy, - (2.60)

In Eq. (2.60) V (g, y) is always antisymmetric with respect to vo for every value of (2, y) in the absence of velocity
gradients along the line of sight. Integrating Eq. (2.60) over frequency, exchanging the order of the integrations,
and making use of the fact that V(z,y) satisfies Eq. (2.59) for every (z,y) we get

/w (V) dv = 0. (2.61)

- 00

Landi Degl’Innocenti and Landi Degl’Innocenti (1981) have also studied the symmetry properties of the
Stokes profiles under the inversion of the direction of the magnetic field, and the additional assumption that
nu = py = 0. fI=(I,Q,U,V) is the emergent Stokes vector for a field B and I = (I',Q’,U’, V") the vector for
—~B, then they find that

I'sI, @=Q, U=-U V=-V (2.62)

2.4.8. Analytical Solutions of the Transfer Equations

A first attempt to analytically determine the effect of a magnetic field on a saturated line for the special case
when the separation of the Zeeman components is so large that they can be treated as independent lines was
made by Babcock (1949). However, the first analytical solution of Eq. (2.51) which is of consequence for the
study of small magnetic fluxtubes was obtained by Unno (1956) under the assumptions of LTE, an absence of
magnetooptical effects, a magnetic field strength independent of 7, a Milne-Eddington atmosphere (i.e., nr, ng,
nu, and ny independent of ), and a Planck function linear in 7 of the form

B, = B,y (1+ for). (2.63)

This equation defines the 7 independent quantities B,, and fy. Of interest are the emergent values of the Stokes
parameters normalised to the continuous background, defined as

I(r = 07/") — I{r=0,u)

r —
I(“) Ic(T = 0:/“) ’
Qelr=0,u) - Q(r=0,
R
c(T—Onu) (2 64)
o) = Dol =0 = U =0, |
Ic(r = Oa#) ’
Velr=0,u} - V{r=0,u)
v = .
(w) I(r=0,u)
In the above approximation the solution for the continuum is given by the Eddington-Barbier relation
Ic('f =0, #‘) = Buo(l + /6014);
QC(T.':O?#) =0, (2 65)
Ue(r=0,u) =0, )
Ve(r=0,pu) =0,
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and the solution for the emergent profiles reads

rr(u) = Bows (1_ 1+ s )7

T 14 fop (1+n0)?—n3 —n% —nd
ro(u) = Bok 1Q
@ 1+ o (1+ n1)% = nd — ng —n@’ (2.66)
ro () = Bop nu
v 1+ Bop (L+1n1)2 = 0% —nZ —nZ’
. Pou nv
v (1)

T 14 fop (L+ )2 - nd —ng —ng

It should be noted that whereas Eqgs. (2.42) and (2.43) were used to obtain these solutions, Eq. (2.44) had to
be replaced so that xz(Ao) = nr(Xo)ke, where nz(Ao) is constant (independent of 7) and is a measure of the
strength of the line. Rachkovsky (1962, 1967) found a solution under the same assumptions as Unno (1956), but
including anomalous dispersion (see also Stenflo, 1971, Arena and Landi Degl’Innocenti, 1982).

ri(y) = Bou 1__(1+7II)((1+771)2+P%+p2U+p€,)
ro(u) = Bou (L+n1)2ng + (L+ n1)(nveu = nuev) + po(neeq + nuev + nvev)
N 1+ fou D ' ’ (2.67)
ro ) = Bov  (L+n1)?nu + (1 +nr)(ngev — nv pq) + pulngeq + nupy + nvev)
1+ fous D ’
() = 20 (1+ n1)?nv + pv(ngre + nupy + nvev)
1+ Bou D ’
where the denominator reads
D= (1+n)*((1+n1)? = nd = niy = n% + p + P + £%) — (n@pe + nuev + v ev)*. (2.68)

“Eq. (2.67) shows that the unpolarized Stokes I profile is also affected by anomalous dispersion, although pq,
ou, and py do not appear in its equation of transfer directly. These terms are introduced through the coupling
of Stokes I with the other Stokes parameters. For 4 = 0,7/2,x, or 3x/2 the non-zero magnetooptical elements
in Eqs. (2.67) and (2.68) divide out. Therefore the magnetooptical effects disappear when looking parallel or
perpendicular to the magnetic field. This result can also be derived directly from the absorption matrix and is
valid in the general case as well.

Arena and Landi Degl’Innocenti (1982) have produced an atlas of r7,rg,ry, and ry profiles determined
with Eq. (2.67) for different values of B, 7, @, and nz(Ao). A variety of other analytical solutions or procedures
for deriving such solutions have been proposed by a number of authors. Examples are listed below. Stepanov
(1958a) derived and solved the equation of transfer for a Zeeman triplet under assumptions similar to Unno.
His equations are based on a treatment of arbitrarily polarized light as a mixture of two orthogonal beams of
elliptically polarized light. Stepanov (1958b) included coherent scattering in his equations and in their solution.
However, Rachkovsky (1961) has shown, that the Unno formulation is more general than Stepanov’s. Michard
(1961) has solved the Unno equations (2.51) for a Schuster-Schwarzschild model atmosphere. Mattig (1966)
found an analytical solution valid for a general model atmosphere {i.e. n7()\o) may be a function of 7}, but
limited to a Zeeman triplet in a homogeneous magnetic field, without magnetooptical effects and with a depth
independent Voigt function. Kjeldseth Moe (1968} independently also discovered this solution and extended it
to include coherent scattering. Staude (1969) described an iterative formalism for obtaining a solution for a
general magnetic field structure and atmosphere. However, its application usually requires a computer. Géhring |
(1971) extended the solution of Mattig {1966} to iteratively include magnetooptical effects. He also reviewed
the assumptions made in deriving previous analytical solutions. A detailed review of some of the solutions
attempted before 1970 is also given by Stenflo (1971). Landi Degl’Innocenti and Landi Degl’Innocenti (1973)
have determined an analytical, perturbative solution of Eq. (2.51), valid for weak magnetic fields. Its value lies
mainly in the fact that it allows some qualitative conclusions to be drawn regarding the Stokes parameters. Thus
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it shows that the neglect of magnetooptical effects in Q and U results in an error of the order of Adg/AMp
where Adg = 4.67 X 10~ 2g.g A2 B, while the error in Stokes V' is of the order (AAg/AAp)® and in Stokes I is
of the order of (A/\H/A)\D)“. Their analysis is valid for the case AAy/AAp < 1. Since outside sunspots this
condition is fulfilled by practically all spectral lines in the visible spectral region, this means that except for ¢
and U magnetooptical effects are usually quite small. Finally, Landi Degl’Innocenti and Landi Degl’Innocenti
(1985) have obtained an analytical solution to Eq. (2.39) for the case that {} is constant along the line of sight
(i.e. B and the Doppler width are constant). Their method of solution, which is based on Van Ballegooijen’s
approach (Sect. 2.4.4), is also valid for some NLTE source functions.

2.4.4. Numerical Solutions y

The analytical solutions presented in hhe/ last section have been used for a number of studies of solar magnetic
fields. However, the latter often do not fulfill the rather restrictive assumptions made in order to derive such
solutions. Specifically, the magnetic field strength in fluxtubes is strongly dependent on depth in the atmosphere
(and therefore on ). Furthermore, the Milne-Eddington approximation is not applicable for many spectral lines.
In addition, most lines are not Zeeman triplets, nor are their Voigt functions depth independent. Therefore, in
general, numerical techniques are required to solve Eqs. (2.39) or (2.51). A number of such techniques have been
proposed and we shall review some of them briefly in this section.

First numerical calculations were carried out by Hubenet (1954) who obtained the Stokes I profile via the
formal solution for magnetic fields oriented parallel and perpendicular to the line of sight. The first code for
the general numerical solution of Eq. (2.51) has been described by Beckers (1969a, b). It allows Stokes profiles
to be calculated in LTE and including anomalous dispersion for a general model atmosphere. In particular ne
restrictions are placed on the variation of the magnetic field strength and direction with depth, and on the velocity

structure, while the %1, ng, nu, and nv are calculated as outlined in Sect. 2.4.1 as a function of depth. Neither

are any restrictions placed on the Zeeman splitting pattern of the line to be calculated, as long as it is formed
in LS-coupling. The numerical method chosen to solve the four coupled equations (2.51) is the classical fourth
order Runge-Kutta technique (e.g. Abramowitz and Stegun, 1970). For the lower boundary condition an Unno
type solution is chosen, similar to Eq. (2.66), except that the expressions have to be changed slightly to give I, Q,
U, and V instead of ry, rq, rv, and ry. Wittmann (1973a, b, 1974) and Landi Degl'Innocenti (1976) have given
comprehensive and clear descriptions of similar codes, which also solve the Unno equations using Runge-Kutta
techniques. Although the overall specifications of the three codes are very similar, they differ in a number of

"details, some of which are mentioned below.

The codes of Beckers and Landi Degl’Innocenti allow the contributions to the spectrum of a number of
blended lines to be taken into account. The code of Wittmann was later extended to include this capability, and
has actually been used to synthesise a portion of a polarized sunspot spectrum (Wittmann, 1977). The code of
Landi Degl’Innocenti (1976) can take into account the effects of NLTE on a line if the departure coefficients of
its upper and lower levels 8, = N, /N2 and §; = N;/N}* are known. N, and N; are the NLTE populations of the
upper and lower level respectively, while N and INV}" are their LTE counterparts. The LTE line source function
Sp = B, is then replaced by

2he? 1
Sp === (2.69)
A (Brexp (%) - 1)
and the expression for the line centre absorption coefficient given in Eq. (2.44) is replaced by
Ve? g* [N} Bi)G Pu he
Ao) = 1= - . 2.70

With this scheme, an NLTE solution of the Stokes profiles can be obtained if prior to running the Stokes line
transfer code (in the B-field) the level populations (without the B-field) are calculated with some standard NLTE
code. The process is not completely self-consistent, since Eq. (2.49) has been replaced by an integral containing
I alone, but the deviation is in general very small as has been shown by Rees (1969) and Stenholm and Stenflo
(1978). In addition, the code of Landi Degl’Innocenti {1976) also uses the analytical solution of Rachkovsky
(1967), i.e. Eqgs. (2.67, 2.68), for the lower boundary conditions.

The code of Stenholm and Stenflo (1978) calculates the Stokes profiles in NLTE assuming a two-level atom
with complete redistribution among the Zeeman sublevels (no coherence effects) and complete redistribution in
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frequency. Their NLTE formalism is basically a reformulation of the theory of Domke and Staude (1973a) which
has been briefly presented in Sect. 2.4.1. This code is an extension of the NLTE code for Stokes I only of Stenholm
and Stenflo (1977) and handles multidimensional effects explicitely by taking into account rays at different angles.
The core saturation method of Rybicki (1972), extended to the multidimensional case by Stenholm (1977) is used
to ‘precondition’ the transfer equation in order to allow it to be solved using a simple Runge-Kutta technique.
Van Ballegooijen (1985a) presents a novel approach to solving the radiative transfer equations (2.39) or
(2.51). The advantage of his method of solution is that in addition to the emergent Stokes profiles, it also
delivers their contribution functions. The (minor) disadvantage is that the system of differential equations to be
solved is larger. In particular it would require the solution of 16 coupled differential equations if Eq. (2.51) were
solved directly. By using Jones calculus, i.e. by writing the polarization in the form of a (2 x 2 complex) density
Ve

_1(I+Q U+iV
D"E(U—iv I—Q)’ (2.71)

matrix

Van Ballegooijen was able to reduce the problem to the solution of eight equations. It is of interest to note
that the various Stokes parameters correspond to the four Pauli matrices which describe the spin of Spin 1/2
particles. I corresponds to the unity matrix, Q to oz, U to o, and V to oy (cf. Robson, 1974, for a more detailed
discussion). In this notation the radiative transfer equation for D reads

%]Ti = AD + DA - F, (2.72)

where 7 is the continuum optical depth, At is the transpose and complex conjugate of

1(1+n+ag ay-+iay
= - . 2.73
A 2( ay —tay  l+nr—oaqg /)’ (273)

which is the analogue to E + 1 in Egs. (2.39) and (2.51), and

2\ (ww—inv)Sc  Bu+(nr—ng)SeL B

is the analogue to S in Eq. (2.39), where Sy, can be of the form given by Eq. (2.48). In Eq. (2.73)

aQ =1Q = 1pQ,
ay = nu —1pu, (2.75)
ay =ny —ipy.

To obtain the emergent intensity, D(0), a matrix T is introduced, which is defined by its differential equation

T =AT, with T(r=0)=E. (2.76)
The problem then reduces to solving Eq. (2.76), since, once T'(r) is known, D(0) can be found by a simple
integration

D(0) = /Ow (T)~'F(T?)~tdr (2.77)

The contribution functions to the Stokes profiles can be extracted from the integrand in Eq. {2.77). Van Balle-
gooijen’s code therefore calculates the emergent Stokes parameters and their contribution functions. It includes
isotropic scattering with complete redistribution.

It should be noted that all these codes assume the different Zeeman sublevels to be equally populated (this
assumption is already implicitely present in Eqgs. (2.43) and (2.44)}).

2.4.5. Some Additional Information on the Code Used tn This Thesis

For the radiative transfer calculations presented in this thesis, a slightly modified and extended version of the
code described by Beckers (1969a, b) has been used and shall be discussed in somewhat greater detail.
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‘ 2.4.5.1. Input and Output

In its present form the code (named STOKES) requires as input a model atmosphere consisting of an optical
depth scale with the following quantities defined at each optical depth point, 7: temperature T, electron pressure
P., gas pressure P,, absolute magnetic field strength B, angle between the magnetic field and the line of sight =,
azimuthal angle of the magnetic field ¢, microturbulence velocity &nic and a “global” or macroscopic velocity v
(not to be confused with the macroturbulence §mac). A second code (MODCONVER) has been written, which
can interpolate between the optical depth points of a given model atmosphere. MODCONVER can also calculate
some of the missing variables, e.g. P. from T and Py, or the optical depth 7 from x and a height scale Z. P,
and & are determined using the code described by Gustafsson (1973). Further details on the calculation of the
(fluxtube) model atmospheres are given ipf'chépter 4. A further input to STOKES is uy = cos §, § being the angle
between the line of sight and the normal to the atmosphere.

STOKES also requires the input of some atomic parameters: J,, Ly, Sy, Ji, Li, and S for the calculation
of g, and g using Eq. (2.11). It should be noted that except for the calculation of g, and g;, the quantities
Ly, Su, Ly, and S; are not required anywhere in the code, so that lines not formed in LS-coupling can also be
calculated if their g, and g; values are known, for example from laboratory measurements. Also input are the
central wavelength of the line Ag, its weighted oscillator strength g* f, the atomic mass A, the ionisation stage
(only neutral and singly ionized atoms are allowed), and an empirical factor to the damping constant Sr (see
below for further details). The partition functions should be input in the form of the coefficients of a power series
in In T. They can be taken from the comprehensive list of Irwin (1981). ‘

A number of other parameters are also input, e.g., whether magnetooptical effects should be included or not
(switching them off saves CPU time and does not affect the result for y = 0° and 90°), the number of lines in the
spectrum (required for the calculation of blended lines), the number of separate spectra, the wavelength range,
and the number of wavelength points, etc.

The output consists of the emergent Stokes profiles at equidistant wavelength points. To save computer
storage space it is possible to write only a part of the Stokes parameters (e.g., I and V only). The output
of STOKES is read by the code READSTO, which normalises the output to the continuum level. It can also
mirror the Stokes profiles, using the symmetry properties (2.57), so that only half of each Stokes profile has to
be calculated, except when models with velocity gradients are used. Additional codes have been written which
create MIDAS images from the output (RADPLT), convolute the resulting Stokes profiles with a Gaussian or
Voigt profile thus simulating the influence of macroturbulence (FTSCONVOL), and determine line parameters
of Stokes I and V' (IVPAR, see chapter 4 for more details).

2.4.5.2. Calculation of the Voigt and Faraday- Voigt Functions

Radiative transfer calculations often require a large amount of computation time, in particular if the Stokes
parameters of many (anomalously split) lines are to be calculated. An efficient code is therefore not a mere
luxury. By restructuring a part of the original code it was possible to speed it up by approximately a factor of
three without loss of accuracy. Since a large portion of the time is required to calculate the Voigt and Faraday-
Voigt functions (one should keep in mind that they must be determined individually for at least half of the
Zeeman components at each depth and frequency point), it is particularly important to use a fast and reliable
method for their calculation. The code uses the routine described by Hui et al. (1978), which calculates these
two functions as the real and imaginary parts of the function W{z) given in Eq. (2.36). W(z) is closely related

to the complex error function
2 [*
w(z) = e <1 + 7—%/0 et’ dt), (2.78)

W(2) Sz >0,
W{(z) + 2e=%" 8z <0,

via

w(z) = (2.79)

where z = v+4a. The routine approximates w(z) for a = 9z # 0 by a rational function. The version incorporated
in the code has been extended by Wittmann (1986) to include the case of a = 0, i.e. the Gauss function and
Dawson’s integral {(or Dawson’s function, Dawson, 1898)

H(0,0) =¥, | (2.80)

i
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had 3 2 v 2
F(0,v) =/ e~ sin2vtdt = e™" / et dt. (2.81)
0 0

Although this routine is not much faster than Becker’s original scheme of interpolating in a table of values for
H(a,v) and F(a,v), it is more general and accurate, the largest errors being of the order of 1% near the ‘knee’
between the Doppler core and the damping wings, for very small a # 0.

2.4.5.8. The Damping Constant

In Eq. (2.21) the damping constant I' has remained unspecified. On the Sun the most important mechanism
giving rise to a Lorentz or damping profile is the Van der Waals damping. Accordingly the code allows for Van
der Waals broadening due to collisions of the radiating (or absorbing) atom with neutral hydrogen and helium
as well as for radiative damping (see e.g. Lang, 1974 and Mihalas, 1978 for an overview of the various damping
processes). The total damping constant can be written as

P=Prad+re. (2.82)

The radiative (or natural) damping constant [';54, resulting from the finite life times of the upper and lower
states of the atom, can be expressed as

6.669 x 1018 g* f

Traa = 1 SV

(2.83)
while for the Van der Waal’s damping constant I'g, the contributions from both hydrogen and helium can be
included as follows (e.g. Steffen, 1985)

¢(He)

Fa =g +Ige =Ty (1 + 0.4133@*), (2.84)

where ¢(He) and ¢(H) are the abundances by number of helium and hydrogen respectively, and
T = 8.08C2/° 5%/5 Ny, (2.85)

"Here ¥ is the mean relative velocity of the radiating atom and the perturber, Ny is the hydrogen number density,
‘and Cg is the Van der Waals broadening constant of the line. I'y can also be written in terms of pressure and
temperature,

Ty = 0.909 x 108-67350-7p C2/%5. , (2.86)

where © = 5040/T (T being the temperature), P, is the gas pressure, and ér is an empirical factor which can be
varied to make the calculated value of I'yy fit observed values (cf. Sect. 4.5.3 for more on ér). For the calculation
of Cg the approximation of Unsdld (1955) is used:

Cs = 4.105 x 107°° (2.87)

ag ao'

r2,, the mean square orbital radius of the valence electron in state m, expressed in units of the Bohr radius ao,
can be written in the Coulomb approximation

x 2
rrzn L * 2 _
e (Snm +1-32(L+ 1)). (2.88)

In Eq. (2.88) £ is the azimuthal quantum number of the state involved, z is the effective nuclear charge, and n},
is the effective princijpal quantum number of the valence electron in state m.

Ry . . S (2.89)
Xm — Xi

where xm — X; is the energy required to ionise the m-th level of the radiating atom, and xy is the ionisation
potential from the ground state of hydrogen; xz = 13.6 eV. If the last term 3£(£ + 1) in Eq. (2.88) is neglected,
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Fig. 2.8 Stokes I and V of the Fe 15250.2 A line, calculated using the HSRA at 4 = 1 for y = 0°, and B =0,
200, 400, 600, 800, 1000, 1200, 1400, and 1600 G. Note the rapid saturation of Stokes V' as the field
strength increases.

then Eq. (2.87) reduces to a particularly simple form as was pointed out by Unsdld (1955). Steffen (1985) has
argued that the above procedure, which strictly speaking is limited to neutral atoms can also be applied to the
broadening of ionic lines due to collisions with neutral hydrogen.

! 2.4.5.4. Numerical Stability and Ezamples of Profiles

Landi Degl’Innocenti (1976) has discussed the requirements to be fulfilled by the integration height step A and
the optical depth of the lower boundary in order to obtain stable solutions. However, when the line of sight
crosses a fluxtube boundary (as is the case for 2-D models), large changes in the model atmosphere (e.g., in
T, Py, B, &mic) can occur over a very small r interval. If such changes are too large and too rapid then the
numerical solution can become unstable inspite of these criteria. Therefore a routine has been introduced into
STORES which checks the atmosphere for large gradients and jumps in the atmospheric variables. If any vital
quantity (e.g., temperature, magnetic field strength, angle of the field, microturbulence, macroscopic velocity)
changes by too large an amount, then this routine decreases the integration height step by a factor proportional
to the change. This simple procedure has a surprisingly stabilising influence on the solution and smooth profiles
are obtained for jumps of more than 1000 G in B over A7 =~ 0.1.

Examples of Stokes profiles (Fe I 5250.2 ) calculated with STOKES are shown in Figs. 2.8 and 2.9 for two
values of v (y = 0° for Fig. 2.8 and 60° for Fig. 2.9) and different values of the field strength (B = 0, 200, 400,
, 600, 800, 1000, 1200, 1400, 1600 G). In both figures u = 1 and the model atmosphere is the HSRA (Gingerich et
al., 1971). For v = 0° only I and V are plotted since @ = U = 0.

2.5. Measurement of Polarized Light

2.5.1. Principle of Measurement

Let us consider the problem of how to determine the Stokes parameters of an arbitrariy beam of light. In principle,
the solution can be reduced to a simple set of intensity measurements. The basic instrumental requirements are
a linear polarizer and a quarter-wave plate (which converts linear polarization into circular and circular into
linear). As pointed out in Sect. 2.1, any optical device acting on the Stokes parameters is equivalent to a
linear transformation. In the representation of polarized light as a 4-vector, an optical device can therefore be
represented by a 4 x 4 Mueller matrix M, acting on an input beam with Stokes vector I as

I'=MIL (2.90)

e
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Fig. 2.9 Stokes I, V, Q, and U for the same parameters as in Fig. 2.8, except that now v = 60°, ¢ = 0°,
Note the magnetooptical inversion in Stokes V, and the considerably slower saturation of this profile
as compared to Fig. 2.8. U 5 0 is due exclusively to magnetooptical effects.

If more than one opticél element intervenes in the beam, then the Mueller matrix of the total device can be
written as the product of the matrices of the individual components:

Mgoc = Mn . 'M2M1. (2.91)

The light passes the individual elements in the order of the indices. Let us first write the representations of the
Mueller matrices of a retarder R (a generalisation of a quarter wave plate) and an ideal linear polarizer L, both
with position angle o = 0 (« is the angle at which the linear polarizer lets light pass, respectively the angle of
ordinary ray polarization at the retarder) (e.g. Stenflo, 1984b)

1 0 0 0]
0 1 0 0
R= 0 0 cosé sind |’ (2.92)
0 0 —siné cosé
with § being the retardation (§ = /2 corresponds to a quarter wave plate), and
1 100
111 100
L= 51000 0 (2.93)
0 0 0 O
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With the help of the transformation matrix T, which rotates the position angle by a (compare with Eq. (2.8))
1 0 0 0
0 cos2a sin2a 0
T(e) = 0 -sin2a cos2c O}’ (2.94)
0 0 0 1
we can obtain Mueller matrices for an arbitrary angle « via
M(a) = T(—o)M(0)T (). (2.95)
/< A
If we introduce
z = cos 2, y = sin 2¢,
| ’ ) (2.96)
| a = cos b, b= sin é,
then we can write for arbitrary « and §
1 0 0 0
_ |0 z®+y%a zy(l—a) -—yb
R(e,6) = 0 zy(l—a) y*+z%a ab (2.97)
0 yb —zb a
and
1 z y O
1z 22 zy O
Lia)= = ,
@=3122 %9 (2.99)
0 0 0 o

The measurement of the four Stokes parameters is carried out in six steps. First, only a linear analyser
with & = 0 is applied to the light beam to be analysed, which has the (unknown) polarization state I7 =

(IOs QOs UO:»VO)“

I 1100 Iy I+ Qo
Q|_1f1 100 Q| _11lh+Qo
v, | S3loo oo lw |2 o (2.99)
Vi 0 00 O Vo 0
The transmitted intensity is
1 .
I1 =z §(I0 -+ QO) (2,100)

In the second step, the analyser is turned by 90° , i.e. a = #/2 — z = —1, y = 0in Eq. (2.98). The intensity of
the resulting beam- is now

I = %(Io - Qo). (2.101)

From Egs. (2.100) and (2.101) it is straightforward to obtain Iy and Qo:

Ly=1+ I (20102)
and
QO = Il - Izo (2&03)
Similarly, U can be determined in two steps by placing linear analysers with @ = #n/4 (z = 0,y = 1} and
a=3r/4 (z=0,y= —1) in the beam. The resulting intensities are
1
I3'4 = ‘5’(10 + U()), (2.104)
so that
Ug = Iy — I4. (2.105)
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Finally Vo is determined by inserting a quarter-wave plate (§ = =/2) with orientation f§ = +m/4 between the
light beam and the linear analyser with o = 0. Note that not the absolute values of o and f are important, but
rather 8 — a. Then we have

-[5,6 11 00 1 0] 0] 0 Iy I():FVO
Qe |_1{1 1 00}|f0 0 0 =l Q| _1|LFV (2.106)
Uses| 2{0 0 00j{0 0 1 0 Us 2 0 '
Vs.6 0 0 0O 0 1 0 O Vo 0
and we obtain V4 from
P a VQ = Ie - Is. (2.107)

Thus all four Stokes parameters have been measured. Of course, this procedure can be inverted and the Mueller
matrix of any optical setup can be determined with beams of known polarization

Sometimes the opposite approach to the one presented in this chapter is taken and the Stokes profiles are
defined by the action of a set of polarization filters on them. This is the so-called operational definition. The
mathematical description of Eq. (2.2) can then be derived from it.

2.5.2. Solar Magnetic Field Polarization Measurement Techniques

The measurement of solar magnetic fields basically requires three additional ingredients: a modulator, a wave-
length selection device (spectrometer), and a detector. Stenflo (1978) has given a detailed review of solar polar-
ization measurement instrumentation, and we shall therefore be very brief here, referring to the above paper for
additional details and for references.

Since different optical elements are required to measure any Stokes parameter except I, either different
optical channels must be used {each with its own analyser), or the analysers have to be sequentially changed
(i.e. modulated). The latter method has generally been preferred in solar instrumentation, and a variety of
modulation techniques have been developed, e.g., mechanical modulation (rotating A/4 plate), electro-optical
modulation (K*DP), Kerr cell switching, and piezo-optical modulation.

Since the Zeeman effect only influences atomic (and molecular) transitions, it is necessary to spectrally
‘resolve such individual transitions for a measurement of solar magnetic fields (however, see also Kemp et al.,
*1987, for a broadband detection of solar polarization). The three main types of devices available for spectral
analysis are grating spectrographs, narrow band filters and Fourier transform spectrometers (see Sect. 3.1.1 for
more on the last named).

Finally, the importance of detectors should not be underestimated. As pointed out by Harvey {1986), it was
the introduction of photoelectric detectors in the early 1950s which led to the first extensive and reliable studies
of non-sunspot magnetic fields. Besides photographic film, photomultipliers (often in pairs), reticons, CCDs and
vidicons are all extensively used. A more detailed account of the instrument used to obtain the data evaluated
in this thesis, the McMath FTS polarimeter, is presented in Sect. 3.1.




3. Observational Data

“, . . none of the activity of the Sun or any
other star was anticipated theoretically. It was

thrust upon us by observation.”

‘ E.N. Parker (1985)

"\

-
3.1. The Fourier Transform Spectrometer as a Polarimeter

3.1.1. Basic Properties of the FTS

A Fourier transform spectrometer (FTS) is basically a modified Michelson interferometer, with an input, a beam-
splitter, two retroreflectors (instead of the original plane mirrors) and one or two outputs. If the retroreflectors
are positioned such that the optical path difference between them is z, then for a monochromatic plane wave
with input intensity Io, the emergent intensity I{z} is

1
I(z) = =2-770an0(1 + cos(2noz)), : (3.1)
where o = 1/ is the wavenumber, no < 1 is the reflection coefficient of the retroreflectors, and 7y < 1 is the

beamsplitter efficiency. The = signs in Eq. (3.1) signify the signals at the two possible outputs of the FTS. If we
now move the reflectors such that z changes linearly with time, v = dz/d¢ = constant, then we can write

_ I(t) =

[ SRR

nonsdo(1 £ cos(2mwout)). (3.2)

Thus the FTS modulates the input signal at a frequency of f = ov, which for a typical instrument lies in the
audio range. If instead of a monochromatic input, a source with a spectrum Io(o) is observed, then, neglecting
the constant term, the observed intensity upon output can be written as (e.g. Brault, 1985)

I(z) = %ﬂonbffo(d) cos(2noz)do. (3.3)
0

Combining Egs. (3.2) and (3.3) we see that the input optical spectrum is converted into an interferogram at
andio frequencies. It also follows from Eq. (3.3) that the input spectrum Io(c) and the resulting interferogram
are related by the cosine transform (the real part of the Fourier transform). Thus by numerically carrying out
the inverse transformation on the observed interferogram we can recover the original spectrum. In the following
we briefly list some of the general properties of an FTS:

e In contrast to grating spectrographs spatial and spectral resolution are almost completely decoupled. The

spectral resolution is given by the maximum path length difference L. The resolving power, R, is related to
L by

R

il

g
E’; = 2L0’. (3.,4;)

Of course, spatial resolution remains inversely proportional to the size of the entrance aperture, while the
throughput is directly proportional to the size. The entrance aperture is often chosen in the form of a circular
hole in order to maximise throughput.

@ All wavelengths are sampled strictly simultaneously, the scanning is done in the Fourier domain. Thus the
scan time and the wavelength range are decoupled, allowing very large wavelength ranges to be observed
simultaneously.

e All the photons incident on the detector, i.e., photons of all wavelengths within the selected range, contribute
to the noise at any one wavelength. In practice this sets a limit on the observed range. The noise is also
influenced by the maximum resolving power, with a greater S/N ratio in the interferogram being required
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to give a fixed S/N ratio in the spectrum as the resolving power is increased. This is because the noise at
each point of the interferogram contributes to the noise at a given wavelength point. See also Brault (1985)
and Ridgeway and Brault (1984) for more on S/N.

e The FTS has a symmetric instrumental profile of the (ideal) form

Yingtr = 2Lsinc(2La), (3.5)

which gives rise to the well known ‘ringing’ in very narrow spectral features (e.g. telluric lines). However,
according to Brault (1978, 1982) the FTS distorts the input spectrum less than any other commonly used
spectrometer with apparatus function of similar width, since in the Fourier (i.e. interferogram) domain the
symmetrical FTS instrumental profile stays practically constant right out to the maximum resolving power.

e A single line anywhere in the spectrum can serve as a wavelength standard for the complete spectrum.

e Scattered light, being unmodulated, is rejected by the detection system and is therefore unimportant.
More detailed information on the FTS is given by Brault (1978, 1985). It is compared with other passive
spectrometers by Brault (1982), and some of the astronomical implications and uses of the FTS are reviewed
by Ridgeway and Brault (1984). More specific information on the Kitt Peak FTS may be obtained from Brault
(1978) and Hubbard (1982).

8.1.2. The FTS as a Polarimeter

Two methods for measuring polarized spectra with an FTS were presented by Brault (1978). A variant of the
second of these, due originally to J.W. Harvey and J.O. Stenflo, was used in 1979 to obtain the Stokes [ and V
data discussed in Sect. 3.2. The technique has in the meantime been improved by J.W. Harvey, making it possible
to measure three Stokes parameters e.g. I,Q,V, or I,U,V simultaneously, while retaining all the advantages of
an FTS. This setup was used to record Stokes I,V, and Q in 1984 (also described in Sect. 3.2). A brief sketch
of the modulation scheme (from Harvey, 1984) is given below.

Two optical elements are required. The first one is a sinusoidally oscillating modulator, consisting of a quartz
crystal cemented to a piece of fused silica. The retardation is proportional to the amplitude of the oscillation.
The second element is a linear a.na.lysér. Let us consider the case, in Mueller calculus, where I,Q, and V are
.measured. The case where I, U, and V are measured is described by Harvey (1984). We get the desired result

if we choose the position angles o and 8 of retarder and analyser such that o = —45° and S = 0°. Then, for an
-input beam (I, Q, U, V), the output may be written as [Egs. (2.97) and (2.98)]

Iobs 1100 1 0 0 0 I I+ Qcosb+ Vsiné
Qobs | _1f1 1 0 0 0 cosé O siné Q| _1|I+Qcosé+Vsins (3.6)
Uss 210 0 0 O 0 0 1 0 U 2 0 ! )
Vobs 0 0 0 O 0 —siné O cosé 14 0
where § is the sinusoidal retardation
§ = b, sin wt, (3.7)

with 6,, being the maximum amplitude of the retardation and w = 20 kHz for the Kitt Peak instrument. We
can expand cos § and sin § as (e.g. Abramowitz and Stegun, 1970)

cos § = cos(bpy, sinwt) = Jo(6m) + 2J2(6/m) cos(2wt) + - - (3.8)

and
sin § = sin(6,, sinwt) = 2J1(6p) sin(wt) + - -. (3.9)

The J, are n-th order Bessel functions of the first kind. In the FTS polarimeter frequencies higher than 40 kHz
are electronically rejected, so that the total observed intensity signal is

Iobs = —21-(I+ Qcos b+ Vsinég) = -;—I-i- -;—QJO(é"m) + QJ2(6rm) cos(2wt) + V J1(6,) sin(wt). (3.10)

We must now choose 6, such that Jy = 0, since otherwise the unmodulated part of the signal will contain
a mixture of Stokes I and Q. Although it would in principle be possible to disentangle I and @ in the data
reduction by using the Q from the third term, this is fortunately not required, since the first zero of Jy also gives
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this choice:
Jo(8m = 2.40) = 0.00 (max : 1.00),

J1(6m = 2.40) = 0.52 (max: 0.58), (3.11)

1

|

|

i values of Jy and J; which are quite close to their maxima. The @ and V signals are, therefore, little affected by
I

E

‘ Jo(6m = 2.40) = 0.43  (max: 0.49).

The McMath telescope has a sampling frequency of 2500 Hz. It then follows from the Fourier sampling
theorem that the frequency range available for the data is 01250 Hz. In the polarimeter mode this range is
segmented into three portions with Stokes I stored in the portion with the highest frequency (833-1250 Hz), @
in the section with 417-833 Hz, and V' in the 0417 Hz segment. Q and V', which are modulated at 40 kHz and
20 kHz respectively (see Eq. (3.10)), aré first simultaneously demodulated and then heterodyned to the lower
frequencies. A further development of this modulation technique, which allows the measurement of all four Stokes
parameters simultaneously, has been published by Stenflo (1984b).

3.2. The Data Set

$.2.1. Bastc Parameters of the Data

The data were obtained during two observations runs, on April 29-30, 1979 and on May 3-7, 1984. The McMath
telescope of the NSO at Kitt Peak was used, together with the 1m FTS polarimeter to simultaneously record
. Stokes I and V' in 1979, and I, V, and @ in 1984. For a large portion of the work presented in this thesis, the
data of 1979 have been used, and they will be described first. A detailed description of these data have been
published by Stenflo et al. (1984). Five spectra of different regions near disk centre, which included both active
plages and quiet network elements, were obtained in addition tc one spectrum of a very quiet region in Stokes
I only. Table 3.1 contains an overview of the data. The spatial resolution of 10" corresponds to a circular FTS
entrance aperture of 4mm diameter. Note, that in Table 3.1 (and also in Tables 3.2 and 3.3) the polarity is not
absolute, since some problems exist in determining the absolute polarity with the FTS. Since the modulation
_transfer function of the FTS is unity out to the resolution value given in Table 3.1, (cf. Sect. 3.1.1) the solar
.spectrum in our data is completely resolved, i.e., it is only insignificantly broadened by the instrument. The
_wavelength ranges of approximately 1000-1500 A were bounded by prefilters.

Table 3.1 Parameters of 1979 data

i Date Name Type of Wavelength Spectral Integr. Spatial Limb  Stokes Polarity

region range resolution time  resol. direc. params.
0.92 30.4.79 FTS4 Plage 4524-5580  420°000 35 10" SW v +
0.92 30.4.79 FTS5 Plage 5254-6907 500’000 21 10" 8W v +
0.98 29.4.79 FTS2 Network 4566-5580 420’000 52 10" SE v +
1.00 30.4.79 FTS1 Network 4104-4942  359°000 69 10" (SE) v +
1.00 30.4.79 FTS3 Network 5254-6907  500°000 57 10" (SE) v -
1.00 29.4.79 FTS0  Quiet 4607-5588  420°000 94 10" (=) I 0

The data of 1984 are composed of 16 spectra, eight of them in the visible and eight in the infrared (IR).
These data were obtained at different = cos f positions right out to the solar limb (the observation at u = 0.1
is only 5" from the limb). The spatial resolution of 5", corresponds to a circular entrance hole of 2mm diameter.
The reason for decreasing the size of the entrance aperture was to avoid poor u resolution near the limb. Tables
3.2 and 3.3 summarise the parameters of these data. More details are to be found in Stenflo et al. (1987a, b).

The position angle of the linear analyser was chosen such that the positive ¢ direction is perpendicular to
the limb. Except for two IR spectra of sunspot umbrz, care was taken to avoid small pores or spots by prior
visual inspection of the regions to be observed. Also, regions of closely mixed polarity were avoided in the hope
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Table 3.2 Parameters of 1984 visible data

¢ Date Name  Type of Wavelength Spectral Integr. Spatial Limb Stokes Polarity

region range resolution time  resol. direc. params.
0.10 5.5.84 PLAGET Plage 4883-6002 523’000 72 51 W IvVQ -
0.16 3.5.8¢ PLAGE2 Plage 4883-6002 523’000 43 51 w IvVQ -
0.28 3.5.84 PLAGE1l Plage 4883-6002 523’000 43 5" W IvQ +
0.30 4.5.8¢ PLAGE® Plage 4883-6002 523’000 58 5" W vQ +
0.45 4.5.8¢ PLAGE4 Plage 488343002 523’000 43 51 w vQ -
0.57 4.5.8¢ PLAGES5 Plage 4883-6002 523’000 65 5" W vQ -
0.67 4.5.8¢ PLAGE3 Plage 4883-6002 523’000 43 g w vQ -
0.83 4.5.8¢ NETW1 Network 4883-6002 523’000 58 5" w vQ -

Table 3.3 Parameters of 1984 infrared data

4 Date Name  Type of Wavelength Spectral Integr. Spatial Limb Stokes Polarity

region range resolution time  resol. direc. params.
0.15 6.5.84 PLAGE9 Plage 14676-18039 359’600 42 5" E vQ -
0.38 6.5.84 PLAGES Plage 14676-18039 359’600 42 5" E vQ -
0.43 6.5.84 PLAGE10 Plage 14676-18039 359’600 42 5 W vVQ +
0.61 6.5.84 PLAGE11l Plage 14676-18039 359’600 48 5" E vQ -
0.76 7.5.84 NETW3 Network 14676-18039 359’600 33 5" SW vQ -
0.99 6.5.84 NETW2 Network 14676-18039 359’600 53 5" W vQ +
0.26 6.5.84 SPOT1 Umbra '14676-18039 359’600 42 5 E vQ -
0.47 7.5.84 SPOT2 Umbra 14676-18039 359’600 42 L3 E vVQ -

of thus selecting regions with a relatively simple geometry of the magnetic field. The method of choosing the
region to be observed in the 1984 observations warrants some attention, since it is probably responsible for some
selection effects. The FTS aperture was first centred on a local extremum of the Stokes V signal obtained by
setting the FTS to a fixed path length difference and monitoring Stokes V on a meter. A path length difference of
approximately 2cm was chosen, which corresponds roughly to the inverse of the typical width of a photospheric
spectral line. Then the entrance hole was guided on this point, taking into account the law of differential rotation
of photospheric magnetic fields. This procedure favours regions with large Stokes V. For observations near the
limb, this means that if the magnetic field is perpendicular to the solar surface, then regions with very large
filling factors are preferably observed, or if the magnetic field can be inclined, then fields inclined towards the
observer will be favoured.

Fig. 3.1 illustrates this effect. In Fig. 3.1a the average of the blue and red absolute amplitudes of Stokes
V, Vinaz, of Fe I 5250.2 A is plotted for all 10 FTS recordings containing this line. If we neglect variations
in the thermodynamic properties of fluxtubes with filling factor o and u (cf. chapter 5), then Vi,4,/cosy is
approximately proportional to «, since the magnetic field strength does not vary strongly with o (Stenflo and
Harvey, 1985). Due to the theoretically expected large buoyancy of the fluxtubes, we expect cosy = cos§ = u to
be a reasonable assumption (Schiissler, 1986). Dividing Vinqz by cos §, we get Fig. 3.1b, where the sharp increase
in o towards the limb is clearly visible. However, the data also allow for the other explanation, namely that the
fields near the limb are tilted towards the observer. Note: Solanki et al. (1987) have shown that at least part of
this increase in V4, / cos § is induced by tilted fields. The magnetic field in the last three regions is found to be
inclined towards the observer, with increasing inclination for decreasing u.

A small part of an FTS spectrum obtained in 1984 is shown in Fig. 3.2. Plotted are Stokes I, V', and Q for

a region with u = 0.28. The spectral line is Fe I 5250.2 A (g=3), probably the most used line for polarimetric
observations.
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Fig. 3.1 a Average of the blue and red amplitudes of Stokes V, Vi 44, of Fe I 5250.2 A is plotted vs. u. b
Vinaz /14 vs. p. For a vertical field Vinas/u is roughly proportional to the filling factor.
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Fig. 3.2 Stokes I, V, and Q profiles of Fe I 5250.2 A observed in an active region plage at u = 0.28.

Different wavelength ranges were chosen in 1979 in order to obtain an atlas in Stokes J and V covering a
large portion of the visible spectrum. The wavelength range of the spectra in the visible of 1984 was chosen
such that it contained the line pair 5247-5250 A not too near its edge. Furthermore, a considerable number of
| unblended spectral lines of iron are found in this range. The wavelength range in the infrared was chosen such
3‘ that it contained the g = 3 line Fe I 15648.5 A. It is bounded on both sides by extensive atmospheric absorption
bands. For the IR data InSb detectors cooled to approximately 73K with liquid nitrogen were used.

Note that in the rest of this thesis if nothing is said to the contrary, then the 1979 data are meant.

3.2.2. Defringing, Continuum, and Zero-Level

In the 1979 data the KD*P modulator plate caused weak interference fringes in the unpolarized data, in particular
towards the blue end of the spectrum. Using numerical fits with a Fabry-Perot equation, the fringes could be
successfully removed prior to the data analysis. By making all optical elements in the lightbeam slightly wedge
shaped, such problems were avoided for the 1984 data (Harvey, 1985b).

The gradual decline of the prefilter transmittance near the edges of a wavelength range causes the continuum
to be unreliable there. By fitting quadratic functions through the maxima of Stokes I, the continuum could be
corrected to within about 0.5%, which is of sufficient accuracy for our purposes. A similar amount of uncertainty
is present in the true intensity zero level (Holweger, private communication). For the 1984 data the required
continuum correction was considerably smaller, due to the use of a predisperser with considerably sharper cutoff.
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One effect of the gradual decrease in intensity towards the edges of the prefilter range in the 1979 data is that
the noise increases considerably there, both in Stokes I and V. However, in general, noise levels in the data are
quite small. Since noise is discussed in detail in Sect. 4.3.2, in connection with the selection of spectral lines, we
refrain from going into greater detail here. Since the F'TS has practically no stray light, no stray light correction
had to be carried out.

Except from a small additive false zero-level, in V//I and Q/I (degree of circular, respectively, linear polariza-
tion), and perhaps a fixed amont of depolarization in the 1979 data, no false polarization was introduced by the
instrument. It is relatively simple to subtract out this false level, by assuming that V//I and Q/I should be zero
in the continuum. That this assumption is valid is demonstrated by the broadband polarization measurements
of Kemp et al. (1987), who find a fractional circular polarization of 0.1-1x10~° and an upper limit on the linear
polarization of 0.2 x 10~® when averaging over the whole solar disk. Most of this polarization is due to the Stokes
V asymmetry in spectral lines, so that the continuum polarization is even lower (cf. chapter 8 for more details).
In practice we take all points with 0.98 < I/I, <1, where I; is the continuum intensity. It should be noted that
V /I, respectively Q/I, should be used, and not V or Q, since the instrumental polarization contains the solar
spectral features in V, respectively @, but not in V/I or Q/I (i.e., it is spectrally flat in these quantities; cf.
Stenflo et al. 1983). For the 1984 data the need for this zero-level correction was decreased by the use of the
“anti-McMath” device of Harvey (1985a). The residual instrumental polarization in the raw data was generally
< 0.1% in Stokes V and < 0.2% in Stokes Q. Stokes @ would have been particularly badly affected if it had
been measured with the instrumental setup of 1979. After correction, the continuum polarization is considerably
smaller still, being of the order of 0.01% or better for Stokes V. In particular it is lower than the noise level in
every case, and is certainly completely insignificant compared to the Zeeman effect polarization of most spectral
lines. Arguments in favour of some depolarization of the 1979 data have been presented by Stenflo and Harvey
(1985). However, stringent tests of the instrumental setup of 1984 by Harvey (1985b) have not revealed any
sources of depolarization. In any case, this depolarization only affects the filling factors determined from these
data, since the rest of the analysis is independent of the absolute value of the polarization signal.

3.3. Advantages and Disadifantages of FTS Data

Due to the fact that their diameters are below the resolution limit of modern optical instrumentation, fluxtubes,

-like stars, require spectral methods for a proper investigation of their internal structure. Ideally, observations
should combine high spatial, temporal, and spectral resolution, and cover a large spatial, temporal, and spectral
range simultaneously in all four Stokes parameters. In reality, due to the limitations set by seeing and instrumen-
tation, and in order to reach a reasonable signal to noise ratio, compromises have to be made. Over the years a
large variety of data have been obtained for the study of fluxtubes. In the following we shall look at the merits
and demerits of some of them for determining the internal properties of fluxtubes.

One method of investigation is to take photographs or photoelectric images of active regions or network ele-
ments in some more or less pure stretch of continuum. An advantage of continuum observations is that they allow
for good spatial and temporal resolution, while enabling many spatial elements to be observed simultaneously
(i.e. large spatial ranges are possible). Another advantage is that continuum data in general contain information
on other levels in the fluxtube atmosphere than line spectra, and can provide estimates of the temperature in
the important deeper layers. A disadvantage is that besides the temperature they cannot give any information
on internal properties of fluxtubes. Strictly speaking they cannot even identify fluxtubes with certainty. All
that continuum observations show are bright points of typically less than 0.5” diameter, although Schiissler and
Solanki (1987) present some evidence in favour of identifying bright points with magnetic elements. In addition,
Foukal et al. (1981) and Foukal and Duvall (1985) have pointed out that most high resolution continuum obser-
vations of fluxtubes have not been carried out in stretches of pure continuum, so that the information they give
is smeared over a height range given by the number density and properties of the spectral lines in the observed
window.

Although unpolarized line spectra contain in principle much more information on the fluxtube, they still
suffer from the disadvantage (shared by the continuum data), that the light from the fluxtubes is, in general,
strongly mingled with light from their non-magnetic surroundings. This makes spectra in unpolarized light rather
less than ideal for determining the internal structure of fluxtubes. This is particularly true for spectra with low
spatial resolution, and spatial resolution has often to be sacrificed if enough spectral information with good S/N
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is to be gathered.

Spectra in polarized light overcome a considerable portion of the disadvantages of finite spatial resolution,
since Stokes Q = U = V = 0 when B = 0, so that these Stokes parameters arise only in the magnetic part of
the atmosphere. * Once more different types of polarimeter data exist, two extremes of which are listed below.
Firstly, those with high spatial and temporal resolution (both are required simultaneously due to the everchanging
seeing) and one or two spatial dimensions, but with only very limited spectral information (magnetograph type,
or spectra in one, or at the most a few spectral lines). Secondly, those with high spectral resolution and a broad
spectral range but with only moderate spatial and temporal resolution (as obtained for example with an FTS).
Of course observations with properties intermediate to these two extremes exist as well.

Our FTS spectra are unique, in that each recording is a complete spectral atlas in Stokes I, V, and in
some cagses Q. With an appropriate analysis technique, they allow the magnetic field strength, temperature,
and velocity structure of fluxtubes to be determined independently of the actual size of the spatial resolution
elements. This is the main reason why 10" and 5" entrance apertures were chosen. Smaller entrance apertures
| would only have increased the noise level in the data (this is always a problem with polarimetric data outside
sunspots due to the small filling factors), and would also have made the observations more sensitive to seeing
fluctuations.

Of course, there are considerable limitations to the possibilities of these data. They can only provide us with
average properties of fluxtubes, since usually more than one fluxtube will be present in the resolution element.
Little information can be obtained on the spread of fluxtube properties, or on the detailed morphology of the
field. Due to the rather long integration times, no information is obtained on the temporal evolution of the
magnetic field.

Another possible problem with the FTS is that, although all the wavelengths contribute simultaneously to
the recorded interferogram, the different Fourier components of each line profile are sampled at different times,
which could cause a similar distortion of all line profiles in a single scan if periodic motions with a period near to
the time required to record a full interferogram are present on the Sun. Problems with the ubiquitous five minute
oscillations were avoided by choosing this time to be 7.2 minutes in the visible spectral range (in the IR the scan
period is less fortunate, being 4 minutes 38 seconds) and by repeating the interferogram scan a number of times.
This last step has the added advantage that the signal to noise ratio of the data is increased. Also, in contrast
to some other such instruments, the McMath FTS samples the interferogram symmetrically, i.e. both negative
i%md positive path length differences z are sampled. The advantage of this technique is that all x are sampled at
‘the same mean epoch, thus reducing the instrumentally induced influence of changes in the solar atmosphere on
the line profile shapes. Finally, a comparison of FTS Stokes [ line profiles with Jungfraujoch atlas profiles shows
that no significant distortions of the FTS profiles exist. Although large amplitude motions of unknown period
exist in fluxtubes (see chapter 7), they are not in phase for different fluxtubes, as can be inferred from the null
result of Giovanelli et al. (1978). Therefore these motions should not cause any additional distortions of the FTS
Stokes V and ¢ profiles via the scanning in the Fourier domain.

In Table 3.4 the two extreme types of polarimeter data mentioned above are contrasted to each other and
their capabilities to study different aspects of fluxtubes are summarized. Note that the table is based on present
capabilities, and that future data or analysis procedures may be able to realise things now seemingly impossible.
A few remarks to Table 3.4 are listed below (the places the remarks refer to are marked in the table).

1 The observation that the IR line Fe I 15648.5 A has a Stokes V profile whose ¢ components are much broader
than the complete I profile, may be due to a range of magnetic fields distributed horizontally across the
fluxtube diameter (Stenflo et al., 1987b, also see Sect. 6.5). However, at present this is not the only possible
explanation and much more work is required to decide this point.

2 It may be possible to obtain information on the Height variation of fluxtube properties from observations at
various distances from the limb, or by comparing IR with visible observations, etc.

% @ is the filling factor.

4

It may be possible to determine diameters of fluxtubes with low resolution data off disk centre when 2-D
models are used, since the line profiles may depend strongly on the fluxtube diameter and angle of inclination
(cf. Van Ballegooijen, 1985b).

* This simple picture may no longer be true for small fluxtubes (in particular when observed near the limb),
since one and the same line of sight may then pass through both magnetic and non-magnetic regions.
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Table 3.4
High spatial resolution Low spatial resolution
tn one spectral line FTS spectrum
Internal horizontal variation NO (later ?) PERHAPS!
of fluxtube parameters
Height variation of fluxtube PERHAPS? YES
properties
Range of fluxtube properties YES (between YES (between
individual fluxtubes) regions of varying a)®
Interaction of fluxtubes with | YES (direct) YES (bisectors)
their surroundings
Fluxtube diameters - YES ? PERHAPS (indirect)*
Evolution of fluxtubes YES ? NO
(lifetimes)
- Waves, oscillations etc. 5-minutes: YES YES (line widths)
Rest: PERHAPS®
Geometry YES (model dependent) Average: YES
S Individual: NO
User friendliness for Modeller’s nightmare, Fodder for Ph.D.
quantitative interpretation but doable® students
5 Wiehr {1985a) sees some changes in the Stokes V' profile which may be part of an oscillation, but an instru-
mental explanation cannot be ruled out (these observations do not have high spatial resolution).
6 The work of Brants (1985a, b) is a good example of how such data can be quantitatively interpreted.
It follows from Table 3.4, that the two types of data are complementary to each other and we need both high

‘and low spatial resolution data in order to obtain a maximum of information on the fine scale structure of solar
magnetic fields. We may also generalize from this section that high spatial resolution (e.g. magnetograph type)
observations are the prime source of information on the distribution, morphology, and evolution of magnetic
features, while low spatial resolution spectra (like the ones used in this thesis) are superior for determining their
internal structure. -




4. Data Analysis: A Statistical Approach

“There are lies, damn lies and statistics.”

G.B. Shaw

4.1. Introduction A

The observational procedure and the da.t/z;. set have been described in the last chapter. Here we shall concentrate
on the analysis and present some qualitative results. Basically two approaches to the data analysis are possible,
the ‘few line approach’, based on the detailed study of the line profiles of a few spectral lines, and the ‘many line
approach’, which is based on an analysis of the parameters of many spectral lines. Solanki (1987) has discussed
the relative merits of both approaches. To take maximum advantage of the unique features of FTS data, viz.
the excellent spectral resolution and the broad spectral range, we have, for the main part, chosen the many line
approach. Parameters of a large number of spectral lines (taken from a list of 400 unblended Fe I and 50 Fe
II lines) are determined and analysed. One advantage of this approach is that hidden blends do not effect the
analysis significantly. Parameterisation is also a simple and efficient way to get a handle on the immense amount
of data (2 x 10° to 3 x 10° data points per FTS spectrum).
To allow a direct comparison between the surroundings of the fluxtube and its interior, i.e. between Stokes
I and V', we introduce the Iy profile, obtained by integrating Stokes V. It is a first order approximation of the
" Stokes I profile arising in the fluxtube. With this step a major disadvantage of the FTS data, the low spatial
resolution, is overcome. The Iy profile can, for most purposes be treated like Stokes I. In particular, Iy and [
can be identically parameterised, and the rich collection of diagnostic methods developed for Stokes I can also
be applied to Iiy. By studying the dependence of the Iy line width and line depth, the Stokes V' asymmetry
and zero-crossing, etc., on the excitation potential, Landé factor, and Strength of the line, the influence of filling
factor, magnetic field strength, temperature, and veloctiy on the spectrum can be, at least partially, separated,
 allowing a qualitative picture of these quantities inside fluxtubes to be obtained.

For more quantitative knowledge, however, model calculations are required, i.e. the emergent profiles of
a number of spectral lines in a fluxtube model with some initially assumed atmospheric structure have to be
calculated and compared to observed line profiles. This comparison can be used to construct an improved model.
This process carried out over a number of iterative steps hopefully converges to a model with a certain semblance
to reality.

Prior to this work Unno (1959) and Stenflo and Lindegren (1977) have presented a similar approach, based
on the statistical analysis of the parameters of Stokes I profiles only, to estimate the strength of a turbulent
or tangled magnetic field in the solar photosphere. Preston (1971) has also used the differential broadening of
a few lines of different Zeeman sensitivity to determine the magnetic field strengths on Ap stars, while Brandt
3 and Solanki (1987) have applied this technique to the determination of filling factors in solar active regions from
|

Stokes I profiles. Finally Mathys and Stenflo (1986) have subsequently applied the concept of the i/ profile to
the study of Ap stars.

The Iy profile is derived and discussed in Sect. 4.2. The unblended lines used are listed together with their
atomic parameters (in particular their empirically determined Landé factors) in Sect. 4.3. In Sect. 4.4 some line
parameters of Stokes I, Iy and V are defined and a first qualitative analysis with the help of regression equations

is carried out. Finally, in Sect. 4.5 the models serving as the basis for the line profile calculations are briefly
described.

4.2. The Iy Profile

4.2.1. A Simple Derivation of the Iy Profile: A Relationship Between Stokes I and V

Consider a normal Zeeman triplet formed at disk centre in a static atmosphere with a magnetic field which is
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vertical (i.e. aligned along the line of sight) and homogeneous over the resolution element. The spectral line is
then split by the magnetic field into two ¢ components with opposite circular polarization. Their intensities can
be written as

L= %(Ii V). (4.1)
The Stokes I and V profiles are accordingly
I=I1+1
(4.2)
V=1I—1I.

Next we make use of the following relations valid in a homogeneous field along the line of sight (e.g. Unno, 1956).
This is a particularly simple case of Eqs./ (2.43) and (2.17).

Kp b = %K}(/\ + A/\H), (453)
where Ay is the Zeeman splitting, cf. Eqs. (2.23) and (2.24),
Alg = 4.67 x 1073gA%B, (4.4)

with X and AAg in A, and B in G. Neglecting saturation effects for the moment we obtain the following relation

Lo= '%I,,,(,\iAAH). (4.5)

I, is the Zeeman unbroadened Stokes I profile originating from the magnetic region, i.e. from the same region
as Stokes V. Expanding the right-hand-side of the above equation in a Taylor series we get

110
b =§Z;; a)‘,, iA/\H) (4.6)

By combining Eq. (4.5), respectively Eq. (4.6) with Eq. (4.2) the following expressions are obtained for Stokes I
and V.

1) = % (Im(A+ BAg) + In(A = AAg)) (4.72)
V(A) = % (Im(A + Adg) = In(A = Ag)) (4.7b)
and
I(A) = ;: (Zi)!(A/\H)z";;;Im(z\), | (4.8a)
V(\) = i (2—;%1—)( H)Z"“aa;::l I.()). (4.8b)

3
!l

As expected from the antisymmetry of Stokes V' in a static atmosphere (cf. Sect. 2.4.2), only odd-powered terms
are present in Eq. (4.8b), while the symmetry of I allows only even powered terms.

If the Zeeman splitting of the spectral line is much smaller than its width, the higher order terms in Egs.
(4.8) can be neglected (this is the so called weak field approximation, valid for Aly < AAp, AAp = Doppler
width of the line} and they reduce to the simple expressions

1) ~ () + saxy Timld)
oL ( BL,00) (4.9)
V(A) = Adg TR

It is therefore possible to determine Stokes V from the unsplit Stokes I profile formed in the same magnetic
-region. However, when investigating small solar magnetic fluxtubes we face the reverse problem, since due to
their minuteness as compared with the spatial resolution, the only clean information on the fluxtubes comes from
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Stokes V, the observed Stokes I being mainly formed outside the fluxtubes. Accordingly, the integrated form of
Eq. (4.9) is the more useful equation (Solanki and Stenflo, 1984). If we define a profile, Iy, as

A 7
IV =14 1 V()‘)

T el AR ot (4.10)

then it is a good approximation of I, in the weak field approximation, i.e. Iy is a good approximation of the
| unsplit line profile. Here I, is the intensity of the continuum and A, is the lower integration boundary which
| should in principle be at —oo, but is in practice chosen sufficiently far in the blue wing for V/(A;) ~ 0. For
‘ real data the choice of Ay is usually governed by noise and the proximity of neighbouring lines. The simple
\ discussion given here for a Zeeman triplet will be extended to cover anomalous Zeeman splitting in the following
f section. Landi Degl’Innocensi and Landi Degl’Innocentl (1973) derived Eq. (4.9) from a perturbative solution of
the radiative transfer equations.

4.2.2. Summary of a Derivation of the Iy Profile Including Anomalous Zeeman Splitting

If Adg for lines with anomalous Zeeman splitting is defined by replacing g in Eq. (4.4) through g.g, then a general
formalism for the expansion of the absorption coefficients of the Stokes parameters nr, g, Ny, nv according to
powers of AXY = AMy/geg can be derived (Mathys and Stenflo, 1987a). This formalism takes into account the
anomalous Zeeman effect, and is valid for a general v (the angle between the magnetic field and the line of sight).
It is partly based on earlier work by Landi Degl’Innocenti {1982, 1985a). We shall restrict ourselves to describing
only the results pertinent to our discussion. In its general form, the expansion can be written as

nr(d) 1 o= [A(2k) 2 (2k) 2 o 2k O%F
= EE [C’O sin“y + C1“7 (1 + cos 7)] ANy Wﬂ)\—w Ao),

n(do) 2572
290 _ Liats cos%?é (05 = 0™] Ax™ 260 = ho), (
- 4.11
| Zt(}(‘j)) = %sm ~ sin Zpg [C(Zk) C’(Zk)] ANk 38A2k¢(A - Ao)s )
rr;l‘zi.:\)) _ cos'y;C’{ZHUA)\};%H::::; 5 = o),

where #(A — Ao} is the profile of n; in the absence of a magnetic field (Ao being the line centre wavelength),

n(Xo)¢(0) is the ratio of the absorption coefficient at line centre to the continuous absorption coefficient, again
in the absence of a magnetic field. The coefficients C’( ) and C(k) can be written in terms of the moments y,ﬁ,,’
of the 7 and o components

k i)
clk) = Dk Z ( ) FEAT (ngeg)*™*  (n=0,£1;k>0). (4.12)

+=0
The i are defined by

u) = 3" S (M, 7/2)(AXa (M) — ngea DN)*  (n=0,%1;k20). - (4.13)
M

AXn(M) is equivalent to v, (M) in Eq. (2.23) expressed now in wavelength units, and S,(M, 7 /2) represents the
normalised strength of the Zeeman components arising from the transition with n = AM a.nd the initial state
M. Values of S,{M, n/2) can be determined from Table 2.1 after using Eq. (2.15). The plF) satisfy the general
properties
k K
u) = (~1)Ful? (4.14)

and
pb ) = o, (4.15)
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Values for the first few ,us,k) are listed below

p@ =1 (n=0,%1),
=9 n=0,%1
g 25y 2 ( ) (4.16)
w = Xp(gu — 91)“ ANy (n=0,%1),
ul®) = n¥; (g, - a)3axy® (n=0,+1),

where
Xo = (3s — d% - 2)/10,
X, = (8s - d% — 12)/80, (4.17)
7Yy = d(4 — d?)/160,
with

§ = Ju(Ju+1)+Jl(Jl+1);
= Jy(Ju+1) = (S + 1),

These formulae are completely symmetrical with respect to the interchange of w and ! (Jy, gu — Ji, q1). General
expressions for the calculation of ,u(() ), pg ) as well as C(k) C'(k) have been derived by Mathys and Stenflo
(1987a), while Mathys and Stenflo (1987b) have tabulated ,uok), u(lk), C'ék), and C£k) for k=0,...,8 and for a
wide variety of transitions.

Since for solar magnetic fluxtubes the weak field approximation is in general satisfied, we can restrict ourselves
to terms with k < 2 in Eq. (4.11)

(4.18)

2

_ 1 (2. 2 (2) 2 2.1 9

7o) m p(A—Ao) + 1 {P‘o sin“y + [/J-l +AAH] (1+ cos '7)} 35 (A= Xo)s
2

na(\) = }-sinz'*; cos2<p[ (2) _ ,u(l ) A/\fg] —3—2-¢(/\ - Ao),
n(Xa) 4 A (4.19)
nw(A) 1.3 (@ _ @ _Ay2] 9% o5
77(>\0) ~ 48111 '731n2‘p [I“O 1231 A’\H] a,\2¢()\ )‘0))
nv (A) 9 (s _
n0o) S - cos'yA/\Ha)‘¢()\ Ag).

Except for the sign, the expression for 7y in Eq. (4.19) is very similar to the expression for Stokes V given by Eq.
(4.9). The difference in sign between 7y, and Stokes V is due to the fact that we are dealing with absorption lines
and that therefore the absorption coefficient for right circularly polarized radiation corresponds to the emergent
profile for left circularly polarized radiation. The comparison of 7y, to ¥V allows us to extend the definition of the
Iy profile to general values of 4. The absence of terms due to the anomalous Zeeman effect in the expression for
nv (since p&) =0, cf. Eq. (4.16)) means that the simple exression for the I, profile Eq. (4.10) originally derived
only for Zeeman triplets is equally valid for lines with an anomalous Zeeman splitting pattern, if we replace the
Landé factor g of the triplet by the effective Landé factor geg in Adgy. Thus we can write in general

Ic—IV____ 1 /'\ V()\')
I.  cosyAlg I,

ax'. (4.20)

Eq. (4.19) also allows I and Iy profiles to be defined by putting ng — Q, ny — U, ¢ — I, and integrating
over the wavelength.

L-lq _ _ : f/ AT g
I, sin®y cos 20(ANY — (2) +u 2)) A A L ,

(4.21)

Ic"'IU=_ 4 //U)\” /\”d/\’
I sin®vsin 2p(AN% — “(2) + py 2) A 5

Ay = A1 should again be chosen far enough in the wing for @ &~ U ~ 0. For these profiles, the terms due to
the anomalous Zeeman effect do play a role. Therefore I profiles calculated without taking anomalous Zeeman
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splitting into account (e.g. using the formula derived by Stenflo, 1985) will differ accordingly from corresponding
Ig profiles calculated using Eq. (4.21). There are some further problems with the I and Iy profiles which make
them of questionable use for application to real data. These problems will be discussed in Sect. 4.2.3.

4.2.8. Effects of Saturation on Stokes Q, U, and V: The Iy Profile for Saturated lines

Since Stokes Q and U are identical except for their different dependence on the azimuth ¢, it is sufficient to
consider only Stokes @ and V in this section. In Fig. 4.1 the @ profile of the medium strong line Fe I 5250 A,
calculated with the HSRA for 4 = 90°, ¢ = 0° and B = 10 G, is plotted. Although the weak field approximation
is valid (B = 1 G still gives the same profile shape), it is clear, that since the area of the profile above the zero-line
is not equal to the area below the zero-fine, the continuum will lie at different levels on the blue and red side
of Io. For such a large asymmetry between the areas of the o and 7 components as exhibited by this Q profile
(with Ao, + Ay, > 2Ar, these quantities are defined below), Io will not look even faintly similar to I. This
effect is not due to velocity gradients, or unequally populated Zeeman sublevels as required to explain Stokes V
asymmetry [The Stokes Q profile fulfills the symmetry relation Eq. (2.57)]. Rather, it is due to a combination of
the Zeeman splitting and the saturation in the line.

Fig. 4.1 The Stokes @ profile of Fe I

! 5250.2 A, as calculated us-

‘ ing the HSRA model atmo- 10 ' ! - l ! l n |

sphere and a magnetic field

| vector given by v = 90°, ¢ =

0°, B = 10 G. Note the dif- 8 . L

ference in area between the
w- and g-components.

Stokes Q (107°)
N

-2 :

5250.1 5250.2 5250.3 5250.4

Wavelength A (&)

The same effect also gives rise to the broad-band linear polarization in active regions and sunspots, as was
first measured by Leroy {1962}, who also found the correct interpretation for his observations by considering the
Unno solution for Stokes Q. Calamai et al. (1975) extended his analysis to include magnetooptical effects (by
using Rachkovsky’s solution).

However, the discussion of broadband polarization fails to make clear that the o-m asymmetry of Stokes
@ persists even for small field strengths, since the integrated quantity which is important for broadband linear
polarization

/QdA -0 for B -0, (4.22)

i.e. the absolute o-7 asymmetry disappears for small magnetic field strengths. However, the relative asymmetry,
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defined as

5Q = Aot As, = Ar _ [ QA
Ao, + Ar, + Ar [ ]QIdX

does not disappear, as Fig. 4.1 and the following Milne-Eddington calculations show. Ag, is the absolute area of
the blue o-component of Stokes @, A,, the area of its red g-component, and A, the area of its w-component.

For simplicity, we assume that vy = 90°, ¢ = 0°, and a weak field, i.e. ny > ng and ny = nv = 0. No
principle limitations exist to extend these calculations to a more general case. However, no qualitatively new
results are obtained. It is also better to consider the general case with a proper radiative transfer code than with
the simple Unno formalism. The magnetooptical effects are minute for the weak field case (cf. chapter 2), and
can be neglected (for v = 0° they disapp}ar anyway). Then

(4.23)

Bou nQ

= - . 4.24
¢ 1+ fou (1+m1)% ~ nfy (4.24)
We have normalised Q to the local continuum level. Using Eq. (2.42), we can rewrite Eq. (4.24) as
Bou nQ Bop 1Q
Q=- > A — ; (4.25)
1 P)
1+ Bou (1+ no)? (1_ 1_;%) + Bop (1 + o)

since {1+ 7o) > 2ng. Using Eq. (4.19) and the fact that the Unno solution is only valid for Zeeman triplets we

get

_Bop 1 AN dpo())
1+ fopd (1+m0(2))? dA2

It is the no()) in the denominator, which leads to the asymmetry even in the case of a weak magnetic field. Since
we can assume that 7no()) has the form of a Voigt function centred on the line, the denominator is larger for
line centre, which reduces the area of the m component, leading to the observed asymmetry. For very weak lines
no(A) < 1 for all A, so that

Q) ~

(4.26)

. __Pou d?no(X)
Q) =~ T ﬁO#A,\g ERERR (4.27)

To test the validity of the Ig profile for a saturated line we require a relation between d?I/dA? and
d%no(A)/dA2. We start with the Unno solution for weak fields.

Bou 1
10~ 50 (1 TOT no(A))> : (4.28)
Then ar B 1 dno(N)
~ oM o
D TT hon LT )2 ax (4.29)
and
I fou 2 dno(2) \* 1 d%no())
0~ T+ fom ((1+170(f\))3( ) T o ) (4:30)

If we use Eq. (4.30) to replace d?sno())/dA? in Eq. (4.26), then we get not only a d?I/dA? term, but also a
(dno/dA)? term. For very weak lines, i.e., 7o <1 VA, Eq. (4.30) reduces to

&I Bop_ dno(N)

dX2 T 1+ fop dAZ (4:31)
By combining Eq. (4.31) with (4.27) we get
1, d2I(%)
Q) =~ 4A)\H FEVER (4.32)

Thus, Eq. (4.21) is only valid for very weak (i.e. unsaturated) spectral lines (the weak field limit is a prerequisit
of Eq. (4.21) in any case). We therefore conclude that the Ig and Iy profiles are not of practical use, since most
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lines of interest show at least some saturation. For larger fields the 7¢, ny, and 7y terms in the denominator of
Eq. (4.26) also play a role and modify §Q. They also lead to a certain v dependence of the effect.

How can the Stokes @ asymmetry be understood intuitively? In the presence of a magnetic field, the two
equally polarized o components are shifted so that due to saturation their combined area is somewhat larger than
that of the = component. The larger the splitting (~ B), the larger the absolute asymmetry will be. However,
the amount by which ¢ or # cancel each other in ¢ decreases with increasing B. This has the result that for
small magnetic field values most of the signal cancels, so that the small absolute asymmetry between ¢ and =

] dominates the resulting signal, thus leading to a large relative asymmetry. For strong fields both the absolute
‘ and the relative asymmetry should approach asymptotic values depending only on the amount of saturation in
the line. P N

Concrete calculations, including magnetooptical effects, for the Fe I 5250.2 A line with a radiative transfer
code have also been carried out and have confirmed the dependences suggested by the analytical and heuristic
considerations presented above. Fig. 4.2 shows 6Q vs. B for 5250.2 A with log ¢*f = —4.938 (solid curve, the g* f
value measured by Blackwell, Ibbetson, Petford, and Shallis, 1979} and log g*f = —5.938 (dashed curve). The
abundance is the same for all three curves: ¢ = 7.5. As is clearly visible from the figure, a decrease in log g* f
also results in a decrease in 6Q). The figure also demonstrates the dependence of 6Q on B (for g = 3).

Fig. 4.2 The relative asymmetry between
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Since the two sigma components are completely equivalent with respect to saturation in a static atmosphere,
the Stokes V profile suffers no similar consequences, so that [y can be calculated without any problems for lines
of any amount of saturation. This can also be shown very simply with the Unno model for weak fields.

Comparing Eq. (4.29), which is valid for all angles in a weak field, with the weak field approximation of the
Unno solution for Stokes V

Bop nv
- 4,33
1+ fou (14 70)? (4.8
and using Eq. (4.19), where we replace ¢(A — Ag) by n0{}), we get
ar )
V=A4xg—. .
BTy (4.34)

We conclude that the definition of the iy profile is not affected by saturation in the spectral line.
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4.2.4. The Iy Profile for Real Data

A first test of the validity of the I profile for real data was carried out by Stenflo et al. (1984) when they
compared the observed 81/3X and Stokes V profiles with each other for a number of lines. An example is shown
in Fig. 4.3, where the Na I D; line at 5895.93 (geg = 1.33) is used. —3I/3X (thick line) has been normalised so
that its blue peak coincides with the blue peak of Stokes V.

Fig. 4.8 Stokes V (thick curve) and —3I/dA
(thin curve) of Na I D, recorded in
a strong plage at u = 0.92. —3I/3A
has been normalised to the same am- 2 A
plitude as Stokes V of the Na line. _ i
Notice the strong water vapour com-
ponents in —3I/3X which are absent

in Stokes V. - iy }\ A m/\ /
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Except for the far wings of the line (where V' is smaller than —31/8)), both profiles are identical. Stenflo et
al. proposed that water vapour may be the cause of this difference. Another possible explanation is that due to
the higher temperature in the fluxtube (cf. chapter 5), the strength of the line in the fluxtube is smaller than its

“strength in the quiet atmosphere. For a line as strong as Na I D; this would mostly result in a decrease of the
line wings. It should be kept in mind that, due to the generally small filling factor, Stokes I is formed mostly
outside the fluxtube.

The good agreement between —8I/3) and Stokes V for the Na I D; line is not surprising, since this line is
so broad that the weak field approximation is certainly valid and any differences between the two profiles have
to be due to differences in the atmospheres they are formed in (i.e. due to differences in temperature, pressure,
velocity, or magnetic field). The presence of terrestrial water vapour is readily visible in the large number of H,O
lines present in —31/8A but absent from Stokes V. Thus we see how a comparison between 31/3A and Stokes
V allows telluric lines to be recognised easily by their absence in Stokes V. Of course g.g = 0 solar lines would
also disappear to first order, but are so rare that they can be neglected.

More relevant examples for checking the validity of Iy are shown in Fig. 4.4, where the —81/8) and Stokes
V profiles of the Fe I lines at 5247.1 A (geg = 2) and 5250.2 & (g = 3) measured in a plage region are compared
to each other (thick curve: Stokes V', thin curve: —81/3A, which is again normalised to the blue peak of Stokes
V). For the Fe I 5247.1 A line shown on the left, the I;; and Stokes V curves match each other quite well, with
the exception of the pronounced asymmetry in Stokes V', which can of course not be reproduced by —3/3A. In
contrast to this nice correspondence, Fe I 5250.2 A shows distinct differences between Stokes V' and —3I/3A.
One interpretation of these differences would be, that due to its larger Landé factor, Fe I 5250.2 A no longer
fulfills the weak field approximation. We may thus be tempted to conclude that the weak field approximation is
valid for lines with g.g < 2, but not for lines with geg = 3.

Unfortunately, the Stokes I profiles inside and outside the fluxtube are not identical, (see e.g. Harvey and
Livingston, 1969; Frazier and Stenflo, 1978). It is therefore not necessary for —8I/3X and Stokes V to overlap
cbmpletely. From this we conclude that, although it is encouraging that the two profiles match each other for Fe I
5247.1 A, this does not constitute a stringent test for the validity of the weak field approximation. A proper test
would require that I and V profiles be calculated with a radiative transfer code in the same magnetic atmosphere,
and the resulting Iy and I profiles be compared with each other [or more accurately the I profile calculated via
Eq. (4.8a) with the . profile resulting directly from the radiative transfer]. A simple test of this kind is presented
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Fig. 44 Stokes V (thick curve) and —3I/9X (thin curve) of Fe I 5247.1 A and 5250.2 A from data recorded
in a strong plage (u = 0.92). The —8I/3) curves have been normalised such that the amplitudes of
their blue wings are the same as of those of Stokes V.

in Sect. 4.2.6. For the present we shall concentrate on the actual calculation of Iy from the observations and on
its interpretation. We shall follow the discussion given by Solanki and Stenflo (1984, 1985) and Solanki (1988).

Since most fluxtubes have diameters below the best presently available spatial resolution, and our observa-
tions of 10" (respectively 5") resolution probably contain more than one fluxtube in the resolution element, we
have to replace the different quantities in Eq. (4.20) by their spatial averages. Stokes V' has to be replaced by
(V) and B cosy by (B cosvy). For a simple two-component model of a magnetic region, composed of a magnetic
‘component with no horizontal variations and with field strength B covering a fraction « (the magnetic filling fac-
tor) of the surface, and field free regions covering a fraction (1 — a), we have (Bcosy) = cosyaB and (V) = oV,
so that (Iy) = Iy. In a more realistic model (V) can be written as

(V)= ff V(z,y)dzdy

ff dzdy

where z and y are coordinates in the plane perpendicular to the line of sight. We can also write Eq. (4.35) as

~ 4.67 x 107 13g)? <B(w, y) cosry _?iz’{%yl> , (4.35)

(V) ~ 4.67 x 1073gA2% (Bcos) Qi[—va—(;—’—y—)l = (A)g cosv) ﬂIV—;\M, (4.36)
with B
(Bcosny) = /I B(=, yf);(:;;:c(l? y)dzdy (4.37)
and
(I) JJ B(z,y) cosv(z,y)I(z,y) dzdy (4.38)

. [f B(z,y) cosy(z, y) dzdy

({(Bcos+) is proportional to the magnetic flux}, and we can retrieve Eq. (4.20) if we replace V by (V), Bcosvy by
(Bcosw), and Iy by (Iy). Note that I occurs without index V under the integral sign in Eq. (4.38), since it is
weighted by B. According to Eq. (4.38) the Iy profile obtained from Eq. (4.20) can be interpreted as a weighted
average of the true Stokes I profile over the fluxtube cross-section. Regions which have a stronger magnetic
field give a larger contribution, since Stokes V' scales approximately linearly with B cos~, (exactly linearly in the
weak-field approximation), it follows directly from Eq. (4.38) that (Iy/) gets no contributions from a field free
region where V = 0. B(z,y) and (B) refer to the field strength at the height of maximum contribution to the
line. We assume that B does not vary too strongly over the height range of formation of the line. Of course, for
a realistic fluxtube geometry many lines of sight will pass through both magnetic and non-magnetic parts of the
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atmosphere, and the simple interpretation given above to the Iy profile loses its meaning, since for a particular
ray B(z,y) can vary rapidly over small distances along the line of sight. The validity of the Iy profile will in this
case have to be checked numerically using a 2-D model and radiative transfer along many lines of sight.

In addition to this averaging over the resolution element, the Stokes V' and therefore the I, profiles are also
averaged over the time span of the measurement, over which period individual fluxtubes may have evolved or
moved. For most of the following analysis we will use the symbols B, (B), AAg, (A)g), cosn, (cosy), (Iy), and
Iy as representing the simple two component model. However, we shall often simply refer to Stokes V or V' when
implying (V). Since (V) = oV, we can always do this except for the rare cases when the filling factor plays a
direct role. In particular, as most of the following analysis depends only on the comparison between the profiles
of different lines. We have also implicitely assumed that the continuum intensity inside the fluxtube is equal
to the continuum intensity outside. This need not necessarily be the case and in general (V) = o6,V , where
§, = IFluxtube j Photosphere ig the ratio of the continuum intensities of the fluxtubes to that of their surroundings
if & < 1. Except for the determination of a, §, plays no role and due to the large uncertainty in the true IZ ‘uxtube
we set it to unity for the rest of the analysis (see also Grossmann-Doerth et al., 1987; Schiissler and Solanki,
1987, for detailed discussions). .

In the derivation carried out in Sect. 4.2.1, it was assumed that the magnetic field strength remains constant
with height (B(z) = constant). In the weak field approximation, this is equivalent to requiring that the magnetic
flux remains constant with height ((B(z)) = constant), so that the magnetic field strength may vary, as long as this
variation is compensated by an inverse variation of the area covered by the field, and as long as Ay /A)Mp < 1
(with Adg ~ B and not ~ (B)). This makes (A\y) independent of height, and therefore also of the wavelength
in the line, allowing it to be moved in front of the integration. Due to our spatial resolution of 10", respectively
5", which is much larger than the diameter of a fluxtube, the condition of (A)y) independent of z is almost
certainly fulfilled for our observations. It can only be invalidated by the presence of very large canopies with
diameters much larger than the resolution element, such as the ones proposed by Giovanelli (1980). However,
since practically all the lines considered in this thesis are formed below the height of the temperature minimum,
Tinin, and thus below such canopies, we need not worry about their effects here.

(B) in the expression for (AMg) acts as a scaling factor for the fluxtube line profiles Iyy. However, the
determination of (B) cannot be carried out in an unambiguous manner. Since we use Fe I and II lines for the
later analysis, let us briefly consider their respective potentials for the determination of (B). The strengths
of the Fe I lines are strongly temperature dependent, so that they cannot be used to determine (B) with any
measure of accuracy without taking recourse to model calculations. Although Fe Il lines are much less sensitive to
temperature, and (B) values determined from them are also considerably less model dependent, any uncalibrated
depolarization in the instrument may still falsify the values of (B) determined from Stokes V. Stenflo and Harvey
(1985) have proposed a depolarization by a factor of two for our 1979 data, while later tests of the telescope, the
polarisation measurement procedure for the FTS, and the Fourier inverse transformation procedure by Harvey
(1985b) have not been able to detect the source of this circular depolarization. Consequently, some uncertainty
in the polarization scale is unavoidable at present.

In view of these uncertainties, (B) is arbitrarily set to 1 G for all the observed regions. The derived line
depths are accordingly incorrect by a factor equal to the actual value of (B). As this correction factor is the same
for all the lines in a particular spectrum it does not affect the investigation of profiles of different lines relative
to each other.

4.2.5. The Influence of the Area Asymmetry of Stokes V on Iy

As is clearly visible from Fig. 4.4, the observed Stokes V profiles of photospheric lines do not fulfill either of
the symmetry relations Egs. (2.57) or (2.58). Whereas the invalidity of Eq. (2.57) alone would only lead to a
curved bisector of the Iy, profile, the invalidity of Eq. (2.58) leads to an unphysical result, namely that the level
of the continuum on the blue and red sides of I is different. This simply reflects the fact that Eq. (4.20) was
derived for a static atmosphere and for symmetric populations of the Zeeman sub-levels, whereas the presence
of an asymmetry in the areas of the Stokes V' wings requires either a veloctiy gradient along the ray path, or an
asymmetry in the populations (cf. Sect. 2.4.2). For more details on Stokes V asymmetry see chapter 8.

In our later analysis we wish to compare I and Iy with a minimum of bias. This requires-the identical
parameterisation of both spectra, which is not possible, as long as Iy shows an unphysical continuum jump.
We therefore require that the continuum on both sides of the Iy profile be forced to have the same value. An
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attempt to derive a version of Eq. (4.20) including the effects of a general velocity field, showed that full prior
knowledge of the velocity field is needed if the asymmetry of Stokes V is to be properly compensated. This is
obviously unfeasable. An alternative to this approach is to write Eq. (4.20) as

L-fv(d) ____ 1 Y o) V() 4
I T cosy (Adw) /;1 I, dx’, (4.39)

where w()) is a weighting function required to make the continuum on the red and blue sides of I lie at the
same level. Since the detailed mechanism giving rise to the asymmetry is not known, a very simple form of w(A)

wlX) = VA JAy  for A<y,
w(A) =V Ap/A, for A > Ay,

where Ay is the zero-crossing wavelength of Stokes V' and A, and A, are the areas of the blue and red wings
of Stokes V respectively, defined in Sect. 4.4.1. In practice the two steps, integration and symmetrisation, are
carried out separately, which is made possible by the simple form of the chosen w(A).

Fig. 4.5 shows the effect of this procedure on the Stokes V profile of Fe I 5250.2 A observed in a network
element. First Stokes V' (left) is integrated (centre) and then corrected for the continuum discontinuity (right).
From now on [y will always denote the integrated and symmetrised V profile.

has been chosen,

(4.40)
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Fig. 4.5 Illustration of the transformation of a Stokes V profile into an Iy profile for the Fe I 5250.2 A line
measured in a network element. Left: Asymmetric V profile. A and A, are the areas of the blue
and red wings of V, respectively, while a; and a, are their amplitudes. Centre: Integrated V profile
(before differential renormalization). dp and d, are the line depths measured from the blue and the
red continuum, respectively. Right: Iy profile, i.e., integrated V after differential renormalization
such that the continuum appears at a single level (see text).

Why carry out this conversion to Iy at all? The main reason has already been stated: in order to be able
to treat the Stokes V profile on an equal basis to the Stokes I profile. The [y, profile also has certain advantages
over the Stokes V profile when low spatial resolution polarimeter data are compared with one-dimensional
fluxtube models, as is the case in a large portion of this work. Since our observations have low spatial resolution,
the assumption that the magnetic flux in the field of view is the same at all heights in the photosphere is quite
reasonable. For the model calculations we use the thin fluxtube approximation (cf. Sect. 4.5}, which also conserves
magnetic flux with height. However, the radiative transfer is carried out along only one ray (at disk centre this
is the axis of the fluxtube). This one-line-of-sight approximation means that the magnetic flux as felt by the
spectral lines, is not conserved with height in the model calculations. Due to the great sensitivity of the Stokes V'
amplitude on the amount of magnetic flux, synthetic Stokes V' profiles of lines formed at different heights cannot
be simultaneously compared with the respective observed profiles, so that one of the main advantages of FT3
data (the large number of observed lines) is lost. With the Iy profile this problem is greatly reduced, since the
data can now be compared to calculated profiles of Stokes I which are considerably less sensitive to the amount

of magnetic flux.
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4.2.6. How Well Does the Integrated V Profile Approzimate Stokes I

The validity of the Iy profile as an approximation of the Zeeman unbroadened Stokes I profile has been tested
by carrying out radiative transfer calculations for lines with varying Landé factors. Iy is determined from the
synthetic Stokes V profiles and compared to the respective Stokes I profiles. The HSRA (Gingerich et al.,
1971) with a height independent magnetic field of 1000 G is chosen as model atmosphere. This value of B is in
accordance with the field strength determined from the line ratio analysis of chapter 6.

Six spectral lines have been calculated, all of which have the same line parameters as Fe I 5250.2 A (cf. Table
4.4), except for the Landé factors. J, L, and S have been chosen such that all lines are Zeeman triplets and have
g = 0.5,1.0,1.5,2.0,2.5, and 3.0 respectively. The calculations have been carried out for u = 1 and v = 0°. In
a first step, a microturbulence of 1 km sec ™! has been chosen as the only source of non-thermal, non-magnetic

broadening.
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Fig. 4.6 Comparison between calculated Iy (solid) and Stokes I (dashed) profiles. The different lines are
Zeeman triplets and have Landé factors g = 0.5,1.0,1.5, and 2.0 as marked in the individual figures.
Otherwise all lines are identical. The model atmosphere is the HSRA with B = 1000 G = constant,
Emic = 1.0 km sec™* and &pac = 0.
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First we compare Iy with the complete I profile as calculated directly by the code (i.e. including Zeeman
splitting). Fig. 4.6 shows the calculated Iy (solid curves) and Stokes I (dashed curves) profiles of the lines with
g = 0.5,1.0,1.5, and 2.0. The correspondence is quite good for small g values, but for g = 1.5 and 2.0 the
Iy profile becomes of questionable use. The fits for ¢ = 2.5 and 3.0 are even worse. However, so far we have
neglected both, line broadening due to macroturbulence and the fact that we have to take Zeeman broadening
into account via Eq. (4.7a). In accordance with the results of chapter 7 for lines of similar strength, we have in
a second step convoluted the calculated line profiles with a macroturbulence velocity of 2 km sec™' and have
used Eq. (4.7a) to convert the Iy profile into what we call I(V'), which is an approximation of Stokes I. The
resulting profiles are shown in Fig. 4.7. The directly calculated Stokes I profile is plotted solid, the Iy profile is
plotted dashed, and the J(V) profile is plotted dotted. The correspondence has improved considerably so that
we can use the I(V) profile as an approximation of Stokes I for g < 2.5 certainly, and perhaps even for larger
g. Therefore, I(V') is a good representation for practically all lines in the visible, or equivalently, Jv is a good
approximation to the unsplit Stokes I profile for all lines in the visible.

Since most lines in the sample we shall use for a statistical analysis have g of the order of 1 (Stenflo and
Lindegren, 1977), we conclude that the [y profile may be used as a representation of the I profile in luxtubes for
all except a few of the lines. It should be noted that by making use of regression equations which take the effect
of Zeeman splitting into account we effectively reduce all lines to the case of very small Zeeman splitting for those
parts of the analysis in this thesis which make use of the Iy profile. Furthermore, by looking at the deviation
of the Iy profile from Stokes I we can also learn something on the nature of the small spurious effects we may
expect from using the Iy profile for lines with large splitting. Note that in general the Iy profile is narrower and
deeper than the corresponding I profile. Since we take Iy profiles from the data and compare them to Stokes
I profiles from radiative transfer calculations, we would therefore expect the observed profiles to be too narrow
rather than too broad. Thus velocities would tend to be underestimated. Furthermore, the observed profiles
would tend to be slightly too deep, so that the temperature would also tend to be underestimated, although only
by a small amount. In any case, deviations of Iy from Stokes I cannot explain the large velocities derived in
chapter 7.

4.3. Line Lists and Landé Factors

4.8.1. Lists of Lines

In order to avoid introducing uncertainties into the analysis through the uncertainties in the measured elemental
abundances, the spectrum of only one atomic species, namely iron has been analysed. It is the element giving the
richest contribution to the solar spectrum, with a considerable number of Fe I and Fe II lines present. Iron also
has some additional advantages as pointed out by Dravins et al. (1981). It has one predominent isotope (91.8%
26Fe®®) which is even-even in its proton-neutron numbers, so that its nuclear spin and thus hyperfine splitting
is zero. In addition iron has a large mass, so that the thermal broadening of its spectrum is minimised, allowing
for the better detection of subtle magnetic field and velocity effects on the line profile. Laboratory wavelengths
are also available for many Fe I and Fe II lines (see below). '

Of the various lists of unblended iron lines (e.g. Holweger, 1967; Mackle et al., 1975; Stenflo and Lindegren,
1977; Ruland et al., 1980; Rutten and van der Zalm, 1984; Dravins and Larsson, 1984), we have used the list of
402 Fe I lines of Stenflo and Lindegren (1977), and the 54 Fe II lines of Dravins and Larsson (1984} and Dravins
et al. (1986). In addition to these lines the Mg I b lines at 5172.7 A and 5183.6 A have been used for a part of
the analysis.

Table 4.1 lists all the Fe I lines used in the analysis. The first column lists the solar wavelength in A
according to Pierce and Breckinridge (1973). For the lines not present in the tables of Pierce and Breckinridge,
the wavelengths are from Moore et al. (1966). The second column gives the difference between the solar and
laboratory wavelength in units of 10~* A, Laboratory wavelengths have been taken from Stenflo and Lindegren
(1977), who either used the wavelengths listed by Crosswhite (1975) or calculated them from the energy levels
where no wavelength measurements existed. Column 3 contains the multiplet number and column 4 the excitation
potential in eV. Column 5 lists the transition (from Moore, 1972), while column 6 contains the geg values
calculated in LS-coupling using Egs. (2.11) and (2.14). The values have in general been taken directly from the
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Fig. 4.7 Comparison between Stokes I (solid), Iy (long dashed), and I(V') (short dashed) profiles. All lines
are Zeeman triplets with Landé factors as marked in the figures. In this figure £nac = 2 kmsec, while
the rest of the atmospheric parameters are the same as in Fig. 4.6.
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table of Beckers (1969c). In column 7 the geg values are listed as determined from laboratory measurements of
g and g; for the lines for which these were available. Columns 6 and 7 are described in greater detail in Sect.
4.3.3.

In Table 4.2 the same quantities as in Table 4.1 are given for the Fe II lines chosen by Dravins and Larsson
(1984) and Dravins et al. (1986). The Fe II laboratory wavelengths have been taken from Johansson (1978).
For some of the Fe II lines originally chosen by Dravins and Larsson, insufficient atomic data are available to
calculate their geg values, and these have not been included in Table 4.2 or in the further analysis.

Further useful lists of lines for solar studies have been selected by von Kliber (1947}, Sistla and Harvey
(1970), Harvey (1973a), and Solanki et al. (1986). Von Kliiber presents brief lists of lines with large Zeeman
splitting patterns, no Zeeman splittings, and'simple Zeeman splittings. Sistla and Harvey give a more complete
list of lines with no Zeeman splitting. I-ﬂrvey lists the lines with large Zeeman splitting. Finally Solanki et al.
list lines with large Stokes V' amplitudes outside sunspots.

4.8.2. Noise and Blends

In order to determine the noise of the polarized signal, first the data points with 1 > I /I, > 0.98 were determined.
The rms value of the Stokes V signal for these wavelengths then gives an approximate rms value of the noise
(upper limit). The noise level in the data is generally low. For the data of 1979 its rms value is on the average
around 2-3 x 10™* and can be as low as 1 x 10™*. For the 1984 data, the levels are higher, typical values being in
the range 5 x 107%-2 x 1073, In the newer data, the noise increases from the red to the blue end of the spectrum
by a factor of 3~4, due mainly to the deterioration of the photon statistics towards the blue. This difference
between the two data sets may be due to the fact that the 1984 observations were made closer to the limb, where
the spectral intensity is lower (seeing noise also increases dramatically when observing very close to the limb),
and that a smaller entrance hole with a diameter of 5 arc sec was used instead of the 10 arc sec diameter hole
used in 1979. A part is probably also due to the different polarization measurement instrumentation, specially
the higher oscillation frequency of the piezoelectric modulator in the 1984 measurements as compared to the
KD*P oscillator in the 1979 measurements. The more sophisiticated instrumental polarization compensator used
for the 1984 recordings also decreases ‘the intensity of the light beam due to the numerous reflections in it (cf.
Harvey, 1985a).

Near the edge of the prefilter range (over the last 100~150 A for the 1979 data), the noise increases and can
reach values upto 0.2-0.5 % at the very edge of the 1979 data. The 1984 data show a much smaller increase
in noise near the edge, due to the improved predispersor spectral profile for these data. In order to reduce the
number of lines affected by noise in our data, all the lines with amplitudes of Stokes V smaller than some factor
of o of the noise are automatically dropped (typically a factor of 5 is chosen). This limit in general removes most
of the lines which are heavily influenced by noise.

A few lines remain which have Stokes V' amplitudes larger than this limit, but which show an untypical
behaviour in the scatter plots described in Sect. 4.4. These lines have been checked and removed individually.
Reasons for such untypical behaviour (besides noise} are blends, deviation from LS-coupling or a strongly anoma-
lous Zeeman splitting. Blends make themselves felt more strongly in the Iy, profile than in the Stokes I profile,
because the Stokes V profile, used as the basis for calculating Iy, is in general more sensitive to blends than
Stokes I (Stenflo et al., 1984), and because the complete Stokes V profile has to be integrated including the
far wings. Although only few lines are completely free of blends, specially in the blue and green parts of the
spectrum, the blending lines are usually quite weak and affect the Stokes V profile only slightly in the far wings.
In some cases the presence of blends has required the rejection of a particular line from Tables 4.1 and 4.2.
Examples are Fe 1 4637.5 A, 5022.2 A, 5216.3 A, and 6663.5 A, The other two reasons for anomalous behaviour
in the scatter plots are discussed in the following section.

4.8.8. Landé Factors and Anomalous Zeeman Splitting

As has been pointed out by Landi Degl’Innocenti (1982), the equation for the effective Landé factor Eq. (2.14)
is also valid when LS-coupling does not apply, if the appropriate g; and g, values are used. Such “appropriate”
values are for example, g; and g, from laboratory measurements, as listed by Reader and Sugar (1975}, Corliss
and Sugar (1982), and Litzén (1984). The empirical g.g values for all the Fe I and II lines in the lists of Sect.
4.3.1 for which such laboratory data are available have been calculated and are given in column 7 of Tables 4.1
and 4.2 respectively. A question mark has been placed behind the empirical geg values of those Fe I lines for



Table 4.1 List of Fe I lines and their Landé factors

Wavelength  AX Multiplet x. Transition Fv- S
4365.9004 50 415 299 b5%G,— w3D§ 0.625 0.601
4389.2512 67 2 005 a’D3— z7E° 1500 1.497
4423.8447 27 830 365 z°P°—¢°R 1833 —

4432.5726 67 797 357 alH— u’G? 1100 1.070
4439.6371 31 515 305 alGq—z°F° 0875 0884
4439.8860 51 116 228 a’B— 2% 1750 1.745
4442.8357 49 69 218 aSB—y 'Ry 1000 0.992
4443.1998 68 350 286 b3—=z3D7 0500 0556
4445.4760 55 2 009 a®D,— :z"E® 1500 1.502
4447.1354 60 69 220 a°BR—y'P> 2000 1.996
4484.2266 72 828 360 =z°P°—g°%D, 1.250 1.232
4485.9708 7 825 365 =zz°B°— fO°R 2750 —

4489.7449 60 2 012 a®Dy— z7F® 1500 1.549
4502.5931 20 796 357 a'Hi— z®H7 1583 1.563
4523.4015 11 829 365 2°BP—e’S$  2.167 2.007
4537.6723 11 594 327 b3H;— z'H® 1017 1.025
4551.6499 8 972 394 =z%e— f5%, 120 —

4556.9275 23 638 325 a’D;—wv°R° 0833 0930
4560.0909 30 823 360 =z°B°— e, 0375 0.609
4574.2191 48 554 321 z°Df—e¢®R  1.875 1.901
4574.7224 54 115 228 a®RB—z5Dy 1500 1.503
4587.1316 36 795 357 alHy— z!G) 1000 1.044
4593.5268 17 971 394 :z’F—fSB 0333 —

4596.4113 26 823 365 25B°—eSG; 0.000 0.753
4598.1221 44 554 328 z®DP—eSH 0750 0.751
4602.0060 58 39 161 a’B-—y®F° 1.000 1.013
4602.9466 65 39 148 &K —ySF° 1700 1.743
4619.2932 68 821 360 =z°B°— f°D, 1.833 1.700
4625.0514 76 554 3.24 z°Df—eSF 1375 1.368
4630.1258 53 115 228 a®B—z%Dy 1500 1502
4635.8500 51 349 284 B3R —y®8° 2.250 2.087
4637.5005 61 554 328 2°DP —eSB 0950 0.739
4657.5879 26 346 284 b°R— wdDf 1500 1.402
4658.2976 39 501 327 b3H;,—=z3? 1000 0974
4672.8364 70 40 161 a’B—23P° 0250 0.257
4678.8519 68 821 360 =2°B°— f5D, 1.250 1.299
4683.5638 31 346 283 b R -—w®Df 1500 1.515
4690.1417 63 820 369 2z°B°— f'D, 2750 —

4700.1590 -324 935 369 b'Gy— z3HS 1.100 1.156
4704.9519 48 821 369 z°P°— f°D, 2.500 2.487

B

Wavelength A Multiplet x. Transition gks e
4726.1306 23 384 3.00 z'PP—e®D, 2333 2313
4729.0210 37 1043a 407 c¢3F— *E°  LT00 —

47335068 58 38 148 aSFR—y®D) 1375 1375
4735.8471 53 1042 407 ¢SF—t°%¢ 1100 1.174
47415341 53 346 283 b3B— w®Dy 1500 1.464
47499488 14 1206 456 y°P°—+i5Dy 1583 1.538
4776.0702 12 635 330 a®D,—y 35> 0750 0.825
4779.4423 0 720 341 a'R—z3F 1.000 0.817
4780.8132 19 633 325 a°D;— w®Dy 1500 1.454
4785.9583 —8 1044 414 c¢°B— °Dp 2125 @ —

4786.8127 65 467 302 c¢*B—z°®Df 1167 1.220
4788.7627 60 588 324 b3H;— z ®Hy 1.167 1.182
4789.6568 69 753 355 a'Do— z!'DY 1000 0.977
4790.5627 1068 415 y°Df— f5%G, 2667 @ —

4790.7436 632 325 a’Dy— z%F° 1208 1.247
47943571 18 115 242 @°R—z®DP 1500 1499
4798.2670 29 1042 4.19 c¢°RBR—t3Gy 0833 1167
4798.7336 25 38 161 a3B—yS5DP 1083 1.082
4799.0698 1098 428 ySE°— f3B 0.833 0.837
4799.4092 35 888 364 b3D— w’p 1333 —

4802.5216 —10 1206 461 y° R —i°D, 1667 —

4807.7122 41 688 337 - z%FS—e®F 1300 1321
4808.1509 42 633 325 a®Dy— w®Dy 1.333 1.340
4809.9400 —4 793 357 alHy— y3HP 1017 1.037
4835.8713 27 1068 410 ySDp— f5%G, 1328 —

4839.5500 48 588 3.27 b°H;— z°HY 1.033 1.046
4848.8866 41 114 228 a3B—y3Dp 2000 2012
4871.3262 90 318 286 =z 'F°—e'D, 1.000 1.017
4873.7534 8 633 330 e°D,— w3Dy 1.167 1.197
4874.3565 34 467 307 ¢3R—z3Dy 1.000 1.067
4875.8815 67 687 333 2z°FE°— ¢°F, 1500 1535
4882.1484 44 687 342 zSFE°—eSK 1.000 0.997
4885.4361 58 966 388 z3F°— g°D; 0875 0.887
4892.8624 35 1070 422 y°Df— f3Dy 1000 —

4907.7365 37 687 343 zSF°— e°R 1500 1.492
4909.3874 34 985 393 2°Dy— g¢g°D, 1333 1377
40100222 72 687 3.40 zSE°—¢®°F 1250 1.243
40117808 20 984 393 z°Dy—e°®D; 1500 1.351
4918.0152 41 1070 423 y¢SDf— fDy 0500 —

4938.8209 84 318 287 z'F°—e'Dy 2000 2.006
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which the empirical Landé factors of one of their levels has been measured with lower accuracy than usual. The
lines with l pl
% > 10%  and lgeg ~ gq ¥ | > 0.05 (4.41)
are also listed in Table 4 3 together with their values of g5™P and g; " (in columns 6 and 7 respectively). These
can be used instead of %% and g~5 in radiative transfer calculations, so that the Zeeman splittings of lines which
exhibit departures from LS-coupling can also be calculated correctly, as has been mentioned in Sect. 2.4.5.1.
Solanki and Stenflo (1984) also presented a method for determining geg values empirically from solar data
which is briefly described in the following. Since Iy scales with the Landé factor, an error in geg will cause it to
be either too deep or too shallow. If In{dy /dy) is plotted vs. S; (where dy and d; are the line depths of I and
I, while Sy is the line strength of I; see Sect. 4.4.1 for the exact definitions), then lines with sufficiently wrong
gegs values will lie some standard deviations away from the rest of the points. A Landé factor that is too small
results in a value of In(dy /d;) that is too Iarge and vice versa. The correct value of g.g is found by determining
the line depth, dy-, that the line must have in order to lie on the average curve described by the rest of the points.
If we denote the line depth of the I, profile calculated using g as d{;s, the effective Landé factor determined
thh this method as ¢33'®%, and its corresponding Iy line dept.h as i1, then the relation between g29k*r and

gt2 is of the form ‘
solar . LS 1 dLS -1 d%/ola.r 4.42
get ™ Jegf €XP | 1IN d[ n dr . ( . )

However, the reverse is not necessarily true, since the line depth of the (unblended) I, profile is also affected by
anomalous Zeeman splitting as pointed out by Mathys and Stenflo (1987a). They find that for lines with small
geg values and strongly anomalous Zeeman splitting, the higher order terms also play an important role, since
the depths of Iy and Stokes I are not affected in the same way by them. If n; and n, are treated as if they
represent I and Iy, formed in the same region, and LS coupling is valid, then

NIy (’\0) 5
n1(Xo)

is valid to first order for any line, or to any order for a Zeeman triplet (the minus sign has been explained earlier).
For such lines, the Stokes I and I, profiles will have the same depth (we have assumed that (B) is exactly
‘known). For a line with an anomalous Zeeman pattern Eq. (4.43) has to be replaced by

-1, (4.43)

) 2
ny Qo) o 1 @ 26\ 1 4
(o)~ 12 <5A’\”+9“I T2 ) 3o a0 (4.44)

if second order terms are also included. If g.g is sufficiently small, and “(12)’ pc(13) sufficiently large, then
11, (Ao)/nr(Ao) will be dominated mainly by the anomalous splitting terms, so that the depths of the Iy and
Stokes I profiles will differ considerably even when LS-coupling is strictly valid. In such a case Eq. (4.42) will
give wrong results. In view of this uncertainty we will not use the method of Solanki and Stenflo (1984) for .
determining further geg values.

4.4. Line Parameters and Their Statistical Analysis

4.4.1. Line Paramters

Stokes I and [y are parameterised exactly equivalently. We shall differentiate between the parameters of Stokes
I and Iy by giving the former an index I, while marking the latter with an index V. Following Stenflo and
Lindegren (1977) we introduce the following parameters (see Fig. 4.8). The line depth (written as d; and dy)
is determined from the minimum of a parabolic function fitted to the three lowest points. The width of the
line at the levels 0.1d, 0.3d, 0.5d, and 0.7d above the line bottom (written as vp,(0.1ds),...,vp,(0.7d;) and
vp, (0.1dv},...,vp, (0.7dy)). These widths are expressed, in velocity units, in terms of the formal Doppler
width of a Gaussian that has the same width at the respective level. This way of parameterisation has the
advantage that if the line profile has the shape of a Gaussian its width at any two levels will give the same
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Table 4.8a List of Fe I lines showing deviations from LS coupling

Wavelength Mult.  Transition gls gsg’t g ggme
4443.1998 350 b3R— z3D? 0.500 0.556 —  0.556
4556.9275 638 a’Dy— v B 0.833  0.930 1.335 1.740
4560.0909 823 z °P°— e %G, 0.375  0.609 1.657 1.238
4596.4113 823 2z SBY— e 5Gs 0.000  0.753 1.835 1.294
4779.4423 720  a ‘B — z Ry 1.000  0.817 0.817  —
4798.2670 1042 ¢ *By—t %Gy 0.833  1.167 0.677 0.922
4911.7808 984 z3Pp—e 3Dy 1.500  1.351 1.168 0.801
4945.6390 1113 -z °B°— f 5Gs 0.333  0.791 1.493 1.142
4962.5756 1097 ySF°— e °Hs 0.583 0.745 1.417 1.225
4999.1135 1040 ¢ *FB— z 'Y 1.333 1.481 0.677 1.079
5022.2420 965 2z 3Fp — e 3D, 0.750  0.622 0.682 0.801
5029.6208 718  a ‘B — D¢ 1.000 1.30? 0.817 1.147
5074.7556 1094 ySF2— e %Gy 0.900 1.056 1.344 1.248
5088.1559 1066 y D§ — h 5D, 1.500 1.349 1.492 1.435
5136.0929 1036 ¢ *Fp— z !P? 0.500  0.382 0.677 1.266
5137.3897 1090 y °F° — h °D, 1.200  1.381 1.417 1.435
5213.8071 962 23R —e5G, 1.250 1.466 1.086 1.238
5236.2039 1034 ¢ 3H— SP? 0.250  0.397 0.677 1.257
5329.9932 1028 ¢ °F— 1H? 0.500  0.657 1.264 1.067
5373.7136 1166 z °G§— f °F 2.000 1.666 0.791 1.141
5410.9197 1165 2z 3G¢ — e °H; 0.875  0.991 0.791 0.871
5461.5530 1145 2z5G3— f5Gs 1.500  1.949 0.335 1.142
5560.2156 1164 2 °G{— f 3Dy 0.625 0.863 1.100 1.258
5587.57565 1026 ¢ 3B — v 3F? 1.500  1.206 1.066 1.122
5619.6002 1161 2z 3G¢— f 5Ge 1.667  1.510 1.248 1.323
5624.0264 1160 2 %G — h °D, 0.600  0.874 1.248 1.435
5633.9504 1314 <z ®F°— ¢ 5Gs 1.167  1.427 1.390 1.407
5677.6875 1057 y D — e 5Gs 0.800 1.088 1.496 1.360
5686.5372 1182 y3F? — ¢ °Hy 0.600  0.835 1.246 1.109
5717.8379 1107 =z 3B — e D, 0500 0.801 —  0.801
5720.8950 1178 y3F°— f5G, 1.750  1.402 1.246 1.142
5862.3651 1180 y3F° — e Gy 1,100  1.252 1.246 1.248
5881.2822 1178 y 3B’ — f5Gs 1.000  1.114 1.086 1.142
5930.1894 1180 y3F'— e %Gs 0.833  0.996 0.688 0.842
6007.9656 1178 y3E2— f 5Gs 1.167  1.596 0.688 1.142
6027.0562 1018 ¢ °Fy— v °G¢ 1.100 0.961 1.264 1.163
6034.0365 1142 2z °GZ — g 5D, 0.800  0.680 1.218 1.487
6056.0114 1259 y 3D — f °F, 1.125  0.866 1.324 1.141
6165.3641 1018 ¢ 3B — v °G? 1.000  0.686 1.066 0.914
6252.5642 169 o °Hy— z %G¢ 1.083 0.950 1.163 1.248
6303.4671 1140 z5G¢— e G 1.500 1.262 1.332  1.360
6393.6113 168 o 3Hzg— z °G? 0.800  0.908 1.038 1.103
6494.9910 168 a *Hy— 2z °G¢ 0.917  1.025 1.163 1.218
6704.4794 1052 y °Df — e °B 0.250 0.187 1.492 0.622

Table 4.3b List of Fe II lines showing deviations from LS coupling

Wavelength Mult.  Transition g3 gxr v cmp
4178.8590 28 b'Rp—z %, 0786  0.924 1583 1.29
4369.4030 28 b*Bp—z*F), —0.167 -0.114 2.68 0.445
4520.2258 37 bR — 2 By, 1.500  1.336 1.307 1.29
5284.1091 41 a®%§p—z* 72 1.071 0.653 1.996 1.399
5991.3749 46  a‘Gyp—z°F), 0909  0.803 1.237 143
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number. In the following, if the level to which the width refers is not explicitly stated, then the 0.5d level is
meant (i.e. vp,, respectively up,, refer to vp,(0.5d;), respectively vp, (0.5dy)). The line strength (Sr and Sy)
is parameterised by the area of the profile below the level 0.5d;, and is expressed in Fraunhofer (equivalent width
in wavelength units multiplied by 10%/A). For a Gaussian the equivalent width is 3.4336.5, while for a purely
Lorentzian profile it is 5.50395. This parameter has been chosen instead of the full equivalent width in order to
minimise the effects of small blends in the wings. The central wavelength of the I and Iy profiles are termed
Ar and Ay. The Stokes I wavelength is determined using four different methods. a: From the minimum of a
parabola fitted through the three lowest points. b: By determining the centre of gravity of the lower half of the
line. ¢: From the centre of the line chord at 0.1d above line bottom, where d is the total line depth. d: From the
centre of gravity of the lowest 10th of the line (i.e. of the area below the 0.1d chord). The second method does
not give exactly the core wavelength, but is less susceptible to noise than the other three. It should be noted
that the zero-crossing wavelength of Stokes V is identical to the wavelength of the minimum of /i, and both are
represented by the same symbol. In practice Ay is determined directly from Stokes V.

Fig. 4.8 Illustration of the line parameters de-
scribed in the text. The shaded area
corresponds to the line strength S.
This illustration is equally valid for
Stokes I and the Iy profile. In the
former case all parameters have in-
dex I, in the latter case index V' (from
Stenflo and Lindegren, 1977).

continuum

Fig. 4.9 Illustration of line parameters of 0.8 ; ! ; !
the Stokes V profile (cf. text). j i
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In addition to these parameters of J and [y we have also determined some parameters of the Stokes V profile
directly. These are illustrated in Fig. 4.9. The amplitudes ap and a, of the blue and red wings (in % polarization)
are determined by fitting a parabolic function through the three points around the peak. The wavelength of the
zero-crossing, Ay, at which Stokes V changes sign is determined by linear interpolation; the curvature of the
profile is sufficiently small near Ay to justify this. The areas of the blue and red wings of Stokes V' are represented
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by 4y and A, which are defined as

Ay
Ap =/ V(A)dA,
, (4.45)
A, =/ V(A)da.
Av
A1 and Ay > ), are chosen to lie far in the wings, so that V(A1) = V(A2) = 0. With these definitions of as,
ar, Ap, and A, we can define the following asymmetry parameters of Stokes V. Absolute area and amplitude

asymmetry
L AA= A - 4, (4.46)
e Aa = ap = a, ,

and relative area and amplitude asymmetry

54= o4 :
Ap+ 4, (4.47)
ap — Ay )
fa = 2T
ap + Ay

The determination of line parameters has been automated to a large degree. A program, IVPAR, has been
written which reads the solar FTS data, searches therein for the lines from a given line list, calculates the Iy
profile for each line (including the correct setting of the continuum}, and then determines the parameters described
above for Stokes I, Stokes V' and Iy. The code also carries out the same procedure for line profiles calculated
with the radiative transfer code STOKES (described in chapter 2}, so that exactly equivalent parameters are

" determined for observed and calculated profiles, which greatly facilitates their comparison. The extension of the
code to include further parameters, or e.g., parameters of Stokes @ is quite straighforward.

In addition to these parameters, determined from the solar data, we shall also use the atomic parameters
listed in Sect. 4.3.1 (which are of course identical for Iy and Stokes I), namely the laboratory wavelength of the
line, A1pb, the effective Landé factor, geg (eff,n, 18 used whenever available), and the excitation potential x. (in
eV), or its extension x* defined to cover both neutral and ionised lines. x* = x. + xi, with x; = 0 eV for Fe |
and x; = 7.87 eV for Fe II {representing the ionisation potential of Fe I).

4.4.2. Scatter Plots and Regression Analysis

Once the various parameters of the selected Fe I and Fe II lines have been determined, we can search for relations
between them by plotting different combinations of them against each other following Solanki and Stenflo (1984,
1985). An example is shown in Fig. 4.10, where vp, and vp, of the Fe I lines observed in a network region are
plotted vs. S;. The stars represent Fe | lines with x. < 3 eV, the circles Fe I lines with x. = 3 eV. The reason
for not using Sy as the abscissa in Fig. 4.10b is the following: since the average field (B) is not known a priori,
the values of Sy and S; cannot be directly compared to each other, since the scales differ by a constant but
unknown factor, as explained in Sect. 4.2.4. Using S; as abscissa in both diagrams of Fig. 4.10 thus facilitates
the comparison between Stokes I and Iy data.

Several things are apparent from Fig. 4.10. Firstly, the scatter in the vp, values in Fig. 4.10a is smaller than
the scatter in Fig. 3 of Stenflo and Lindegren (1977) which illustrates the superiority of the FTS spectra over
the Jungfraujoch atlas data (Delbouille et al. 1973) which was used by them. One reason for this difference may
be the better instrumental profile of the Kitt Peak FTS. Another may be that the Jungfraujoch data were not
obtained simultaneously, so that regions with different amounts of activity may have been observed in the data
analysis.

Secondly, the vp, of the weaker Iy profiles show a considerably greater scatter than the corresponding vp,
values. This is partly due to the smaller signal to noise ratio in the Stokes V data, but a large part is due to
the larger Zeeman broadening of Iyy. This is indicated by the fact that the scatter is mainly in the direction of
greater up, and can be verified by carrying out a regression analysis. If we neglect this scatter, then we see that
although the weak and medium strong Iy profiles have a width similar to those of the I profiles (in agreement
with the results of Stellmacher and Wiehr, 1971, and Harvey et al., 1972}, for the strongest lines vp, < vp,. We
will show in chapters 5 and 7 that the I line widths are determined by an intricate interplay of Zeeman and
velocity broadening, and of temperature effects. We also note that the splitting of the vp, curve according to
the excitation potential x. of the lines is absent for vp, .
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Fig. 4.10 Line width vp (km sec™!) plotted as a function of Stokes I line strength, S; (Fraunhofer, F), for an
: enhanced network region. a vp, width of Stokes I, b vp,, width of I;;. Lines with x. < 3 eV are
represented by a star, those with x. > 3 by a circle.

Stenflo and Lindegren showed that the dependence of vp, on line strength, excitation potential, Landé
factor, and wavelength may be expressed by a regression equation of the following form:

vp, = Z1 + 2251 + 2357 + ZavoXe + T592g A /vo + z6 (927 ) A3/ v, (4.48)

where the z; are the regression coefficients and vg is a second order polynomial fit to vp, as a function of Sy
alone
— 2
vo = Y1 + Y257 (4.49)

The regression equation Eq. (4.48) can also be used to describe vp,, although the meanings of some of the
coefficients will be changed.

Instead of treating vp, and vp, individually, we can also plot their difference vp, —vp, vs. 51, as has been
done in Fig. 4.11. The Fe II lines have now also been plotted in addition to the Fe I lines. The data are from
the same region as those in Fig. 4.10. The symbols: stars represent Fe I lines with x. < 3 eV, circles Fe I lines
with xe > 3 ¢V, and the solid squares Fe II lines. This diagram has great value for the diagnostic of the velocity
structure in fluxtubes (see chapters 5 and 7). The advantage of using differences of parameters (vp, — vp, and
later In dy — In dy), instead of simply the parameters of Iy themselves lies in the fact that the former are much
more sensitive to small variations in the atmosphere between the fluxtubes and their surroundings.

For the Fe I lines a regression equation identical to Eq. (4.48) can be written to describe vp, — vp,. In
principle it would be possible to extend the regression equation Eq. (4.48) to include Fe II lines as well if we
replace x. by x*. However, a glance at Fig. 4.11 shows that the positions of the Fe II lines in that diagram
cannot be extrapolated in a straightforward manner from the relative positions of the Fe I lines with different
x*. We therefore refrain from extending this analysis to Fe II lines.

Perhaps we should add that the difference in width between observed Fe I lines of equal S;, but different
excitation potentials, stems mainly from the fact that the Stokes I profiles of high excitation lines are broader
than of the low excitation ones. The larger average width of the medium strong and strong Fe II lines compared
to the Fe I lines, on the other hand, is due mainly to the difference between the V profiles of these lines, since
the relative widths of the Stokes I profiles of Fe I and II lines would tend to produce the opposite effect in the
vp, — vp, vs. 51 diagram.

These regression equations can be used to obtain a variety of results. They confirm that vp, is practically
independent of x., that vp, and vp, —vp, show a significant dependence on gZ; A? /vy consistent with the presence
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Fig. 4.11 Difference in line width of the
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of kG magnetic fields inside fluxtubes. This dependence when subtracted from the data in an appropriate manner
leads to a decrease in the scatter of vp, and vp, — vp, vs. 51 for the weak lines. The determination of field
strengths with such a regression analysis will be discussed in detail in chapter 6.

Next let us turn to a short discussion of In(dy /d;) vs. Sr, shown in Fig. 4.12a. The fact that In{dy /d;)
exhibits such large values is only an artifact of our using (B) = 1 when calculating [/ for reasons stated earlier.
The seemingly large scatter of the weak lines is mostly of solar origin, and mirrors the fact that In(dy /dp)
is strongly dependent on the excitation potential. This can be confirmed by carrying out a regression of the
following form,

In(dy /dr) = 21 + 2251 + 2357 + zax* + Tsx*h(Sr) + 26 g2g A2 V3 + 27 (gZg ) N /VE. (4.50)
Here

h(S[) = 57+ 0.13[2 = azS?., (4.51)

Thus two additional regression coefficients ¢; and as need to be determined simultaneously with the z; coefficients.
The complicated x* terms are necessary to correctly reproduce the x* dependence of both Fe I and Fe II
simultaneously. Note that the zg and z7 terms now contain the factor 1/vZ instead of 1/vp, which stems from the
fact that the line depth is influenced somewhat differently from the line width by the Zeeman effect. The effect of
carrying out this regression and subtracting the dependence on x*, geg and A is shown in Fig. 4.12b. The scatter
of the weak lines is greatly reduced by this procedure. Again the value of the Zeeman splitting coefficient z¢
shows the presence of kG magnetic fields in fluxtubes. More details regarding the magnetic field determination
will be given in chapter 6. The shape of the data curves in the scatter plots In{dv /d;) vs. S; and In(dv /d;) vs.
x* containg information on the temperature structure (cf. chapter 5), while the absolute value of In(dv /d;) is a
measure of the filling factor (cf. chapter 8).

We can obtain some qualitative information on fluxtube temperature from In(dy /d;) vs. S directly, if we
note that the strongest Fe I lines in the diagram have depths relative to the continuum, d;, close to 1 in the quiet
photosphere. Therefore, due to saturation, in the fluxtube these lines cannot have significantly larger depths than
outside. This gives us a limit for placing the zero line correctly in Fig. 4.12. It must lie at or above the strongest
Fe I lines. Thus the depths of the weaker lines are reduced in the fluxtube, compared to outside. Further, Fe
I lines are more strongly weakened than Fe II lines of equal strength. This suggests that this weakening is a
temperature effect, Fe I being strongly dependent on T while Fe II is not. This is due to the fact that over 90
% of the iron atoms are ionised in the solar photosphere (e.g. Nordlund, 1984), so that when a small number of
atoms changes state due to a change in T' (following the Saha-Boltzmann equation), the percentage change will
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Fig. 4.12 The logarithm of the ratio of the line depths of Iy and I, In(dy /dr), plotted vs. S; for an enhanced
network region. The symbols are the same as in Fig. 4.11. a Original data. b In(dv /d;) reduced to
the case of x* = 0 and geg = O using Eq. (4.50).

be considerabley larger for neutral iron than for ionised iron. The fact that the Fe I lines are weakened (and not
strengthened) suggests that T is larger in fluxtubes than in the non-magnetic photosphere as has been suggested
by a number of previous studies, e.g. Chapman and Sheeley (1968) and Harvey and Livingston (1969).

Finally, consider a pair of scatter plots providing information on the line shape. In Fig. 4.13a (for Stokes I)
and b (for Iy/) the line width at the 0.1d level has been plotted vs. the line width at the 0.5 level. By virtue of
the definition of vp, a line with a Gaussian profile would fall on the 45° line in the diagram. Lines with more
U-shaped profiles lie above this line, whereas lines with more V-shaped profiles lie below it.
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Fig. 4.13 Line widths at the level 0.1d plotted vs. line width at the 0.5d level.
vp,(0.5dr). b Stokes V: vp, (0.1dy) vs. up, (0.5dv ).

a Stokes I: vp,(0.1d;) vs.

The main difference between the behaviour of the I and Iy profiles appears to be that the Iy profiles do
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not show any significant distinction between lines of different excitation potentials, in contrast to the Stokes /
profiles. The different behaviour of x. < 3 eV and x. = 3 eV lines in Fig. 4.13a may be a non-LTE effect.
The x. < 3 eV levels, being metastable, are overpopulated as compared with the higher levels (Lites, 1972). An
increase in temperature inside the fluxtube might explain the merging of the x. > 3 eV and x. < 3 eV curves of
the Iy diagram, since it would raise the population of the higher levels relative to the lower ones.

4.4.8. Tests of the Influence of the Stokes V. Asymmetry on the Analysis of Iy

The simple renormalisation process of the continuum of Iy discussed in Sect. 4.2.5 may affect the profiles in
subtle ways, and is therefore a potential source of error for the determination of temperature, filling factor, or
velocity. For example we only compensate for the area asymmetry of Stokes V, so that, e.g., the amplitude
asymmetry (which is not linearly related to the area asymmetry, cf. chapter 8) could influence the shape of the
profile. Therefore, in order to obtain a feeling for the way in which this renormalization process affects the
results, test runs have been made using unrenormalized Iy profiles as the basis of the statistical analysis. The
parameterisation is then no longer unique with, for example, two different line depth values possible per line (see
Fig. 4.5). Using either of these values does not change the determined temperature structure by more than a few -
percent. Furthermore, the values of the magnetic field strength and the magnetic filling factor are not affected
significantly.

The half widths of the blue and red halfs of the unrenormalised lines have also been determined and compared
to the half widths of the renormalised lines. This has been carried out for a number of lines with large absolute
and relative asymmetries. In all but one case the differences are found to be considerably smaller than the scatter
due to noise.

The results of these tests confirm that the Stokes V area asymmetry and the simple method used to counter
its effects do not have an appreciable effect on the subsequent analysis, or on the derived values of physical
quantities inside fluxtubes.

4.5. Fluxtube Models for the Calculation of Stokes Line Profiles

Some qualitative properties of fluxtubes can be read directly from the scatter plots, as has been shown with the
help of a few examples in the last section. However, in order to obtain more quantitative information, line profiles
have to be calculated in a model of a small magnetic fluxtube and compared with the observational data. As a
first step, a very simple model is required, which would allow us to study theeffects of changing a small number
of free parameters on the profiles of a sample of spectral lines with a wide range of properties. With such a model
it is possible to fix the range of values which these parameters may possess in fluxtubes, and also to explore the
diagnostic contents of the various scatter plots. Such a model for exploratory calculations is described in Sect.
4.5.2. For the later, more detailed, investigation of the fluxtube temperature and velocity structure a somewhat
more sophisticated model is used. It is briefly described in Sect. 4.5.3. The spectral lines calculated with these
fluxtube models are also described in Sects. 4.5.2 and 4.5.3. A considerably more sophisticated model, which
may be useful for future empirical modelling, is presented in chapter 9.

4.5.1. Basic Assumptions

Both kinds of models described here are based on the same fundamental assumptions. These are:

a) The model is one dimensional: i.e. none of the physical quantities varies across the cross-section of the
fluxtube, and only a one line of sight radiative transfer along the fluxtube axis is carried out. Almost all
model calculations have been carried out for the centre of the solar disk and have only been compared to data
with g > 0.92. The fluxtubes are assumed to be vertical. We wish to stress that for the many-lines analysis
chosen to take maximum advantage of the FTS data, a two dimensional model would require prohibitive
amounts of computer time. At this stage in the analysis it would therefore be unnecessarily restrictive, since
it would not allow a sufficiently extensive grid of parameters to be tested.

b} The structure of the fluxtube is assumed to be independent of dynamical effects (static models}, i.e. mass
motions in it and in its immediate surroundings are assumed to have velocities which are small compared to
the sound speed.

¢} The so called thin fluxtube approximation is used, which assumes that magnetic tension does not affect the
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structure of the fluxtube. No external magnetic field is assumed to be present. The magnetic field strength
can then be determined at each height from the horizontal balance of the gas pressure.

2
Eﬁ}?fle' + Pauxtube = Pexternal (4-52)
A test for the validity of this approximation is presented in chapter 9, where the thin fluxtube approximation
is compared with a second order expansion solution (see also Pneuman et al., 1986).

d) As adescription of the external atmosphere, the HSRASP (Chapman, 1979) or some slightly modified version
of this model is used (the modifications will be described later). The HSRASP is a downwards extension
of the HSRA (Gingerich et al., 1971) into the convection zone, by combining it with the convection zone
model of Spruit (1974). This extension is required by the fact that, due to the Wilson depression, the light
in a fluxtube may come from a deeper layer than in the surrounding atmosphere. In the following the term
HSRA will in general refer to the HSRASP. By assuming such an average model for the external atmosphere,
we have neglected all the inhomogeneity known to be present in it. Since we generally compare our Stokes V
data with a Stokes I spectrum obtained in a quiet region, it is irrelevant for our analysis whether fluxtubes
modify the structure of their surroundings or not (cf. Spruit, 1977; Deinzer et al., 1984b).

e) All empirical calculations of line profiles are carried out in LTE with the modified code of Beckers (1969a,b)
described in chapter 2. Some tests on the validity of LTE in the fluxtube photosphere for Fe I and II lines
are given by Solanki and Steenbock (1987).

4.5.2. A Model for Ezploratory Calculations

For first exploratory calculations it is assumed that the temperature difference between the model fluxtube and
its surroundings is approzimately linear at equal r. The exact method of calculating the temperature is slightly
more complicated. First the temperature structure is prescribed in the absence of a magnetic field, i.e. with a
Wilson depression Zwy = 0. Two parameters then describe the temperature structure:

ATiop = Tauxtube — THSRA at  Ts5000(HSRA) = 10™* and (4.53)
. : AThot = Tuxtube — Tasra a3t 75000(HSRA) = 1. '

"The temperature difference at all heights Z (still for Zy = 0), is found by linear interpolation between AT},p, and
‘ATyot. The pressure inside the fluxtube is assumed equal to the pressure outside the fluxtube at equal Z. After
this, the fluxtube atmosphere is shifted down by a Wilson depression Zj, here defined as the height difference
between levels of equal pressure inside and outside the fluxtube. Note that the Wilson depression defined in this
manner is in general not equal to the difference in heights between the levels with 75000 = 1 inside and outside
the fluxtube. The magnetic field can then be calculated in the thin fluxtube approximation Eq. (4.52). The
electron pressure P.(P,,T) is, for this exploratory model, determined through interpolation in the tables given
by Bashek and Scholz (1982) and Allen (1973). Finally, the absorption coefficient x(P,, T') is determined from
the graphs given in Unsdld (1955), which are based on the calculations of Vitense (1951).

This exceedingly simple model, therefore, contains only three essential free paramters: Zw, ATiop, and
ATyos. In addition the microturbulence velocity inside the fluxtube Ef’n‘;z““be is assumed to be some fixed fraction
of a height dependent microturbulence velocity in the surroundings §§;§RA. This gives another free parameter
Fmic = gluxtube /eHSRA = which is not of great consequence for the preliminary investigations carried out with
this model, as long as we choose fi;c <1, which is the case for all the test calculations.

No additional line broadening mechanism is assumed except collisional damping for which no empirical
corrections are made. ¢HSRA jg determined by fitting the line profiles of a quiet region with the HSRASP as
model atmosphere. A total of 96 hypothetical Fe I lines with different line strengths (i.e. g* f values), excitation
potentials (0, 3, 5 eV), and Landé factors (0, 1, 2, 3) are calculated for each set of model parameters. All the
hypothetical lines have A = 5000 A. In addition eight hypothetical Fe II lines with gog = 1, xe = 3 eV, A = 5000
A, and varying line strength are calculated. The modest number of hypothetical Fe II lines has been chosen
due to the small number of unblended Fe II lines in the visible solar spectrum, and due to the small range of
variations in g.g and x. of these lines.

Test calculations have also been carried out for lines with A = 6000 A, for Fe II lines with x. = 2.5 ¢V and

4 eV, and for Fe II lines with geg = 0 or 2. However, the resulting effects on the line profiles are found to lie
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within the scatter in the observational data. We therefore refrain from using these additional hypothetical lines
in the further analysis.

4.5.8. A Model for the Empirical Determination of Fluztube Properties

In this thin fluxtube model, the temperature is first prescribed at all height points in the atmosphere, Tauxtube (4.
No constraint is made on the form of the temperature stratification. The pressure is then calculated from
hydrostatic equilibrium for a given value of Pauxtube(Z = 0},

Z VA
Pﬂuxtube(z/),:»Pﬂuxtube(Z = 0) exp { — o m , (4.,54)

where H(Z) is the pressure scale height in the fluxtube given by

H(Z) R kTﬂuxtube(Z)Ré
- Gmng ’

(4.55)

In Eq. (4.55) k is Boltzmann’s constant, Rg is the solar radius, G is the gravitational constant, my, is the mean
particle mass, and Mg, is the solar mass. The value of Pyyxsube(Z = 0) is fixed by the magnetic field strength
prescribed at that height, or equivalently by a Wilson depression Zw, as defined in Sect. 4.5.2. B(Z) is calculated
using Eq. (4.52). P.(Z) and x(Z) are determined using the LTE code of Gustafsson (1973). This code is very
versatile with regard to the atomic data which is input to calculate these quantities. As used in this thesis, the
code takes into account the contributions of H (2}, He (2), C (3), N (3), O (2), Ne (2), Na (2}, Mg (3), Al (4},
Si (3), S (3), K (2), Ca (3), Cr (3), Fe (3), and Ni (3) to P. and x. The numbers in brackets are the number of
ionisation stages which are considered for the particular element.

The microturbulence velocity of the model atmosphere can be prescribed independently for each height, and
there is also a provision for the specification of a macroscopic flow velocity, which is useful for the calculation of
Stokes V asymmetry (cf. chapter 8). .

Since information on the velocity structure in fluxtubes is to be obtained with this model, some care has to
be taken with the line broadening mechanisms, specially the damping. The Unsdld approximation to Van der
Waals damping is generally used in the literature and we shall adopt it as well (cf. Sect. 2.4.5.3). However, there

‘are varying claims as to the need for an empirical correction factor, 6r for I'g with

Tirue = 6rls. (4556)

Holweger (1979) has suggested that ér ~ 2.5, as a result of his W), analysis of a large number of Fe I lines. This is
in accord with the theoretical calculations of Brueckner (1971) and O’Mara (1976). Blackwell and Shallis (1979),
on the other hand, find that ér = 1.0 for a few strong low excitation Fe I lines for which reliable g* f values
measured by the Oxford group are available (e.g. Blackwell, Ibbetson, Petford, and Shallis, 1979, and Blackwell,
Petford and Shallis, 1979). Finally Simmons and Blackwell (1982) present solar data which suggest thi or is a
function of multiplet number for Fe I, with ép increasing from 1.0 for Multiplet 1 to ér = 1.5 for Multiplet 207,
the multiplet with the highest x. value for which the Oxford group has measured oscillator strengths. In view
of these conflicting claims many of the calculations have been carried out twice; once with ér = 1 and once with
bp = 2.5.

Two sets of thirty hypothetical Fe I and II line profiles each, one for ér = 1 and the other for ér = 2.5,
are calculated for each set of fluxtube model parameters. Two separate sets are needed since changing I’ also
changes the strengths (S;) of the stronger lines with their prominent damping wings. Both sets of lines are
divided into three groups, each containing ten lines of differing strengths. The first group is composed of ten Fe
I lines with x. = 1.5 ¢V, the second group of Fe I lines with x. = 4 eV, and the third group of Fe II lines with
Xe = 3 V. All lines have A = 5000 A and are Zeeman triplets with g = 0. This value of the Landé factor can be
chosen since the data are first reduced to g.g = 0 before they are compared with the calculated profiles.

In addition to these hypothetical lines, the profiles of eight Fe I and two Fe II lines, selected from Tables
4.1 and 4.2 according to criteria described below, are also calculated for part of the work. Their relevant atomic
data are given in Table 4.4. These lines serve to check how well the complete line profile is reproduced by fitting
a small number of line parameters. An additional reason for fitting individual lines is to see how large the effects



Table 4.4 List of lines selected for full profile comparison between models and observational data

Ion X (A) AX  Multiplet  Transition x. (eV) ¢ P 9}%},};—2 logg* f(lab)  logg* f(other Solar) logg*f ﬁf;(}{%l logg*f %&%‘-{- or
[o}.(14]  [6].{14]  [14] [10] (6],(14] [13}[14]  [13] % 7 (HSRA)(}) (HEM)(x) (1)

Fe 1 5048.4413 82 984  z°Df— ¢y 3.96 1.500 1.431 48 —1.19 [5] — -1.02 1.48 -1.09 1.26 25
Fe I 5083.3450 73 16  a’B—2z°F 0.96 1.250  1.250 00 -2.958[1] —2.99 [8] -3.01 0.89 —-2.95 102 11
Fe 1 5127.6836 29 1 a®Ds— 27Dy 0.05 1.000 0.993 0.7 —6.125[2] —6.13 [8] ' -6.02 1.27 -6.02 127 10
Fe 11 5197.5742 -28 9 a'Gr—= 417;‘} 3.23 0.700  0.671 43 -2.18 [11] —-2.38 [11] —-2.20 0.95 —-2.28 079 25
Fe 1 5247.0585 97 1 a®Dy—27D§ 0.09 2.000 1.992 0.4 —4.946[2] —4.88 [8] —4.98 0.92 —-4.94 101 10
Fe 1 5250.2171 88 1 a®Dy— z'Df 0.12 3.000 2.999 0.03 —4.938[2] —4.86 [8] —4.97 0.93 —4.92 104 10
Fe 1 5293.9609 -2 1031 ¢°B—udD; 4.14 1.000 0.976 25 —1.80 [9] -1.95 [8] —-1.67 1.35 -1.71 1.07 25
Fe 1 5383.3792 103 1146 2 %G9 — ¢ °Hg 4.31 1.083  1.123 36 +0.52 [5Ll9]  +0.50 [8] +0.37 0.71 +0.37 071 25
Fe 11 5414.0736 6 48 a'Gyy—z 4_0;% 3.22 1.206  1.190 1.3 -3.28 [3],j11] -3.79 {3],—3.29{11] —-3.29 0.98 . —3.40 0.76 25
Fe 1 5445.0502 78 1163 2°Gy — ¢ %G 4.39 1.200  1.248 —-3.9 +0.04 15} —0.12 [8] ~0.06 0.79 -0.09 074 25

(1) Abundance ¢ = 7.54 and microturbulence £,;, = 0.8 km sec™! assumed. Blackwell and Shallis (1979) find € between 7.496-7.545, £,;c between 0.6-0.8 km sec™?.

(x) Holweger and Miiller (1974). Abundance ¢ = 7.70 and microturbulence §mic = 0.9 km sec™* assumed. Blackwell and Shallis (1979) find € between 7.640-7.674, £uic

" between 0.8-0.9 km sec™!. [3] find ¢ = 7.69, £,,;c = 0.95 km sec™!

(}) Simmons and Blackwell (1982) give empirical enhancement values only for multiplets < 209, i.e. for x, < 2.6 eV. For such lines we use their §p values, whereas for
Xe 2 4 €V we assume 0p = 2.5, as suggested by Holweger (1979). For Fe II, we take ép = 2.5.

[1] Blackwell, Petford and Shallis (1979)

[2] Blackwell, Ibbetson, Petford, and Shallis (1979)

[3] Blackwell, Shallis, and Simmons (1980)

[4] Bridges (1973)

[5] Bridges and Kornblith (1974)

[6] Dravins and Larsson {1984), Dravins et al. (1986)

[7] Fubret al. (1981). All the data in this column are from this reference. The numbers in square brackets after each g* f value mark the reference of the original source.

[8] Gurtovenko and Kostik (1982)

[9] May et al. {1974}

{10} Moore (1972)

[11] Phillips (1979)

[12] Rutten and Van der Zalm (1984)

[13] Solanki and Stenflo (1985)

{14] Stenflo and Lindegren (1977)

[15] Wolnik et al. (1970)
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of non-zero Landé factor and anomalous Zeeman splitting are on the derived velocities and temperatures. The

following criteria have been used to select the lines:

¢  The lines should be unblended. The Stokes V profiles of approximately 50 candidate lines from Tables 4.1
and 4.2 were checked by eye for the presence of blends hidden in Stokes I.

47 A minimum number of lines should cover the S; — x* plane as completely as possible, to maximise their
diagnostic capability (cf. Fig. 4.14). Due to the absence of unblended Fe lines between x* = 5.5 eV and
x* = 10 eV in the visible part of the solar spectrum, a gap in this region is unavoidable.

7 The chosen set should allow the determination of the magnetic field strength. Therefore both Fe I 5250.2 A
and Fe I 5247.1 A are included. The comparison of their Iy, profiles also provides a check on the validity of
the weak field approximation. A

w The lines should be formed in LS couphng Therefore only lines with |(gegrLs = Gefemp)/Jeffemp| < 5% have
been chosen. Lines for which the empirical (laboratory) effective Landé factors are not known, have not
been chosen. .

v The lines should be present in our data set. In order to be able to compare model profiles, both with our
data at disk centre {observations of 1979) and later also near the limb (1984 observations), the wavelength
range has had to be limited to between 4900 A and 5500 A. It is important to have all the lines in the
same F'TS spectrum, since for example differences in the filling factors of two observed regions can make the
intercomparison of their Stokes V profiles unreliable. In addition, a spectrum obtained near disk centre in a
very quiet region, which is useful for determining the g* f values of the lines, is available in this wavelength
range.

v The chosen lines should not be strongly affected by noise. This can be a problem for the Stokes V' profiles
of lines with small geg and/or small St values. For this reason no lines with geg < 0.7 are to be found in
the list. However, even then the signal to noise level for the Stokes V profile of very weak lines like 5127.6 A
can be as low as 10 for the 1979 data. These lines have been retained nevertheless, since they are of interest
for checking the fluxtube temperature. Problems with the noise are considerably increased in the 1984 data,
which we shall not consider in such detail here.

vit If possible, the laboratory wavelength should be accurately known, in order to allow detailed modelling of
velocity fields if required.

v133 Finally, at least one measurement of the line’s oscillator strength must be available in the literature, if
possible of good accuracy.

Fig. 4.14 Excitation potential, measured from 12 : ' : ‘ : ' : '
the ground state of Fe I, x* vs. S . * 5414.1 < 5197.6 L
of the 10 lines listed in Table 4.4. 10 - L
The dashed line marks the ionisation i I
potential of Fe L. > s R
EOEE .
+ 6~ -
>
" 5445.1
Il 4 52?4'0 5048.4 i . 5383.4
* .
>
2 - »
+5083.3
5127.7 5247.1, 5250.2
0 iy T x T ; ‘ i l
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Of course, some compromises have had to be made. For example, not all the lines have well known ¢* f values,
the situation being particularly precarious for Fe II. To see how well the published g* f values reproduce the
solar profiles, they have been used to calculate model profiles using the HSRA and the Holweger-Miiller (HM)
atmosphere models. Since the fits, specially for the former, are not always satisfactory, the g* f values have also
been derived empirically, again using these two model atmospheres and different estimates of the microturbulence.
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In Table 4.4 the log g* f values from the literature and from these solar data are tabulated and compared.
The column headed log g* f(lab) contains values listed by Fuhr et al. (1981), who have gathered them from
different sources, compared them, evaluated their uncertainties, and attempted to remove systematic differences.
The references to the original sources of the data are marked behind the individual g* f values. The next column
(headed log g* f(other Solar)) contains g* f values obtained empirically from the Sun by other authors. Note,
that although in a few cases Fuhr et al. have also used solar oscillator strengths, the values in these two columns
can be quite different due to the renormalisation carried out by Fuhr et al. (1981). In general the values of Fuhr
et al. have been used as a standard for comparison, since their results should be more internally consistent.

The procedure used to determine empirical g* f values is to first fit the lines whose g* f values have been
determined to great accuracy by Blackwell and co-workers of the Oxford group, thus getting estimates of the
abundance and the microturbulence. §p = 2.5 is chosen for the empirical correction to the damping constant, in
accordance with the findings of Holweger (1979). Using these values the rest of the g*f values are determined.
From the columns comparing the solar with the laboratory results, it is obvious that the HM model is superiour
to the HSRA for spectral line analysis, in agreement with the findings of Blackwell and Shallis (1979). On
the average, the HSRA ¢* f values are approximately 10% stronger than the laboratory values. The standard
deviation of the g* f ratios is around 35%. There also appears to be a trend towards larger ratios of solar g* f
values to the laboratory ones with decreasing line strength. For the HM model the scatter is reduced to close to
20% and the average of the g* f ratio is now almost unity. The difference between Solar and laboratory oscillator
strengths is less than 30% for all lines. The relatively large deviation of the strong line at 5383 A may be due
to NLTE effects. The Fe I 5127.6 A line is the only Oxford line to show a deviation larger than 10% (this is
the case for both models). This may be due to a small hidden blend. For the following analysis we shall use
the empirically determined solar g*f values. This has the advantage, that the Stokes I profiles are reproduced
with reasonable accuracy. Furthermore, if the radiative transfer code were to have certain inaccuracies, then it
would not affect the results of the following analysis significantly, since the analysis is based on the comparison
of Stokes I formed inside the fluxtube with Stokes I formed in the quiet sun and (hopefully) both profiles would
be affected in the same manner.




5. Temperature

5.1. Review of Empirical Fluxtube Temperature Determinations

There has been no lack of attempts to determine the temperature inside fluxtubes. First evidence for a higher
temperature in the then unknown ﬁuxtl;besﬂ‘compared to their surroundings was presented by St. John (1922)
when he observed that although Ti I lines have the same strengths in facula as in the quiet photosphere, the Ti
11 lines are strengthened in faculae. Local weakenings, named “line gaps” in the unpolarized profiles of Fe I lines
were first observed in faculee by McMath et al. (1956), who ascribed them to local temperature increases. Sheeley
(1967) found that these line weakenings (in the unpolarized profile) are correlated with magnetic fields. Chapman
and Sheeley (1968) showed that magnetic splitting is insufficient to explain the weakening in the network and
that a temperature rise of 100200 K is needed to explain this weakening. Harvey and Livingston (1969) used
the ratios between the Stokes V profiles of Fe I 5250.2 A and 5233.0 A to determine the ‘true’ weakening of
the Stokes I profile of Fe I 5250.2 A inside the magnetic element. They found that a temperature increase of
approximately 250 K inside small fluxtubes can explain the observed Fe I 5250.2 A line weakening. They also
observed that Fe II 5234.6 A does not change appreciably in magnetic regions and that the amount of weakening
of the unpolarised profile in fluxtubes is proportional to the amount of magnetic flux. Simon and Zirker (1974)
noted that although the magnetic flux is found in patches of 1-3" the bright filigree of Dunn and Zirker (1973)
has a size of only 0.2-0.3". Therefore, they argued, the magnetic regions are considerably larger than the bright
and hot regions. However, Tarbell and Title (1977) have shown conclusively, that Simon and Zirker (1974) did
not resolve individual fluxtubes, but only saw bundles of considerably smaller fluxtubes.

Besides these early determinations of temperature at a single height, a number of quantitative models of the
T(r) structure of facule have been made. Such models can be roughly divided into two classes, the one- and the
two»compo}lent models.

The one-component models do not use the concept of a fluxtube, assuming faculee to be horizontally ho-
mogeneous structures. These models therefore give some (ill defined) average of the properties of fluxtubes and
their non-magnetic surroundings. Many of the early facular models were of this type, as are most models of
chromospheric plages.

Examples of such one-component models are: Schmahl (1967, based on the centre to limb variation (CLV)} of
the continuum contrast), Stellmacher and Wiehr (1971, based on line weakenings), Stellmacher and Wiehr (1973,
based on observations of line weakening plus continuum contrast at one u value), Shine and Linsky (1974a, from
an analysis of the damping wings of Ca II K and Ca II 8542 A), Shine and Linsky (1974b, from the cores of Ca
I H, K, and the Ca Il IR triplet. This is a purely chromospheric model), Morrison and Linsky (1978, from Mg II
h and k at 2802.7 A and 2795.5 A respectively), Hersé (1979, a simple ‘step’ model based on continuum contrast
observations near 2000 A ), Basri et al. (1979, based on 0.8 spatial resolution HRTS Lyc measurements. This
is an upper chromosphere and lower transition region model), Vernazza et al. (1981, their model F of a bright
network region is based to a large extent on the spectrum between 400 and 1400 A. It is mainly a chromosphere
and transition region model).

The two component models, which make up the other main group, suppose facule to be composed of,
in general, a hotter component [composed of fluxtubes, which are called different things by different authors,
e.g. ‘microspots’ (Alfvén, 1967), ‘filigree’ composed of ‘crinkles’ (Dunn and Zirker, 1974), ‘magnetic elements’
(Livingston and Harvey, 1969), ‘magnetic knots’ and ‘micropores’ (Beckers and Scroter, 1968a), ‘facular granules’
(Hirayama, 1978), ‘magnetic filaments’ (Stenflo, 1971), ‘facular points’ (Mehltretter, 1974}, ‘gaps’ (Sheeley,
1967), ‘facular granules’ (Muller, 1977), ‘magnetic flux concentrations’ (Schiissler and Solanki, 1987)] embedded
in a non-magnetic atmosphere. In the photospheric layers this is certainly the superiour approach, since both
high resolution observations and indirect magnetic field measurements have shown that the magnetic field is
concentrated into small fluxtubes, which are well correlated with line weakenings and higher temperatures (e.g.
Sheeley, 1967; Frazier and Stenflo, 1978; Koutchmy and Stellmacher, 1978)

The first very simple two-component model was proposed by Rogerson {1961), based on obervations of
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continuum contrast between u = 0.1 and 0.2. Further examples of two-component models are those of Chapman
(1970, from the CLV of continuum contrast), Wilson (1971, from a reinterpretation of Chapman’s data), Stenflo
(1975, from the Stokes V profiles of Fe 15247.1 A and FeI5250.2 A), Muller (1975, from the CLV of continuum
contrast), Chapman (1977, 1979, from the unpolarized profiles of ten photospheric lines at disk centre), Hirayama
(1978, from the CLV of continuum contrast for x4 $ 0.5, obtained with a balloon borne telescope), Koutchmy
and Stellmacher (1978, from three Fe I lines and disk centre continuum contrast measurements), Stellmacher and
Wiehr (1979, based on eleven lines plus the continuum contrast as a function of wavelength. Theirs is actually
a three component model since they treat granules and intergranular lanes separately), and finally the recent
models of Walton (1987, based on the IR continuum contrast, eight unpolarized potospheric lines measured at
two disk positions, and the Mg Ib line wings. He includes the effects of fluxtube expansion on the line profiles).

The model calculations of fluxtube témperatures presented in this thesis also belong in the category of two-
component models. However, they differ in two major respects from most of the previous models. Firstly, they
are based on a statistical analysis of a few hundred Fe I and II lines which have a wide range of equivalent widths
and excitation potentials, whereas all previous two-component models are based on at the most a dozen spectral
lines, or on continuum measurements. Secondly, they are derived from simultaneous observations of Stokes I and
V. Therefore, unlike models based on Stokes [ alone, they do not suffer from the handicap that the filling factor
is a free parameter. Besides the models presented in sections 5.3 and 5.4 of this chapter, which are based on the
work of Solanki and Stenflo (1984, 1985) and Solanki (1984, 1986}, only the model of Stenflo (1975) is based on
Stokes V observations. As an additional constraint on the models, their continuum intensities are also compared
to observed values in the literature.

5.2. Exploratory Calculations

First exploratory calculations have been carried out with the model having approximately linear AT(r) described
in Sect. 4.5.2. It is stressed again that the main aim of this section is to find the line parameters which are most
sensitive to temperature, and determine their dependence on it. We also wish to find the approximate range
in which the temperature difference between fluxtube and surroundings may lie, and to obtain an idea of the
response of the different spectral lines to changes in the fluxtube model. The results described in this section are
based on the work of Solanki and Stenflo (1984, 1985).

Since we shall use the differences and ratios of the I and Iy profiles as diagnostic tools, the quiet Sun profiles
will have to be modelled first. For these exploratory calculations we assume that the line broadening is due to
microturbulence alone. Using the HSRASP as our quiet Sun model, the observed Stokes I profiles in a quiet
region, as represented by the vp, vs. S; and d; vs. Sy diagrams, can be reproduced fairly well. However, in
order to fit the line widths of the stronger lines properly an increase in &;c with height has to be assumed.
This contradicts the determinations of &mic(r) published in the literature, which often show a decrease of &pn;c
with 7 {e.g. Holweger, 1967; Lites, 1973; Gurtovenko, 1975). This discrepancy may in part be due to the fact
that we have used a too small damping constant for these calculations. However, since we are only interested in
differences and ratios between the parameters of the lines formed inside and outside the fluxtube, this absolute
increase in &nic should not affect the results of this section significantly. In Sect. 5.4 we shall use the superiour
approach of combining a depth independent microturbulence with a macroturbulence.

5.2.1. Results Based on Fe I Alone

First trial calculations have shown that the following three scatter plots are most sensitive to the temperature:
In(dv /d;) vs. Si, In(dy /dr) vs. xe, and vp, — vp, vs. ;. On the rest of the scatter plots the influence of
temperature is small. Let us consider the results of some test calculations and how they compare with the data.

We will keep the parameter fyic = 0.7, Zw = 50 km, and ATi,, = 500 K fixed and calculate line profiles
for ATyor = 0, 250, 500, 750, 1000 K. Changing Zw or fmic does not affect the following discussion in any
significant manner. The value for AT}, has been chosen such that it is roughly comparable with the = 400 K
excess in the network and in plages observed by Cook et al. (1983). They observe the continuum in the UV near
1700 A with the HRTS rocket experiment (at this wavelength the continuum is formed near 7 = 107* in the
external atmosphere). We shall calculate models with varying AT, in Sect. 5.2.2. As can be seen from these
parameters, only models hotter than the quiet Sun at equal r have been chosen. This choice is supported both
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by previous temperature determinations in the literature, and by the fact that the In(dy /d;) vs. Sr diagram can
only be interpreted in terms of line weakenings (cf. Sect. 4.4.2).

Fig. 5.1 shows the smoothed mean In(dv /d;r) vs. St curves for the Fe I lines of four 1979 FT'S spectra, where
with the help of a somewhat simpler regression than Eq. (4.50), In(dy /ds) has been reduced to the case of x. = 0
eV, geg = 0. The exact regression equation used reads

ln(dv /d[) = gy -+ 2257 + :1:35}l + ZyXe + T5SrXe T xegezﬁ/\z/vgo (5a1)

These data curves have been normalised such that their strongest lines coincide. Also shown are the model
calculations for ATiop = 500 K, and AThor = 0, 250, 500, 750, 1000 K respectively. The calculated lines have
geg = 0 and xe = 0 eV. It is obvious from t}\ze diagram that the fluxtubes in the observed network regions are
hotter than those in the observed plages,-at least in the deeper layers of the photosphere.
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Fig. 5.1 In(dy/ds) vs. S;. The thick curves repre- Fig. 5.2 The four thick lines represent the average

sent smoothed averages (cubic splines) of (cubic spline fit) of In(dy /d;) vs. x. when
the data, reduced to the case that x. = 0 the data have been reduced to the case
and geg = 0. The two steeper curves corre- that Sr = 0 and geg = 0. The two curves
spond to enhanced network elements, the with the steeper slope correspond to en-
other two to plage data. The thin lines hanced network regions, the other two cor-
have been calculated using models with respond to plages. The thin lines are theo-
ATiop = 500 K and (in the order of in- retical curves calculated from models with
creasing steepness of the curve) ATy, = ATiop = 500 K and ATho: = 0, 250, 500,
0, 250, 500, 750, and 1000 K. All curves 750, and 1000 K, in the order of increasing
have been shifted so that they coincide at slope, for lines with g.g = 0 and S ~ 0.
the S; of the strongest lines. The curves have been arbitrarily normal-

ized so that they coincide at y, = 0.

This difference in temperature between plage and network fluxtubes is supported by the plot of In{dy /d;)
v8. X, shown in Fig. 5.2. The same data, now reduced to the case §; = 0 and g.g = 0 using the regression Eq.
(5.1}, and the parameters of model profiles with g.g = 0 and Sy % 0 are plotted. The curves have been arbitrarily
normalised to make them coincide at x. = 0 eV. In the absence of secure values of (B), only the slope or shape
of In{dy /dr} vs. xe (and In(dy /d;) vs. Sr as well) contains information on the temperature, with higher fluxtube
temperatures giving steeper curves. The models plotted in this figure are the same as the ones previously shown
in Fig. 5.1. By comparing the two figures we see that none of these trial models can fit In(dy /d;) vs. Sr and
In(dv /d;r) vs. xe simultaneously. We will see in Sect. 5.3 that this is mainly due to the approximately linear
AT(r) structure of the models used in this section.

Finally, Fig. 5.3 shows vp, — vp, vs. Sy for data obtained in a plage region (vp, — vp, is reduced to
ge = 0 only; see below), together with the calculated curves for Fe I x. = 0 eV and Fe I x. = 3 eV lines
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for the fluxtube model with ATiop = 500 K and ATy = 250 K. The weak and medium strong lines in the
figure have approximately the same half widths in fluxtubes as in their surroundings (compare with Fig. 4.11
and its discussion), but the strongest lines have greatly reduced widths. The qualitative form of this behaviour
is intuitively clear. Since the strongest lines are heavily saturated, any temperature induced decrease in the line
strength is accompanied by a corresponding decrease in the line width (in particular via the line wings). For
the weak lines, on the other hand, it is the line depth which is mainly affected, since their width is dominently
determined by thermal Doppler broadening. However, note that the widths of the strongest lines are only sensitive
to AT(r) values < 1000 K, since above this temperature they are so weakened as to behave more like the weak
lines. The more quantitative comparison of the model curves (of a model which reproduces In(dy /dr) vs. St of
this region relatively well) with the data shows that only the weakest and the strongest synthetic line profiles
have the correct widths. The medium strong synthetic lines are too narrow. This is a first indication that the
widths of spectral lines in fluxtubes may be partially determined by velocity (cf. Sect. 5.4 and chapter 7).

Fig. 5.3 vp, —vp, vs. S for a plage.
The data points have been
reduced to the case that
get = O (but not to x. =
0). The dashed curves have
been calculated using a
model with AT, = 500 K
and ATyo¢ = 250 K, Wilson
depression Zw = 50 km, and

fmie = EAIEe/EHIPA =

0.7 (best model for fitting
the In(dy /dy) vs. St plot for
this plage). Both theoreti-
cal curves are for lines with
get = 0. The lower theo-
retical curve has been calcu-
lated for lines with x. = 0 >
eV, the upper curve for lines -4.0 1 I ] I 1

with x. = 3 eV,
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This notion is also supported by the fact that the data exhibit the opposite dependence on x. than the
model calculations. This can certainly not be a temperature or magnetic field effect. It is in order to illustrate
this discrepancy that the data curves have not been reduced to x. = 0.

5.2.2. Fe I and Fe II lines

The greatly different temperature sensitivity of Fe I and Fe II is clearly illustrated by Fig. 5.4, where In(dy /d;)
vs. St is plotted for Fe I and II lines calculated with models having Zw = 60 km, fy;. ='0.7, ATvor = 750 K, and
ATiop = 100, 300, 500, and 900 K. As mentioned earlier, Zw and fy;. do not have any significant effect on this
diagram. For each set of parameters, ten Fe I lines with x. = 0 eV and ten Fe II lines with x. = 3 eV have been
calculated. The Fe II lines give the almost horizontal curves near the top of the diagram. As expected the Fe I
lines are hardly weakened at all. Furthermore, changing AT;,p, simply shifts the Fe I In{dy /d;) curves, instead
of changing their slope. This behaviour is due to a combination of the dependence of temperature sensitivity of
the line depth on the strength of the line, the fact that the stronger lines are formed higher in the atmosphere,
and the temperature change induced throughout the atmosphere by the linear AT(r). We see therefore, that the
Fe II lines provide us with a relatively model independent method of fixing the zero level of In{dy /d;), so that
both ATiop and ATyt may be determined from the data.




Fig. 5.4

In(dv /dr) vs. St for four mod-
els with fmic = 0.7, Wilson
depression Zw = 60 km,
ATbos = 750 K, and ATiop =
100, 300, 500, and 900 K in
the order of increasing thick-
ness of the curves. The almost
horizontal curves correspond
to Fe II lines, the others to Fe
1 lines with xe = 0 eV. All the
curves are unshifted.
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Fig. 5.5 illustrates the method. In Fig. 5.5a Fe I (x. < 3 ¢V) and Fe Il In(dy /d;) data from the network have
been plotted vs. St, together with curves for models with ATy, = 750 K, which Fig. 5.1 showed to be reasonable
for the network Fe I lines, and AT, = 100, 300, 500, and 900 K. The observational data and model curves
have been shifted, so that the results for Fe II overlap, with the Fe II curves of the model with ATiop = 300 K
serving as reference. Fig. 5.5b is the equivalent figure for plage data and curves calculated from models having
OThoq = 250 K. In this manner ATiop = 900 K can be ruled out. However, none of the curves really reproduces
the data satisfactorily, indicating strong departures from a linear AT(r).

Fig. 5.5. Comparison of model calculations with observations: In(dy /d;} vs. Sr.

100
300
500 7
900 7

Line strength Sy (F)

Line strength Sy (F)

a Enhanced network data

(Light shading: Fe I lines with x. < 3 eV; dark shading: Fe II lines) plotted together with the
model curves of Fig. 5.4. The empirical data and the model curves have been shifted such that the
results for Fe II overlap. b Plage data (Light shading: Fe I lines with x. < 3 eV; dark shading: Fe
I lines) plotted together with model curves using fuic = 0.7, Zw = 60 K, ATLo¢ = 250 km, and
ATiop = 100, 300, 500, and 900 K (in the order of increasing thickness of the curves). All curves

have been shifted such that the results for Fe II overlap.

Further inconsistency is revealed by comparing the same models to the data in a plot of In{(dy /d) vs.
X* = Xe+ xi (defined in Sect. 4.4.1), as shown for a network region in Fig. 5.6a and for a plage in Fig. 5.6b.
The data have been reduced to geg == 0 and Sy = 0 F. The models are the same as in Fig. 5.5a, respectively Fig.
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5.5b. Data and models have been normalised in the same manner as in Fig. 5.5. In Fig. 5.6a the model with
ATiop = 900 K gives an acceptable fit to the data, which is contrary to Fig. 5.5a. The fact that a lower ATy, is
required by the In(dy /d;) vs. St data as compared to the In(dy /d;) vs. x* data, seems to hint at the fact that
AT(r) is lower, in the higher layers of the fluxtube where the stronger lines are formed [since the In(dy /ds) vs.
x* plot samples lines with S; = 0 F|. It is quite clear from these comparisons that more sophisticated models are

required.
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Fig. 5.6 Comparison of model calculations with observations: In(dy /dr) vs. x*. a Enhanced network data
reduced to the case that Sy = 0 and geg = O using Eq. (5.1), plotted together with the curves for
very weak lines calculated using the four models of Fig. 5.4. The data have been shifted such that the
models provide good fits to the Fe II lines. b Plage data reduced to the case of S = 0 and geg = 0,
plotted together with the curves for very weak lines calculated using the four models of Fig. 5.5b.
The data have been shifted such that the models provide good fits to the Fe II lines. Since the values
of In(dy /dy) for Fe II derived from the various models almost coincide, their locations are collectively
indicated by a single arrow. Data symbols: Fe I lines with x. < 3 eV: stars, Fe I lines with x., > 3
eV: circles, Fe II lines: solid squares.

5.3. Fluxtube Temperature Structure as Determined From Line Depth Alone

5.8.1. Results

In this section we shall discuss models of T'(r) for network and plage fluxtubes derived from fitting the data in
the form of In(dy /dy) vs. Sy and vs. x* diagrams, and shall compare them with other models in the literature.
The model used here is similar to the one employed in the last section (and described in Sect. 4.5.2), except
that the temperature can now be specified independently at each height. Only lines with g.g = 0 are calculated
(approximately forty Fe I and II lines in all per model). ) :

Line profiles have been calculated for over a hundred different temperature stratifications with this type of
model. As a first step Models with T(r) differing from the HSRASP values only over a limited height range
are calculated. The aim is to determine heights at which different lines are sensitive to the temperature. As
expected, it is found that most of the Fe II lines are formed deeper in the atmosphere than the Fe I lines. This
reflects the fact that the temperature increases downwards in the atmosphere, and that the Fe II spectrum arises
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predominently in the hotter part of the atmosphere.

Next, model calculations with the aim of determining T'(r) through best fits to the line depths are carried
out. No attempt is made to fit the line widths, since that would require some assumption regarding the velocity
structure inside the fluxtube to be made. This problem will be dealt with in the next Section. An interesting
result is that the best fit temperature stratification is not unique, with different models giving similar fits to the
data. T'(log rs000) of two such models which reproduce our network data equally well (models 3E and 6N) are
plotted in Fig. 5.7a, together with the common network and plage model of Stenflo (1975), Hirayama’s network
model B (1978), the filigree model of Koutchmy and Stellmacher (1978), the common filigree and facule model
of Stellmacher and Wiehr (1979), and the HSRASP.
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Flg 5.7 a Temperature stratification of some empirical models of fluxtubes in the network. The HSRA (solid

line) has been plotted for comparison. Stenflo (1975): - - - -, Hirayama (1978) model B: - - -
Koutchmy and Stellmacher (1978): — x —, Stellmacher and Wiehr (1979): — - —, Solanki (1984),
model 3E: — - - —, model 6N: — - - - —. b In(dv /d;) vs. S; for network data (light shading: Fe
I, xe < 3 eV; dark shading: Fe II), and the models listed in the caption of Fig. 5.7a. Model curves
labeled ‘1’ refer to Fe I, those labeled ‘2’ refer to Fe Il

How these models compare with the data is illustrated in Fig. 5.7b, where In(dy /d;) is plotted vs. Sy for
the data obtained in the network (light shading: observed Fe I lines reduced to geg = 0, dark shading: observed
Fe II lines, also reduced to geg = 0), and for lines calculated using some of the models shown in Fig. 5.7a. The
symbols used for each model are the same in both plots. In order to keep Fig. 5.7b from getting too crowded the
Fe II curve of Koutchmy and Stellmacher (1978) which is very similar to the curve resulting from the Stellmacher
and Wiehr (1979) model together with the curves of Stenflo’s (1975) model have not been plotted. However, the
results of Stenflo’s model can be seen in Fig. 5.8b, which is discussed below. The results of the models 3E and
8N lie so close together that they are both represented by the same curves.

Fig. 5.8a shows T(r) for the HSRASP and a set of plage models: Stenflo’s (1975) model, the active region
model Z of Hirayama (1978), the facular model of Chapman (1979), the model of Stellmacher and Wiehr (1979}
and two models giving good fits to our active region plage data (6K and 6P). The plage data are compared with
the results of the model calculations in Fig. 5.8b. To avoid crowding, the results of the common facular and
filigree model of Stellmacher and Wiehr (1979) have not been repeated from Fig. 5.7b.

Finally, in Fig. 5.9 the different models are compared with the data in the In{(dy /d;) vs. x* diagram. Data
from a network region, reduced to Sy = 0 and geg = 0, and the models of Stenflo (1975), Hirayama (1978, model
B), Koutchmy and Stellmacher (1978}, Chapman (1979), Stellmacher and Wiehr (1979), and our network models
3E and 6N are plotted. These last two models give very similar results for this diagram as well, so that again
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Fig. 5.8 a Temperature stratification of some empirical models of plage fluxtubes and the HSRA (solid line).
Stenflo (1975): - - - -, Hirayama (1978) model Z: - - - -, Chapman (1979): — —, Stellmacher and
Wiehr (1979): — - —, Solanki (1984), model 6K: — - - —, model 6P: — - - - —. b In(dv /d;) vs.
Sy for plage data (light shading: Fe I, x. < 3 eV; dark shading: Fe II), and the models listed in the
caption of Fig. 5.8a. Model curves labeled ‘1’ refer to Fe I, those labeled ‘2’ refer to Fe IL

only one curve has been plotted. The model curves have been shifted in such a way that they all reproduce the
Fe II data equally well.

Fig. 5.9 In(dv/d;) reduced to Sy = 0 and 0 . - ' - . :
gest = 0 vs. x* for network data (light - ‘
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5.8.2. Discussion

In the following we list some comments on the figures and the models presented above.

e The large spread of the model curves in Figs. 5.7b and 5.8b is evidence for the temperature sensitivity of the
In(dy /dr) vs. Sy diagram. It also reflects the different types of data on which the various models are based.
Usually the data come from more or less high spatial resolution Stokes I or continuum observations (and
sometimes both), the exceptions being Stenflo (1975), who also used the Stokes V profiles of two lines, and
models presented in this thesis. The models using both Stokes I and V represent just the magnetic regions

. . - T ARNIISIS——. | -
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of the solar photosphere, whereas a usually unknown amount of light coming from non-magnetic regions has
to be compensated for when only Stokes I data are used. One component ‘average facula’ models have not
been included, since they represent averages of the magnetic and non-magnetic components of active regions
and thus cannot be directly compared to our models. The facular model of Muller (1975) is not defined for
sufficiently small r values to allow Fe I line profiles to be calculated with it properly, and it has therefore also
been excluded.

o It is confirmed that the fluxtubes in the observed network and plage regions have different temperature
structures, with network fluxtubes having higher temperatures in their lower regions. Hirayama (1978) also
postulated different temperatures for what he calls ‘facular granules’ in the network and in plages, which we
interpret to signify fluxtubes. Some proBlems remain with this interpretation, since Hirayama requires the
magnetic field strength to be larger outside his facular granules than inside them.

¢ Although the temperature structures of the two best fit plage models, 3E and 6N, look very different at first
sight, they have certain important features in common. The structure of the models below their respective
temperature minima is very similar, so that model 6N differs from model 3E mainly due to the fact that its
temperature minimum is shifted outwards to a smaller 7 value. The approximate shape of I'(r) remains the

~ same. In particular a pronounced depression in T is needed at some 7 value, where the fluxtube approaches
the temperature of the surroundings at equal optical depth, in order to reproduce the data correctly. The
same comment is also valid for the best fit network models 6K and 6P. The question of whether this depression
is real or is an artifact of the model assumptions is discussed in Sect. 5.5. "

o The models are rather uncertain below logr = —1.

5.4. Fluxtube Temperature Determined From the Full Line Profile

The model calculations presented in the last section were able to reproduce the line depths of the Iy profiles, as
represented by the In(dy /d;) vs. Sy and In(dy /dr) vs. x* plots. However, no attempt was made to model the
line widths, as given for example by the vp, —vp, vs. S; diagram. Indeed Fig. 5.3 showed that in the absence
of velocity broadening the calculated lines are too narrow as compared to the observed profiles.

In this section we shall follow the analysis of Solanki (1986) and present an attempt to determine the T'{r)
stratification by fitting the complete line profile. In order to do this the calculated profiles have to be artificially
broadened by velocity in' the fluxtube. We approximate this broadening mechanism by a macroturbulence
and height independent microturbulence velocity. More details on the velocities involved, their magnitude and
interpretation are given in Chapter 7. At this point, it suffices to say that a description involving macroturbulence
is particularly simple to employ, since the effects of temperature and velocity on the line profile are not as strongly
coupled as for example when using a microturbulence velocity alone. The line profiles are first calculated for
a certain T'(r) model without additional velocity (or with just a height independent microturbulence), and are
then broadened by the desired amount, by convoluting them with a macroturbulence velocity profile of a given
form.

If we wish to determine T'(r) from a fit to the full line profile, then we are no longer independent of the velocity
structure. The differentiation between T'(r) determination and the velocity determination is therefore somewhat
artificial. However, since physically they are two quite different quantities, we will discuss each individually
(temperature in this chapter, velocity in chapter 7). The fits to the line profiles etc. will be discussed in this
chapter, so that only the derived velocity structure remains to be discussed in chapter 7.

In addition to the velocity broadening, there is another difference to the model calculations described in
the previous sections of this chapter, namely that the physically somewhat more realistic model described in
Sect. 4.5.3 is used. Furthermore, the strongest lines in our sample have a non-negligible contribution from
the atmosphere above the temperature minimum. To keep the chromospheric temperature rise from falsifying
the LTE calculations, the HSRASP temperature structure has therefore been modified above the temperature
minimum, so that its T(r) is parallel to that of the Holweger and Miiller (1974) LTE solar atmosphere model
above 7 = 10~4. This gives quite reasonable quiet Sun line profiles, even for the strongest lines considered.



78 The Photospheric Layers of Fluztubes

5.4.1. Line Profiles in the Quiet Photosphere

Since the full line profile is now used, and since, if we neglect its asymmetry, the mean photospheric Stokes
I profile can be reproduced relatively well using a mixture of macro- and depth independent microturbulent
broadening (e.g. Smith et al., 1976; Nordlund, 1978; Holweger et al., 1978), we shall attempt another fit to
the quiet Sun line profiles. For the microturbulence velocity a constant 0.8 km sec”! is chosen as suggested by
Blackwell and Shallis (1979) for the HSRA. Following Smith et al. (1976) a macroturbulent velocity distribution
having the shape of a Voigt function H(amac, émac) (@mac is the ratio of ‘damping’ to ‘Doppler’ width and &nac
is the ‘Doppler’ width of the macroturbulent velocity profile, see Sect. 2.2.3 for a definition of the Voigt profile) is
then convoluted with the calculated line profile. The two free parameters per line are varied to give a best fit to
the observed line parameters. We illustrate the resulting fits in Figs. 5.10a and b for calculations with ép = 2.5.
In Fig. 5.10a the line depth, d, is plotted vs. line strength, S;. The solid curve represents synthetic Fe I lines
with x, = 1.5 eV, the dashed curve represents synthetic Fe I lines with x. = 4 eV, and the dot-dashed curve
represents synthetic Fe II lines. In Fig. 5.10b the line widths at the four chord levels 0.1d;, 0.3d;, 0.5d;, and
0.7d; above line bottom are respectively plotted against S;. A fit of comparable quality can be achieved with
6r = 1 as well, the only difference being that the derived macroturbulence velocities are somewhat different.

It will be noticed that the fit is not always perfect. For example, at the 0.1d; chord between S; = 5 F and
10 F only the Fe I data with x. > 3 eV are well reproduced by the calculated profiles between Sy = 5 F and
10 F, the calculated Fe I, x. < 3 eV and Fe II lines being too narrow. The lines with Sy > 10 F are not well
reproduced at all four chords either. The main factor leading to this discrepancy is departure from LTE since for
these lines, although their equivalent width is not greatly changed from LTE to NLTE, their shape is affected the
most of all the lines (cf. Solanki and Steenbock, 1987). The (amac, émac) values derived for the quiet photosphere
will be discussed in greater detail in chapter 7.

Fig. 5.10 a d; vs. Sy for Fe I and II 1.0 \ { . ] |
lines in the quiet photo-
sphere. The symbols have - X % -
the same meaning as in by
Fig. 5.6. The three curves "
are model calculations
based on the HSRA. Solid
curve: Fe Ilines with x. =
1.5 eV, dashed curve: Fe
I lines with x. = 4 eV,
dot-dashed curve: Fe II
lines with x, = 3 eV. Em-
pirical damping factor:
6r = 2.5, 0 3 2

Line depth dy

0.0 : : : : .
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Line strength Sy (F)

In addition to the thirty hypothetical lines, the ten Fe I and II lines selected in Sect. 4.5.3 and listed in Table
4.4 have also been used. The observed and calculated quiet Sun Stokes I profiles of four of them, Fe I 5127.7 A,
5247.1 A, 5383.4 A, and Fe II 5414.1 A are shown in Fig. 5.11. The fit to these four lines is average in quality
compared to the other six lines.

5.4.2. Fluztube Temperature Structure

First a test is made to see if the improved model described in Sect. 4.5.3 still gives too narrow line profiles in the
absence of velocity broadening. In Fig. 5.12 vp, — vp, is plotted against Sy for observed and calculated spectral
lines. The I/ data are from a network region, the Stokes I data are taken from a very quiet region (to avoid
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Fig. 5.11 Stokes I profiles of Fe I 5127.7 A, 5247.1 A, 5383.4 A, and Fe II 5414.1 A on the quiet Sun. Obser-
vations: thick curves; synthetic profiles: thin curves.

contamination of Stokes I by light from magnetic elements), and the model curves are produced by subtracting
the vp, values calculated in Sect. 5.4.1 from the line widths of the profiles of a model with no internal velocity
(reproducing In(dy /d;) of network data). The solid, dashed, and dot-dashed .calculated curves correspond to
lines with the same atomic parameters as in Fig. 5.10. The data have been reduced to the case of geg = O using
the vp, —vp, version of the regression Eq. (4.48). In accordance with the results of Sect. 5.2.1, the model curves
lie below the data, specially for the medium strong lines. In addition, again in agreement with Sect. 5.2.1, the
relative positions of the model curves and data points of different excitation lines also differ from each other.
The experience gained with the models discussed in Sect. 5.2 and 5.3, as well as with a smaller grid based on
the improved models suggests that the [y, line widths and depths cannot be simultaneously reproduced for any
fluxtube temperature stratification if the synthetic profiles are not broadened by velocity. Within our grid of
models this statement is found to be valid for both tested values of Jr, i.e. ép = 1 and ér = 2.5. However, by
including a macroturbulent broadening, models can be constructed which reproduce both the line depth and the
line width for network, respectively plage data.

Harvey et al. (1972) have previously noted that the measured V profiles of Fe I 5250.2 A are broader than
the calculated ones. They had to artificially broaden the calculated profiles to make them match the data. They
interpreted this broadening as due to a spread in the magnetic field strength. Indeed for only one V profile, it
18 not possible to distinguish between broadening due to velocity or a magnetic field. However, with many lines
of various geg we can test the two hypotheses. Most of the lines in our sample have Landé factors near 1 and
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are therefore not so sensitive to magnetic broadening. Furthermore, in Figs. 5.8 and 5.12 the data have been
reduced to the case of geg = 0, so that the residual broadening has to be mainly due to velocity.
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¥ig. 5.12 vp, — vp,, reduced to the case of geg = 0, plotted vs. S;. Symbols as in Fig. 5.10a. The data are
from a network region and the calculations are based on a network fluxtube model. The calculated

profiles are unbroadened by any velocity. ép = 2.5.

As a starting point for a better model, the models found to give a good fit to the In(dy /d;) vs. Sy plot in
Sect. 5.3 are chosen. However, for a number of reasons, these models have to be modified. Firstly, they were
derived from fits to the line depths only, without taking the line widths into account, so that when the calculated
profiles are convoluted with a macroturbulence to reproduce the observed line widths, the good fit to the line
depths is lost. Secondly, the photospheric lines were fitted by using a depth dependent microturbulence alone
in the calculations described in the last section. The microturbulence inside the fluxtube was assumed to be
simply some fixed fraction (typically 0.5 — 0.7) of the photospheric microturbulence. Since we do not assume any
microturbulence at all inside the fluxtube in this section, this will also change the inferred temperature structure.
Finally, the inclusion of atmospheric layers above the temperature minimum in the model changes the calculated
profiles of the strongest lines somewhat.

However, some basic characteristics of the earlier models remain. For example, the difference between the
temperature of luxtubes in the plage and network regions studied, which was discovered earlier, is confirmed by
the new models. The network fluxtubes are again observed to be hotter than plage fluxtubes, specially in the
lower regions. The depression in temperature at some 7 value, where it falls almost to the quiet Sun value at
that 7, found as a unifying characteristic in the earlier models is still visible, although it i3 decidedly weakened.
The ambiguity in temperature structure, as determined by Fe I and II lines alone, still appears to be present,
although we have not carried out such extensive test calculations as in the I)revioué Section.

The temperature structures of network and plage models producing the best fit line profiles are shown in
Fig. 5.13 as a function of 5000, the continuum optical depth at 5000 A. The HSRASP temperature structure is
also shown for comparison.

How such a model (network), combined with macroturbulence broadening, reproduces the vp, —vp, vs. §;
and the In(dy /d;) vs. S; data from a network region is shown in Fig. 5.14a and b. A fit of similar accuracy has
also been obtained for the plage data. In addition, these models can reproduce the In{dy /d;) vs. x* diagrams with
a similar accuracy as the models described in Sect. 5.3. Allin all, the fits achieved by these models, although not
perfect, are of reasonable accuracy. For further improvements, additional data containing better information on
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Fig. 5.18 The temperature T in K vs. the
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levels below log r = ~1 and above log 7 = —3, as well as improved modelling techniques (1.5-D radiative transfer

etc.) are required. On a longer term basis, NLTE effects should be included as well, as is evident from the NLTE
test-calculations of Solanki and Steenbock (1987). The empirical damping correction factor does not have a large
effect on the determined temperature structure, both ér = 1 and 6r = 2.5 giving approximately similar T'(r)
values. A few models have also been calculated with a combination of macroturbulence and depth independent
microturbulence. It is found that as long as &mic < 1 km sec™!, no significant change in the temperature structure
is required. As will be shown in chapter 7, values of £n;c larger than 1.5 are excluded by the data, so that a
_constant &njc should not greatly influence the determined temperature structure.

As an additional illustration to how the models reproduce the data, Fig. 5.15 shows the Iy profiles, observed
in a plage, of the three Fe I lines at 5127.7 &, 5247.1 A, and 5383.4 A and the Fe II 5414.1 A line, together with
their calculated Stokes I profiles from the best fit plage model. Fe II 5414.1 A and Fe I 5383.4 A are the two
worst fit [y profiles in our sample of ten lines, whereas the other two figure among the better reproduced lines.
These ten Iy profiles have been normalised using the same (B) as is used to normalise the In{dy /d;) curve. The
correspondence for all ten lines is quite reasonable, considering the fact that some distortion of the I}, profile due
to noise and Stokes V asymmetry is bound to occur. The Fe I 5250.2 A line is also reproduced with an accuracy
similar to Fe 1 5247.1 A, a somewhat surprising result, since its large Landé factor of 3.0 would lead one to expect
that the first order approximation on which the calculation of the Iy profile is based may be insufficient for this
line. * The fit to the individual profiles achieved with the best network model is slightly worse. This can, at -
least to a large part, be explained by the smaller signal to noise ratio in the network data, which is due to the
smaller filling factor and correspondingly weaker Stokes V signal. The larger asymmetry of the network Stokes
V profiles may also play a role.

5.5. Discussion

Finally, let us discuss some of the results and consequences of the work presented in this chapter and remark on
possible improvements, as well as on other methods of determining fluxtube temperatures from FTS data.

* This may be simply due to the fact that the magnetic field used in these models is too weak (B(r=1) ~ 1400
G). As the results of Sect. 6.3 show, a field with B(r=1} = 2000 G provides a better fit to the Stokes V' 5250/5247
line ratio. In such a strong field the weak field approximation is no longer valid for Fe I 5250.2 A and its Iy
profile alone is no longer a valid approximation to Stokes I. However, using Eq. (4.7a) one might still be able to
reproduce 5250.2 A reasonably.

. ;
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Fig. 5.14 a The same as Fig. 5.12, except that the calculated profiles have been broadened by a macroturbulence
to make them match the data. The network model shown in Fig. 5.13 has been used.
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A lines for a plage. Iy data: thick curves. Synthetic profiles: thin curves. «

5.5.1. Importance of Velocity Broadening

Temperature structures determined with and without velocity broadening inside the fluxtube are quite different
and consequently the inclusion of velocity broadening is important for the correct empirical modelling of fluxtube
temperatures. The simple macroturbulence approach we have chosen to represent the velocity broadening in
fluxtubes is certainly very primitive. Gail and Sedlmayr (1974) have calculated O I and Fe I photospheric
lines with the stochastic radiative transfer equation derived by Gail et al. (1974). They find that for the quiet
Sun a mesoturbulence with a correlation length of 100-300 km gives best fits to the data. They suggest that
somewhat different model atmospheres may result if one uses a proper correlation length calculation instead
of the traditional microturbulence/macroturbulence approach. Carlsson and Scharmer (1985) come to similar
conclusions with a slightly different method. They solve the ordinary radiative transfer equation for a Ca II
model atom for stochastic velocity distributions with the very fast and efficient NLTE technique of Scharmer
(1981) and Scharmer and Carlsson (1985). This suggests that future calculations with better approximations of
the velocity need to be carried out. Since we do not expect the velocity to be completely stochastic in fluxtubes it
may be better to use some model of waves or oscillations. However, all such approaches increase the complexity
of the problem tremendously.
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5.5.2. Difference Between Plage and Network Fluztube Temperature

The fluxtube temperature is different in the plages and in the network regions modelled in this chapter, with the
network fluxtubes being hotter than those in active region plages. This temperature difference is particularly
marked in the lower layers of the fluxtube. However, we wish to stress that this result is based only on the
analysis of five regions. A much larger statistical sample will be required to test its general validity. Below, we
discuss some of the explanations which have been proposed for this effect.

One possibility is that fluxtubes in plages are generally larger and therefore cooler than in the network. Such
a temperature dependence on radius is supported by theoretical models. For example the larger diameter fluxtube
calculated by Knolker et al. (1985), is less bright than the smaller diameter fluxtubes calculated by Deinzer et
al. (1984b). Kalkofen et al. (1986), on the other hand, find for fluxtubes with radii 20km < R < 90km, that
the internal temperature increases with increasing radius at 7 = 1. Another possibility is that fluxtubes in
active region plages and in the quiet network have the same diameters, but their number densities in the former
are considerably larger. This would mean that the non-magnetic surroundings of the fluxtubes become cooler in
plages due to the radiative losses into the larger number of fluxtubes present. Each individual fluxtube would then
be able to draw less energy from its surroundings, so that it would remain cooler and darker than a fluxtube in the
network (Schiissler, 1985; 1987). This cooling of its surroundings by a (single) fluxtube has been demonstrated
by Spruit (1977) and Deinzer et al. (1984b). Empirical evidence for such a decrease in temperature between
fluxtubes is presented by Hirayama et al. (1985), who deduce a decrease of 1% in the continuum intensity of the
non-magnetic parts of active regions, by comparing their observations of the average (low resolution) continuum
contrast of facule (0.1% near disk centre) with the high resolution observations of the continuum contrast of
facular points by Muller and Keil (1983). Schiissler and Solanki (1987) also present indirect evidence for a lower
continuum intensity in the non-magnetic surroundings of magnetic elements (they observe a decrease of over 10%
in a strong plage).

Yet another possible explanation is based on the observations of Schoolman and Ramsey (1976), who describe
what they call the ‘dark component of the photospheric network’. While not significantly darker than the
photosphere in the continuum (i.e. no visible pores!), this component appears to show an increased equivalent
width of the Ca 16103 A line. Tarbell and Title (1977) confirm its existence with the Fe I 5250.2 A line. They also
suggest that its presence may be correlated with that of nearly horizontal magnetic fields, although the evidence
 for this is very indirect. It may be possible that one or more such elements were present in the resolution element
during our plage observations. This would lower the observed average fluxtube temperature. However, the origin
of such cooler regions remains unexplained.

Is there other observational evidence suggesting a difference in temperature between the fluxtubes in high
and low filling factor regions? Stenflo and Harvey (1985) plot the Stokes I line depth of Fe I 5250.2 A vs.
the Stokes V amplitude of that line (their Fig. 8). The simplest interpretation would be that they plot the
combined temperature and magnetic weakening vs. filling factor. Thus a decrease in the fluxtube temperature
with increasing filling factor should show up as a non-linear curve in such a plot. Unfortunately, a correct
interpretation is considerably more involved, since the Stokes V' amplitude is also greatly affected by temperature
weakening. It is therefore very difficult to reach definite conclusions from such diagrams without detailed model
calculations. The same is true for all the other diagrams of this type published in the literature, e.g. Simon and
Zirker (1974), who find a non-linear relationship between 61/, in the core of Fe I 6302.5 A and the average
magnetic field (B) determined from the same line. Frazier (1977) observes strong changes as a function of filling
factor, not only in the absolute intensity, but also in the shape of facular line profiles. He concludes that this is
due to a continuous change in the T'(r) of fluxtubes with «. Finally, as already noted in Sect. 5.3.2, Hirayama
(1978} also derives two different temperature models for plage and network fluxtubes.

5.5.8. Artifacts of One-Dimensional Models

One dimensional models, which reproduce the FTS polarimeter data, all show a more or less marked dip in the
temperature at some r value. According to Holweger (1985}, this may be an artifact of the one dimensional
approach. The dip is mainly due to the fact that the Fe II lines are formed in the hotter parts of the photosphere.
In a one dimensional model hot and cold regions can only be segregated vertically. However, in a two dimensional
model hot and cold regions of the fluxtube can co-exist beside each other, so that the Fe I and II lines may be
formed at nearly the same level in the atmosphere. The Fe II lines being formed, e.g., near the hot walls of the
fluxtube (if they really are hot; see the discussion of hot cloud vs. hot wall models by Schiissler, 1987, and also
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the paper by Schatten et al., 1986), the Fe I lines in the cooler interior. Only future two dimensional models can
decide this issue.

5.5.4. Some Limits of and Possible Eztensions to the T(t) Models

The temperature structure cannot be uniquely determined from Fe I and Il data at disk centre alone. In particular,
the 7 of the temperature dip found in all the models which reproduce the data cannot be derived with certainty
(Sect. 5.3). Perhaps data with less noise may be able to differentiate better between such models.

In addition, disk centre observations of Fe I and II lines in the visible are only sensitive to the temperature
in the optical depth range —3 < log7 S — 1. T(r) for 7 beyond these limits has only a minor influence on the
profiles of the Fe I and II lines used. The T'(r) structures shown in Fig. 5.13 are therefore uncertain beyond these
limits. The exact limits themselves depend on the temperature structure (for example in his models Chapman,
1977, finds the lines to be formed at r > —1), and for Stokes V, Q, and U also on the magnetic field. Extensive
calculations of contribution functions to Stokes V and @ are required to delineate the + interval over which the
models are certain.

It may be possible to determine T(r < 1073) from the centre to limb variation of the Fe I and II Stokes
V profiles used for the disk centre analysis. A first step in this direction has been taken by Stenflo et al.
(1987a) when they plot the ‘thermal line ratio’ of two Stokes V' profiles as a function of u = cosf. As Landi
Degl'Innocenti and Landolfi (1982) have shown, the ratio of the amplitudes of two otherwise similar Stokes V
profiles with different x. values is mainly sensitive to temperature in the fluxtube. Fig. 5 of Stenflo et al. (1987a)
shows that the thermal line ratio departs significantly from the value expected in non-magnetic regions at disk
centre and approaches this value near the limb. If interpreted directly, this would mean that the temperature
in the fluxtube approaches the outside temperature at equal 7 as we go higher in the atmosphere. However, a
CLV of the fluxtube line profiles due to geometrical effects (expansion of the fluxtube, a mainly vertical velocity
in fluxtubes, etc.) cannot be excluded. Furthermore, only the disk centre non-magnetic I profiles were used to
calibrate this line ratio, and the CLV of the Stokes I profiles may compensate for much of the variation in the
thermal line ratio when going towards the limb. Compare also with Sect. 6.3.2, where the CLV of the magnetic
line ratio is shown to be largely due te changes in the line profile. Future calculations of such thermal line ratios
are required to obtain more quantitative results. The behaviour of the Stokes V line ratio is in accordance with
the decrease in facular line weakening observed near the limb by Stellmacher and Wiehr (1973). The CLV data of
+Frazier (1971) also show a slight trend towards decreasing contrast in the Fe I 5250.2 A line core with decreasing
#. The interpretation of such unpolarized data is, however, even more involved than of our Stokes V CLV.

Some estimates of T'(r > 10~!) are available from continuum contrast measurements. However, the results
vary considerably from one investigation to another. Disk centre continuum contrasts of active region plages have
been published by among others, Schmahl (1967), Frazier (1971), and Stellmacher and Wiehr (1973), all of whom
find values between 1.01 and 1.02 for I.(Facula)/l.,(Photosphere). We write I,(Facula) instead of I.(Fluxtube)
to stress the fact that these continuum observations cannot resolve the fluxtubes and thus measure an intensity
averaged over the magnetic elements and their non-magnetic surroundings. Muller (1975), with somewhat better
spatial resolution finds contrasts closer to 1.05. Chapman (1970), on the other hand, sees no contrast at disk
centre, and Tarbell and Title (1977) find that the continuum contrast decreases as the amount of flux in their
resolution elements increases and actually drops below 1 for flux 2 150 G, although they (indirectly) exclude
pores and sunspots from their analysis. From the differential photometry of faculz in two pieces of very pure
continuum, Foukal et al. (1981) conclude that facule are darker than their surroundings near r = 1. However,
Foukal and Fowler (1984) find that for their estimated spatial resolution of 3—4", facula are brighter than the
quiet photosphere by approximately 0.1% (= AI/I). They conclude that a better interpretation of the results
of Foukal et al. (1981) would be that the temperature gradient in facule and the quiet photosphere is different.
Foukal and Duvall (1985) also stress this interpretation, and show that the temperature gradient near r = 1 in
faculae is smaller than in the quiet Sun. Skumanich et al. (1975) find an approximately linear relation between
continuum contrast and average field strength in their resolution element, such that Al;/I, increases by 0.9% for
A (B) = 100 G. Extrapolating to 1000 G this give I.(Facula)/I.(Photosphere) = 1.09. In a similar manner Frazier
and Stenflo (1978) infer continuum contrasts of upto 1.18 by compensating for their limited spatial resolution
through the use of additional information from polarimeter measurements. It should be noted that this method,
although superiour to simply taking the measured continuum contrast at face value, probably still gives only a
lower limit to the true contrast of the magnetic element, since it cannot compensate for the dark rings around
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the fluxtubes, which are expected on both theoretical and observational grounds. Finally, recent evidence for
a high continuum contrast of fluxtubes in an active region plage has been presented by Schiissler and Solanki
(1987), who infer I,(Fluxtube)/I.(Photosphere) 2 1.4 from a combination of strong plage FTS data and model
calculations.

For the quiet network, the number of continuum contrast observations is considerably smaller. Koutchmy
(1977) gives a value of 2.0 for one bright point, while Muller and Keil (1983) find values between 1.3 and 1.5 for
a number of bright points. In both investigations attempts ‘are made to correct for the effects of seeing.

The I,(FT)/I.{HSRA) at 5000 A for the two fluxtube models shown in Fig. 5.13 are approximately 1.2 for
the plage and approximately 1.4 for the network model. The latter is compatible with the results of Muller and
Keil (1983) and Schiissler and Solanki (1987), while the former is close to the compensated value published by
Frazier and Stenflo (1978). e

A more reliable method of determining T'(r) for 7 > 10~ is probably to use Stokes V profiles observed in
the IR, in the wavelength range 1.5u-1.7u which possesses the twin advantages of little terrestrial absorption
and a minimum in the solar continuum opacity. In this wavelength range H™ bound-free opacity is considerably
smaller than at its maximum around 8000 A, while the H™ free~free opacity, which increases towards the far
infrared, is still small (cf. Mihalas, 1978, p. 103). Spectral lines in the IR have been previously used to model
the deeper layers of sunspots (e.g. Van Ballegooijen, 1984)

5.5.5. NLTE Effects

Effects due to departures from LTE have been neglected completely in this chapter. Such effects have only been
taken into account in very few investigations concerning fluxtubes. Rees (1969) and Domke and Staude (1973)
studied the general influence of NLTE on the Stokes profiles in a magnetic field. Later Stenholm and Stenflo
(1977, 1978) and Owocki and Auer (1980) concentrated on the effects of 2-D radiative transfer in non-plane
parallel geometry, as typifies fluxtubes. As far as the influence of fluxtube temperature on the departure from
LTE of iron lines is concerned, only Solanki and Steenbock (1987) have studied this using various models including
those derived in Sect. 5.4.2. They find that the higher temperature inside fluxtubes increases the NLTE effects,
with the difference in temperature between the 7 = 1 and the 7 &~ 1072 levels being of particular importance
(since it determines the difference in the temperatures of the UV radiation field and the local electron pool, cf.
Rutten, 1987). Conversely, the larger NLTE effects also lead to wrong temperature determinations, with the
‘temperature being generally overestimated in LTE models (Rutten and Kostik, 1982). This shows the strong
"'Iiieed for self-consistent NLTE empirical models of fluxtube temperature.

5.5.6. Stokes Q as a Temperature Diagnostic

Additional constraints on the fluxtube temperature can be set by making use of the Stokes @ profile as well. As
pointed out in Sect. 4.2.3., the Stokes @ o-n asymmetry results from a combination of saturation and Zeeman
splitting. The main physical parameters of the fluxtube affecting it are therefore T and B. It is also affected
by velocity broadening and slightly by the angle of the magnetic field to the line of sight 4. At first glance it
may therefore appear that it is quite hopeless to determine the temperature from this parameter. However, the
magnetic field strength, the velocity broadening and + can be determined relatively unproblematically via the
line ratio technique, the width of Stokes V (or Iy) and the ratio of Stokes Q to Stokes V/, respectively. Since Fe
I lines are weakened for increasing T, their saturation also decreases, and so does the o—m asymmetry of Stokes
Q. Thus the Stokes Q asymmetry can serve as an independent temperature indicator. One advantage is that
it is basically a single line method and can also be applied when the broad spectral coverage of an FTS is not
available. More to this technique is to be found in Solanki et al. (1987).
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“. .. the radical element responsible for the continuing
thread of cosmic unrest is the magnetic field.”

E.N. Parker (1979)

6.1. Introduction

o

Hale (1922a,b) first presented evidence for distinct magnetic features outside sunspots, when he published the
discovery of average fields of approximately 200~300 G in what he termed ‘invisible sunspots’. With improvements
in instrumentation, the lower limit of measurable non-sunspot fields kept on decreasing. Thus by 1960 the field
strengths in bright regions (i.e. Network, Plages, etc.) were found to lie in general between 1-200 G for the
spatial resolution of usually 5"-10" possible at that time (Babcock and Babcock, 1952, 1955; see also the review
by Babcock, 1963).

During the 1960s indications accumulated that the true field strengths outside sunspots are in general
considerably larger than the average field measured with low spatial resolution. Thus Sheeley (1966) detected
field strengths of between 200 and 700 G in small non-sunspot features from magnetograms of quiet and active
regions. Sheeley (1967) measured a field strength of approximately 350 G via the shift in the o components of
Fe I 5250.2 A. In active regions Beckers and Schroter (1968a) measured fields of between 400 and 1400 G in
what they termed ‘magnetic knots’ or ‘micropores’. They carried out a rough correction for stray light (i.e. finite
spatial resolution) and estimated the diameters of the knots to be approximately 1.3”. They also observed regions
which show line weakening, but no magnetic field. However, Simon and Zirker (1974) found no evidence for such
structures and suggested that these are magnetic regions with fluxes below the detection limit of Beckers and
Schroter. Grigorjev (1969) and Abdussamatov and Krat (1969) also observed such magnetic knots and measured
field strengths ranging from 100 to 650 G.

So far all these observations had been carried out with spatial resolutions worse than 1”. It is therefore
:not surprising that most values of the field strength thus determined lie below the values generally accepted

mtoday The reason the spatial resolution is so important is that the magnetograph (or any other polarimeter for
that matter) measures only the line of sight flux, which is proportional to the field strength averaged over the
resolution element, and not the true field strength of an unresolved magnetic region.

As noted above, Beckers and Schroter (1968a) had assumed that the magnetic elements they observed were
unresolved. Other measurements also hinted at the unresolved nature of the magnetic elements. Thus Stenflo
(1966) and Severny (1967) made multiple scans of a given region with varying aperture sizes and found that the
magnetic field strength increased with decreasing aperture. However, their smallest aperture was only 7 (arc
sec)?. Clearly, indirect model-independent methods of determining the magnetic field strength were required. A
first step in this direction was taken when Stenflo (1968) described how the possibly filamentary structure of the
magnetic field influences the interpretation of magnetograph recordings. Harvey et al. (1972) used least squares
fits to observed Stokes V' profiles to determine different parameters of magnetic elements. Their best fit gave an
average field strength of 500 G with a scatter of 500 G. They also found a higher field strength fit of lesser
quality. Later, Stenflo (1973) was able to reproduce their observations quite well with a strong field fluxtube.
Howard and Stenflo (1972) and later Frazier and Stenflo (1972) determined that over 90% of the magnetic flux is
concentrated into magnetic filaments (i.e. fluxtubes) from an analysis of magnetograms in 5250.2 A and 5232.9
A. They do not give any value for the filamentary magnetic field. Frazier and Stenflo (1972) also found evidence
for a so called ‘interfilamentary field’ with a small field strength of approximately 0.5-5 G, when averaged over an
aperture of 2.4 x 2.4", This weak diffuse field has a polarity opposite to that of the concentrated field. Livingston
and Harvey (1971) have also presented some evidence for a weak field of 2-3 G strength when averaged over their
5" resolution element. Of course a few small fluxtubes with large field strengths could also give such a signal,
so that this last observation does not provide any hard evidence for the presence of truly weak fields. The same
authors also find some statistical evidence for a quantisation of magnetic flux (Livingston and Harvey, 1969).
This observation has, however, not been subsequently confirmed.

Stenflo (1973) introduced a very powerful technique for determining the true magnetic field strength of the
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unresolved fluxtubes. The so-called line-ratio technique ideally uses two lines which are identical except for their
Landé factors. If the fields were intrinsically weak then the amplitudes of their V profiles (or the ratio of their
V at any given wavelength) would be equal to the ratio of their Landé factors. For strong fields this is no longer
true and the departure of the ratio of the V profiles from the ratio of the Landé factors is a direct measure of
the field strength. It is important to realize that the (at that time quite poorly known) thermal properties of
fluxtubes do not affect the results of this technique. Neither is it sensitive to stationary flows in the fluxtubes,
by virtue of the choice of two similar lines.! Fortunately, two such lines exist in the visible solar spectrum at
5250.2 A (g = 3) and 5247.1 A (gest = 2), both belonging to multiplet 1 of neutral iron. From the ratio of these
two lines Stenflo (1973) found that the peak field strength of the fluxtubes lies between 1600 and 2300 G for
different horizontal distributions of the field strength (all of them with a rapid decline towards the boundaries of
the fluxtubes). e

The results of Stenflo (1973) were confirmed by Harvey and Hall (1975) who observed the Fe I 15648.5
A line in the IR. This line, a Zeeman triplet with g = 3 (Litzén, 1976), is almost completely split in a field of
approximately 1 kG, since Zeeman splitting ~ A2 B, while line broadening is approximately ~ A. Harvey and Hall
inferred field strengths of between 1200 and 1700 G (see also Harvey, 1977). Chapman (1974} presented various
arguments (but no new observations) in favour of a unique magnetic field strength of the order of 15002000 G
at the level at which photospheric lines are formed. Further confirmation came when Tarbell and Title (1977)
used the Fourier technique developed by Title and Tarbell (1975) and Tarbell and Title (1976) to determine
magnetic field strengths in regions with average vertical magnetic field strengths (B) > 125 G. They found 1000
G < B 51800 G, with B being almost independent of (B) in their data. B/(B) ranges from 3 to 12 despite
their high spatial resolution of 1.5". They concluded from this that Simon and Zirker (1974) saw only bunches of
fluxtubes when they reported that the magnetic regions had diameters 1-3" across. Wiehr (1977, 1978) extended
the line ratio method of Stenflo (1973) to include three lines, Fe 16302.5 A (g = 2.5), 6336.8 A (geg = 2.0), and
6408.0 A (geg = 1.0). He also used the radiative transfer code of Wittmann (1974) instead of the previously used
Milne-Eddington solution. He deduced field strengths in the range 1200-1700 G from these measurements. He
also measured the field by placing three different exit slits in the wings of Fe I 6173 A and obtained magnetic field
values between 1500 and 2200 G. However, this method is more model dependent than the line ratio technique.
Finally, Wiehr (1978) also claimed to have found evidence that fluxtubes are inclined by 55° towards the west.

Koutchmy and Stellmacher (1978) found field strengths of 1000-1500 G from fits of model profiles to [+ V
and I - V profiles of Fe 16301.5 A and 6302.5 A observed with 0.75-1" resolution. Frazier and Stenflo (1978)
obtained a field strength of 960 G from the line ratio technique for a rectangular cross-section of the magnetic
field. Finally, Stenflo and Harvey (1985) studied the dependence of the line ratio 5250/5247 on filling factor.
They found only a weak dependence (in agreement with the results of Tarbell and Title, 1977), with the field
strength increasing from 800 to 1140 G when the filling factor increases by a factor of 6. Theoretically, the
observed field strengths could be reproduced, for example, by the calculations of convective collapse of Spruit
(1979), who found that surface fields in the collapsed state should lie in the range: 1280 < B < 1650 G.

In Sects. 6.2 and 6.3, we discuss work on fluxtube field strengths by Solanki and Stenflo (1984, 1985), Stenflo
et al. (1987a), and Solanki et al. (1987), while in Sect. 6.4 we examine the influence of finite spectral resolution
on field strengths and filling factors determined from Stokes V.

6.2. Field Strengths and Filling Factors From a Regression Analysis

Using a statistical analysis of Fe I lines it is possible to determine the magnetic field strength in fluxtubes without
the need for radiative transfer calculations. We start by noting that Zeeman splitting in uxtubes mainly broadens
the Iy profiles and decreases their depths. We may regard this as the Zeeman saturation effect of the Stokes
profile. These changes in the Iy profiles are {for not too large values of gAB) linearly proportional to the Zeeman
splitting of the lines. By carrying out regressions of the form of Egs. {4.48) and (4.50) one should be able to
disentangle this effect of the magnetic field from effects of the temperature etc. Since we use vp, — vp, and
In(dy /d;) of Fe I lines only for the determination of the field, the regression equations are somewhat simpler
than the ones shown in Sect. 4.4.2. We therefore present below the exact regression equations used here. All

t We show in Sect. 6.3.2, however, that the results of the line ratio analysis depend quite strongly on the
velocity broadening of the line (turbulence broadening).
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lines are assumed to be Zeeman triplets. For more details see Sect. 4.4.2.
vp, —vp; = T1 + 2251 + T3S} + T4voxe + z5925 22 v, (6.1)

and
ln(dv /d[) = g + To97 + 1:35? + TaXe + TsXeSr + Zo gfﬂu\z/ug. (6.2)

For the further analysis, and to enable a crude interpretation of our data, we use the two component model
introduced in chapter 4. Thus the photosphere is assumed to consist of a magnetic component, covering a fraction
a of the surface and a non—magnetic component covering the remaining fraction (1—a). It is assumed that within
the magnetic component the field strength, B, is constant and that in the non~magnetic component B = 0.

To derive a simple analytical relation between field strength B in the fluxtube and the coefficient z5 in the
vp, — Up, regression equation, we use our two-component model for a longitudinal magnetic field, and assume
the line profile to be Gaussian and the Zeeman splitting to be much smaller than the line width. We furthermore
assume that in the case of zero Landé factor, the line depth in the magnetic regions is § times the line depth
outside the fluxtubes (§ < 1 in the case of line weakening), but that the line width is unchanged (this last
assumption is approximately fulfilled by all but the strongest Fe I lines, as Fig. 4.11 shows). Finally, we assume
the continuum intensity inside and outside the fluxtubes to be equal. With these assumptions, using the Taylor
expansion Eq. (4.8) and the definition Eq. (4.10) of Iy, we find

1/2
B= (—”3'—”-?—)——/—(1 — 36a)" /2, (6.3)
ke

where k = 4.67 km™! G~!, and c is the speed of light. The factors 3 in Eq. (6.3) appear because the magnetic
broadening of Iy and I are due to the second terms in their respective Taylor expansions and the numerical
coefficients of the two relevant terms differ by a factor of 3. Intuitively, we would expect Iy to be broadened much
les by a magnetic field than the Stokes I profile arising from the same region, since it is a better approximation
of the unsplit I profile.

The interpretation of the zg term in Eq. (6.2) is very similar to that of the z5 term in Eq. (6.1). Notice,
however, that the dependence of this term on line width goes with 1/v2 as compared with the 1/v, dependence of
the z5 term of Eq. (6.1). Making the same assumptions as were made for the derivation of Eq. (6.3) the following
dependence of In{dy /dr) on the magnetic field is found:

o

v

In(dy /df) =In6 + a(l - §) — = 2L (1 - 36a), (6.4)

W
e
o)

where o and § have the same meaning as in Eq. (6.3), vp is the line width (which we have assumed equal for Iy
and Stokes [, in agreement with the observations for most lines), and vy is the Zeeman broadening expressed in
velocity units. The first two terms on the right hand side of Eq. (6.4) are independent of the magnetic field and
of line parameters if the lines chosen are of approximately the same strength and excitation potential. Thus only
the last term is of consequence for the determination of the magnetic field strength. For the choice of regression
terms used in Eq. (6.2} it gives a relation between the magnetic field and regression coefficient z¢ identical to
that of Eq. (6.3) if we replace z5 by z¢:

B= wu - 36a) /2, (6.5)
kc

Table 6.1 is a compilation of the magnetic field strengths and filling factors of the five regions observed close
to disk centre near the height at which the weakest Fe I lines are formed. The magnetic field strength B has
first been determined from regression coefficient z; using Eq. (6.3), and from coefficient zg using Eq. (6.5) with
a = 0 (columns 2 and 3). The use of @ = 0 in Eqs. (6.3) and (6.5) corresponds to the assumption that the
Stokes I profiles are unaffected by the magnetic field. This is true to first order, since the [y profile is much
more strongly affected than Stokes I. The averages of the derived values of B have then been corrected through
multiplication by (1 — a)~!/? assuming § = 1/3 (a value suggested by the exploratory model calculations for
weak, low excitation Fe I lines), and using « values determined as described below (column 5). This is only a
rough guess for § and larger values may be nearer to the truth. However, this term does not greatly affect the

determined B.
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The field strengths thus determined are larger than those obtained with the line ratio technique and a
constant field. This may be due to the fact that the field strengths in Table 6, being based on the assumption
of small Zeeman splitting, are less accurate than those determined from the line ratio. Note, however, that the
field strength determined with this technique refers to the height at which the weakest lines are formed (since
we reduce to S; = 0 in the regression). Since this is deeper in the atmosphere than the height of formation of
5250, we would expect a somewhat larger field strength. This follows from the generally accepted theoretical
models of fluxtubes, all of which predict a field strength decreasing with height. One purpose of Table 6.1 is to
show that the Zeeman broadening and saturation are similar in plages and the network, indicating similar actual
field strengths in these different structures in accordance with the results of Tarbell and Title (1977) and Stenflo
and Harvey (1985). This conclusion of similar field strength is also supported by Fig. 6.1, which illustrates the
dependence of In{dy /d;) and vp, — vp, on the respective Zeeman broadening terms of Eqs. (6.1) and (6.2) after
the dependence on S; and x. has been removed.

0
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0 and ye

o

strong plage
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enhanced network

vpy — Yp;, feduced to the case of

in (dy /d 1), reduced to the case of
87 =0 and x.
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Fig. 6.1 a Smoothed averages of In(dv /ds) vs. g2z A2/vg, reduced to the case that Sy = 0 and x. = 0, for
two network and two plage regions. Note the approximately equal gradients of all four curves. The
curves of the two plages have been shifted vertically in order to facilitate comparison. b Smoothed
averages of vp, —vp, v8. g2 A%/ v, reduced to the case that Sy = 0 and x. = 0, for the same regions
as in Fig. 6.1a. The curves are all unshifted.

Recall, that when calculating the Iy profile we assumed that (B) = 1 (Sect. 4.2.4), so that dy is too large
| by a factor Ba. The magnetic filling factors, o, of the observed regions can therefore be readily determined from
‘ the amount by which the empirical curves in the In(dy /d;) vs. S; plot have to be vertically shifted to fit the
i model curves, and from the magnetic field strengths. The o values thus determined are lower limits, since any
depolarization in the telescope reduces the height of the V profiles and therefore the derived value of a. Stenflo
and Harvey (1985) have suggested that there is a still unexplained calibration error of a factor of two in all the
polarization data of 1979 (cf. Sect. 4.2.4).

Table 6.1

Type of region B, {G) B, (G) Average B, (G) Estimated
from (6.3) from (6.5) corrected a (%)
fora=0 fora=0 fora

Enhanced network 1700 1690 1720 3.0

Enhanced network 1230 1490 1390 4.4

Enhanced network 1540 1320 1465 6.1

Strong plage 1260 1560 1515 28.9

Strong plage 1460 1540 1625 32.0
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This method is subject to a relatively large model dependence when using Fe I lines alone. The additional
use of Fe II makes this procedure largely model independent, since all the model In(dv /dr) vs. S; curves for
the ionised species lie close together. The uncertainty in the « values resulting from their model dependence
is no more than a few percent, and is comparable to the uncertainty caused by the scatter of the Fe II data
points. If we multiply the derived « values with a factor of two to account for an instrumental calibration error
in accordance with Stenflo and Harvey (1985), we find values for the magnetic filling factor between 3 and 32%.
These filling factors are listed in column § of Table 6.1.}

Note that it has been implicitly assumed throughout this section, that the continuum intensity inside flux-
tubes is the same to the one outside. The effect of fluxtube temperature and continuum intensity on the magnetic
flux determined from a magnetograph has been discussed by Grossmann-Doerth et al. (1987). A higher contin-
uum intensity inside the fluxtube will decfease the determined o values, as is discussed in detail by Schiissler and
Solanki (1987). Note that we can make the results of this section independent of 6, = Ifuxtube /photosphere 1,y
replacing o by a6, throughout. On the other hand it has also been assumed that the fields are vertical, which in
general tends to give us a lower limit for o (and also for B). We have also neglected the possible cancellation of
polarities in the resolution element, which would influence &, but should not affect B.

In Sect. 6.4.2 we shall investigate the influence of spectral smearing on filling factors determined from Stokes
V. We also wish to point out that the statistical method can be used to determine filling factors from Stokes
I alone, if some assumptions are made regarding the true field strength, or if it is determined via some other
method (cf. Brandt and Solanki, 1987, for an application).

6.3. Magnetic Field Strength From the Line Ratio Technique

6.8.1. Centre to Limb Variation of the Stokes V Line Ratio: Observations

The line ratio technique of Stenflo (1973) has been briefly described in the introduction to this chapter. Further
details are to be found in, e.g., Stenflo.(1973, 1976), Frazier and Stenflo (1978), and Stenflo and Harvey (1985).
We refer to these papers for more information.
The CLV (i.e. 4 dependence) of the Stokes V line ratio of Fe 1 5250.2 A to Fe I 5247.1 A has been previously
“measured by, e.g., Frazier and Stenflo (1978), who, however, did not analyse these measurements in detail.
Howard and Stenflo (1972), Frazier and Stenflo (1972) and Gopasyuk et al. (1973) have measured and discussed
the CLV of the ratios of other lines, which are not as useful as the 5250/5247 line ratio for determining magnetic
field strengths.

Fig. 6.2 Centre to limb variation of the 5250/5247 L1 —
Stokes V' amplitude line ratio. Filled ’
squares and dashed curve represent the
directly determined line ratio, while the L.o
open squares and solid curve show the line
ratio reduced to the case of zero filling fac-
tor, using the regression equation (6.6).

Vinaz, 5250
1.5Vimaz,5247

t The filling factors published by Solanki and Stenflo (1984) are approximately a factor of two smaller than
in Table 6.1 due to an error in that paper. We have also taken into account the exact positions of the observed
regions on the solar disk.
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In Fig. 6.2 we plot the CLV of the Stokes V' line ratio of 5250/5247. The filled squares represent the orignal
data, and the dashed line is a cubic spline fit. The equivalent Stokes @ line ratio also contains information on
the magnetic field strength. However, we shall not discuss it further here, referring to Stenflo et al. (1987a) and
Solanki et al. (1987) for more information. Since, for a weak field, we would expect the V' amplitudes of the two
lines to have the same ratio as their Landé factors, we have divided by this ratio in order to normalise the figure
to unity for weak fields. The Stokes V line ratio clearly approaches unity when going towards the limb. The
obvious interpretation is that this is due to a rapid decrease in field strength with height. However, it may also be
possible that changes in the line profiles when going from disk centre to the limb may lead to a similar behaviour.
Indeed Stenflo et al. (1987b) found that a part of this increase is actually due to a change in line width with
4. Furthermore, the increasing strength of t}}e m-component with increasing v may also be of consequence. In
Sect. 6.3.2 we shall test these hypotheses quantitatively with a one dimensional model. Further effects may arise
due to the 2-D geometry of fluxtubes. Such effects will be analysed in a future investigation using the model
presented in chapter 9. :

Another parameter which also influences the positions of the data points in Fig. 6.2 is the filling factor.
As demonstrated by Stenflo and Harvey (1985), the line ratio of (5250/5247) is somewhat dependent on filling
factor. This leads to the suggestion that at least part of the scatter of the points around the cubic spline fit
(dashed curve) is due to the different filling factors of the observed regions. This suggestion is supported by the
similarity between these departures from the dashed curve and Fig. 3.1, where the amplitudes of Stokes V of Fe
15250.2 A are plotted, which are a measure of the filling factor.

The following regression equation represents a first attempt to separate the u and « dependences of the V
line ratio. It is assumed that the line ratio depends linearly on both i and a(5250)/u (which is approximately
proportional to a for vertical fields).

a(5250)

T5a(5247) ~ =0 + (21 + z2p) (1 + 23a(5250) /). (6.6)

Here zo,z,, 2, and 3 are the regression coeflicients. This regression is used to reduce the data to the case of
a = 0 (the solid line and the open squares in the figure). The fact that this curve becomes larger than one, which
appears unphysical, suggests that this regression equation overestimates the effect of the filling factor. However,
the few data do not warrant the construction of a more complex regression equation. Note, however, that 1.5-D
radiative transfer calculations of the line ratio in cylindrical models which conserve flux with height can lead to
line ratios greater than unity (Solanki and De Martino, in preparation)

6.3.2. Centre to limb variation of the Stokes V Line Ratio: Model Calculations

In this section we present calculations of the Stokes V' line ratio of 5250/5247 which include a number of im-
provements with respect to previous calculations. Firstly, we use a radiative transfer code to calculate the line
profiles. Most previous calculations of the line ratio have been made with the simple Unno (1956) or Rachkovsky
(1967) theory, the exception being the calculations of Wiehr (1978). Secondly, we calculate the CLV of the line
ratio. Thirdly, we use both a model with constant field (like all previous authors) and one based on the thin
fluxtubes approximation, i.e. with a magnetic field decreasing rapidly with height (cf. Sect. 4.5.1). Fourthly, we
test for the sensitivity of the line ratio on temperature by calculating it for both the HSRA and the plage model
derived in Sect. 5.4.2. Fifthly, we also include the influence of macroturbulence broadening on the line ratio.
Fig. 6.3 shows the CLV of the Stokes V' 5250/5247 line ratio data, as well as model calculations. The solid
curves are the results of calculations using the plage model described in Sect. 5.4.2 with a magnetic field calculated
using the thin tube approximation. For the upper curve the magnetic field strength at r = 1, B(r=1) = 1400 G,
for the lower curve B(r=1) = 2000 G. The magnetic field vector is assumed to be vertical to the solar surface,
i.e. cosy = p. No macroturbulence broadening has been assumed so far. As far as microturbulence is concerned
we make use of one of the results of chapter 7, namely that the microturbulence inside the fluxtubes is similar
to that outside at disk centre. Extrapolating from there, we assume that this is true for all u values. The CLV
of the microturbulence, as determined from Fe I lines in the quiet photosphere, has been given by Simmons and
Blackwell (1982). The &y values of Simmons and Blackwell increase linearly with decreasing u, except for their
last point at w = 0.2, which has a considerably larger microturbulence than would be obtained from a linear
extrapolation from the other points. For our calculations upto u = 0.1 we have to extrapolate from their values.
Keeping in mind that Simmons and Blackwell feel that the value at u = 0.2 is considerably less certain than the
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rest we have decided (for this rough analysis) to leave this value aside and extrapolate linearly from the rest of
the points. We therefore adopt the following dependence of &y on u:

mic = —0.69u+1.61  for 0.1 < u < 1.0. o (67)

Keeping in mind that u decreases as we approach the limb this signifies an increase when going towards the limb.
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Fig. 6.3 CLV of the 5250/5247 amplitude line ra- Fig. 6.4 CLV of 5250/5247 amplitude line ratio.

tio. Filled circles: observational data. The Solid circles: observational data. Curves:
vertical lines are error bars. Solid curves: line ratio determined from synthetic V pro-
Calculated line ratios for'lines unbroad- files which have been broadened by macro-
ened by any macroturbulence. The mag- turbulence to match the data. Solid curve:
netic fields have been calculated using the thin tube magnetic field with B(r=1) ~
thin tube approximation, with B = 1400 2000 G, plage temperature model. Dashed
and 2000 G at 7 = 1 as marked in the fig- curve: constant magnetic field, B = 1140
ure. Dashed curves: line ratios calculated G, plage temperature model. Dot-dashed
for the same models, but now for V broad- curve: constant magnetic field, B = 1300
* ened by a macroturbulence so as to match G, HSRA.

the widths of the observed profiles.

The solid curves in Fig. 6.3 gives the impression that the 1400 G model provides the better fit to the data.
However, a comparison of the complete calculated Stokes V profiles with the observations clearly shows that
the former are much too narrow, in agreement with the conclusions of chapter 5. We assume that the rest of
the broadening is due to macroturbulence, which is consistent with the approach presented in chapters 5 and 7.
For disk centre we can use the broadening given in Table 7.1, but for positions nearer the limb a more detailed
determination is necessary.

So far no determinations of the macroturbulent broadening in fluxtubes away from disk centre have been
carried out. We shall use quiet Sun values as a starting point for our determination in fluxtubes. The macrotur-
bulence in the quiet photosphere for disk centre and near the limb has been given by Holweger et al. (1978). We
interpolate linearly in their data to obtain the following relation for the CLV of the macroturbulence

Emac = —0.78u+2.08  for 0.1 <u<1.0. (6.8)

These values from the literature have been used to broaden the Stokes I profiles calculated with the HSRA
without a magnetic field, which have then been compared with the data. Since the data were all obtained in
active regions, the fits are not quite ideal. In particular the line depths of the observed profiles are smaller than
of the calculated ones. However, for the 52471.1 A line the line widths matched rather well. For Fe I 5250.2 A
the magnetic broadening is appreciable and does not allow good fits.
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From a comparison of observed to calculated V' profiles, values of s,},’;ac (i.-e. &mac determined from Stokes
V) between 2.0 and 2.5 km sec™* have been obtained, with no clear dependence on u visible. Thus, in contrast
to Stokes I, the macroturbulence broadening does not increase towards the limb. But neither does it decrease, a
somewhat surprising result, when one bears in mind that mass motions in fluxtubes are expected to be mainly
vertical. However, we cannot reach definite conclusions regarding the velocity structure from just these. two
lines. A future statistical analysis of the type carried out by Pantellini (1986), combined with radiative transfer
calculations may be able to clarify this point. We also wish to stress that the fits to the observed Stokes V
profile shapes are not of very good quality. Firstly, due to the asymmetry of the observed V', but secondly also
because the central portion of the observed V' profiles is much flatter than that of the calculated profiles. This is
suggestive of the influence of the finite thickness of the fluxtube, as evident from the 1.5-D calculations of Solanki
and De Martino (in preparation). e

Let us return to the Stokes V line ratio. In Fig. 6.3 the dashed curves are the calculated line ratios for the
broadened profiles. The upper curve is again obtained from the thin tube model with B(r = 1) = 1400 G, the
lower curve from B(r = 1) = 2000 G. Now it is the model with the higher field strength which gives the better
fit. Within the scatter it fits the data quite well and suggests that the thin tube approximation is a reasonable
assumption, and the magnetic field decreases with height.

However, before concluding anything on the height dependence of the magnetic field, we must first test this
diagram for its sensitivity to magnetic field gradients. We have therefore also calculated profiles for a series
of models with constant magnetic fields. The resulting 5250/5247 line ratio vs. u curve of one such model
(B = 1140 G = constant) is shown in Fig. 6.4 (dashed line) together with the corresponding curve of the thin
tube model with B(r=1) = 2000 G. The two models give identical results for 4 = 1, and they diverge slightly
when going towards the limb. This difference is, however, exceedingly small. In particular, it is considerably
smaller than the scatter of the data. We therefore conclude that it is presently not possible to determine the
height variation of the magnetic field from the CLV of the line ratio. This is in contrast to the results of Stenflo
et al. (1987b), who used a simple model of the Zeeman splitting of these lines to infer a considerable decrease in
field strength when going from the centre to the limb. There are two possible explanations for this insensitivity
to the magnetic field gradient. The first is that it is effects of the changes in line shape which dominate the CLV
of the line ratio. The increasing width of the lines near the limb simulates the presence of a weaker field and the
increasing relative strength of the w-component with increasing « also contributes to the change in the line ratio
(as can be seen from some straightforward manipulations of the Unno (1956} solutions; cf. Solanki et al., 1987,
“for more details). Although the simple model of Stenflo et al. (1987b) does take into account the increase in
line width, it neglects the increasing importance of the m-component near the limb. This is the main reason for
the difference of its results to those of the radiative transfer calculations presented here. Line profile effects are
certainly important, but they may not be able to explain the complete effect. Another possibility is that against
the generally established notion that lines are formed higher up near the limb, this is not true for fluxtubes.
Calculations of the heights of formation in fluxtubes are of great importance to settle this question. Finally, we
must not forget that these are only one dimensional model calculations and the finite thickness of fluxtubes may
affect the results considerably.

The dot-dashed line in Fig. 6.4 is the CLV of the line ratio calculated with the HSRA and B = 1300 G =
const. The difference to the other two curves is once more less than the scatter in the data. A field strength of
1300 G gives a somewhat lower line ratio at u = 1, but produces a better fit for this temperature model to the
CLV. We conclude that the line ratio is rather insensitive to the temperature, as is expected, with a temperature
difference of 400-500 K giving only a small difference of ~ 150 G in the determined magnetic field. Comparing
the three curves in Fig. 6.4 with each other shows that the difference between the curves with different magnetic
field gradients is of the same order as the difference between the curves with different temperatures. It will
therefore not be possible to use this diagram for the determination for the height dependence of the magnetic
field, even with data of much better signal to noise ratio, unless the temperature structure in fluxtubes is very
well known.
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6.4. Finite Spectral Resolution and the Determination of Field Strength and Fill--
ing Factor

6.4.1. Motivation

In their quest for better data, solar observers have often opted for increased spatial and temporal resolution at
the cost of a certain amount of spectral resolution. As long as the observations are limited to measurements of
spectral intensity (Stokes I), this usually does not present a serious problem (except for the detailed analysis
of the line profile, its bisector, and related studies, Livingston and Huang, 1987). The profile is broadened,
the line depth is reduced, but the equivalent width and the core wavelength remain relatively unaffected. The
situation changes dramatically for the cases when circularly polarized spectra (Stokes V) are required, e.g. for
problems relating to the diagnostics of the properties of solar magnetic fluxtubes. Not only are the amplitude
and asymmetry of a Stokes V line profile affected by changes in spectral resolution, but also the areas of both
its wings, and the wavelength of its sero-crossing. Furthermore, different lines are not affected in the same way,
which means that the ratio of two Stokes V profiles to each other is also changed. Another reason why the
magnitude of the observed effect on Stokes V is generally larger than on Stokes [ is due to the circumstance that
with most instruments, the measurement of Stokes V' requires wide slits to get a good signal to noise ratio while
maintaining high temporal and/or spatial resolution. Even in the optimum spectral lines the Stokes V amplitude
seldom exceeds a few percent of the continuum intensity when observing outside sunspots.

In this section we shall consider the effects of spectral smearing on the amplitudes and areas of the Stokes
V profile (— filling factors) of Fe I 5250.2 A, as well as on the ratio of Fe I 5247.1 A to Fe 1 5250.2 A (— field
strength). Stokes V' profiles from our very high spectral resolution data of 1979 will be taken as the starting point.
The effects of low spectral resolution will be numerically simulated by convoluting these observed line profiles
with model instrumental profiles. We shall also t‘:ry to find some Stokes V parameters which are insensitive to
the spectral resolution.

In later chapters we shall use this technique to study the effects on the zero-crossing wavelength of Stokes
V and on its asymmetry.

6.4.2. Description of the Technique and the Input Data

We have used data with very high spectral resolution as our starting point, and have simulated the effect of
a finite entrance slit width and finite grating resolution by convoluting the data with an instrumental spectral
profile. Using instrumental profiles of slightly different shapes we have also been able to get an impression of
how large the effect of the profile shape is on the results. A Gaussian is often an acceptable represention of the
entrance slit profile, whereas a Voigt function is a reasonable approximation of the theoretical sinc? profile of a
perfect spectrograph (cf. Unséld, 1955; Allen, 1973). Allen and Unsdld also give the following relation between
v, the width of the Gaussian at the point where its value has fallen to 1/e (i.e. the Doppler width), and the
entrance slit full width, s: v = 0.41s. For a perfect spectrograph with infinitely narrow entrance and exit slits
the relations given by Allen are v = 0.43, and a = 0.33, where [ is the resolving distance (i.e. the distance from
the central maximum to the first minimum), and v and a are the ‘Doppler width’ and ‘damping constant’ of
a Voigt profile. If a photoelectric detector is used, then its finite width (acting as an exit slit) also has to be
accounted for. Ideally the apparatus function resulting from the entrance slit and grating should be convolved
with the rectangular profile of the exit slit. Usually, we have used a Gaussian profile (see below), as well as
Voigt profiles with ‘damping contants’ a = 0.1 and a = 0.2 (see chapter 2 for a definition of the Voigt profile}, as
the total instrumental profile. With this approximation the entrance and exit slit widths v; and v, combine to
form a total ‘Doppler width’ vZ, = v? + vZ. However, when discussing the line-centre-magnetogram technique
in chapter 7 we have also used a rectangular exit slit profile. No attempt has been made to model asymmetric
spectrograph profiles.

The reason why we have chosen these approximate profile shapes instead of theoretically more exact ones
involving convolutions between sinc? and rectangular functions, is that different ratios of entrance to exit slit
width and spectrograph resolving power result in different instrumental profile shapes which can only be described
by introducing a larger number of free parameters. We feel that such a detailed analysis lies beyond the scope
of the present investigation, for the following reasons. Firstly, the theoretical apparatus function can differ
considerably from the profile of a real instrument, which can be asymmetric, with grating and lense defects

_
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also contributing significantly to it (Unsold, 1955; von Alvensleben, 1957). Secondly, as shall be apparent from
the results in Sect. 6.4.3, the shape of the apparatus function generally plays a minor role, compared to other
parameters like its width, or the asymmetry of Stokes V', etc.

In the following discussions the results are always expressed as a function of v. The relation between v and the
often used full width at half maximum of the corresponding Gaussian is: FWHM= 1.665v. The actual numerical
convolution has been carried out using Fourier transforms and the convolution theorem, but the convolution
integral has also been evaluated directly to test the accuracy of the code. The results from both methods are
almost identical. For example, the induced zero-crossing wavelength shifts differ by less than 5 m sec ™.
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Fig. 6.5 Stokes V profile of Fe I 5250.2 A for different amounts of spectral smearing. The highest and narrowest
profile represents the original TS data. The other profiles have been convoluted with increasingly
broader Gaussians representing instrumental smearing. The broadest Gaussian has v = 150 m4,
where v is the e-folding width (‘Doppler’ width).

The technique described above has been used on the Fe I 5250.2 A and 5247.1 A profiles in the data from
1979. The Fe I 5250.2 A line has been chosen since it was, and still is, one of the most widely used lines
for polarimetric observations of all kinds, e.g. for magnetograph observations and for magnetic field strength
determinations using the line ratio technique. It is also free of obvious blends out to about 0.2 A in both wings.
Thus it is included in the lists of lines selected by Stenflo and Lindegren (1977) and by Rutten and van der Zalm
(1984) as unblended after passing several stringent tests. The reason why this last point plays a role is that
through spectral smearing the line gets considerably broadened, and other neighbouring lines, not blended with
it, may start to overlap as the smearing increases. However, in order to be certain that the neighbouring lines do
not influence the analysis presented here, their Stokes V profiles have been artificially reduced to zero for most
of the calculations. Due to this precaution, the results presented in this section should be applicable to any line
with a similar profile to Fe I 5250.2 A and with no close neighbouring lines or blends. In Fig. 6.5 the Stokes
V profile of Fe I 5250.2 A is shown convoluted with different Gaussian instrumental profiles having widths, v,
ranging from 0 mA (corresponding to the original FTS spectrum; the highest and narrowest profile in the figure)
to 150 mA (the flattest and broadest profile). The width of the instrumental Gaussian has been increased in
steps of 10 mA.




08 The Photospheric Layers of Fluztubes

6.4.8. Infuence of Spectral Smearing on Amplitude and Area of Stokes V

One of the qualitative results is readily visible from Fig. 6.5; the amplitude of the Stokes V' profile decreases rapidly
with increasing spectral smearing. The quantitative form of this decline is shown in Fig. 6.6, where the Stokes V
amplitude, normalised to its value for the fully resolved profile, i.e. (as(v) + ar(v))/(as{v = 0) + a,(v = 0)}, has
been plotted vs. v, the width of the instrumental profile. a, and a, are defined in Sect. 4.4.1. The three curves
in Fig. 6.6 correspond to the three different model instrumental profile shapes chosen: the Gaussian (solid line},
the Voigt profile with ‘damping constant’ a = 0.1 (dashed line), and the Voigt profile with a = 0.2 (dot-dashed
line). These profiles will be represented in the same manner in the remaining figures, unless it is explicitly stated
otherwise. As mentioned in Sect. 2, the main reason for choosing different profile shapes was to get an idea
of how large the effect of the profile shape is on the results, and not to try to fit the profile of a particular
instrument to high accuracy. Fig. 6.6 shows that the amplitude decreases more rapidly when the wings of the
instrumental profile are more pronounced. Although this effect is not negligible, it is nevertheless small compared
to the effect of increasing v, and supports the assumption that the exact profile shape is not very important. The
curves obtained from the network and active region profiles are practically identical, and have therefore not been
plotted separately. It should be noticed that for lines narrower than Fe I 5250 (for example lines with smaller geg
values, which have smaller Zeeman broadening) the effect will be even larger (cf. the results of spectral smearing
on the line ratio method in Sect. 6.4.4). We conclude that only filling factors determined by procedures which
account for finite spectral resolution, e.g. from the ratio of V' amplitude to d//d at the same wavelength, should
not be appreciably affected by spectral smearing.
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Fig. 6.6 Sum of the absolute blue and red amplitudes of Stokes V vs. ‘Doppler’ width v (in mA) of the
instrumental profile. The Stokes V' amplitude has been normalised to its value at v = 0. Solid
curve: Gaussian apparatus function. Dashed curve: Voigt apparatus function with damping constant,
a = 0.1. Dot-dashed curve: Voigt apparatus functon with a = 0.2. The curves represent the Fe I -
5250.2 A line in active plage as well as network regions.

Fig. 6.7 shows the total Stokes V area, normalised to its value for the fully resolved profile, i.e. {Ay(v) +
Ar(v))/(Ap(v = 0) + A.(v = 0)), plotted against v. Ay and A, are also defined in Sect. 4.4.1. The curves for the
network and plage are again too similar to warrant plotting separately.
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Fig. 6.7 Sum of the absolute blue and red areas of Fe I 5250.2 A Stokes V (normalised to its value at v = 0)
vs. v. The three curves represent the same profile shapes as in Fig. 6.6. Network and active plage
regions give identical curves.

The decrease in Stokes V' area is not quite as strong as the decrease in Stokes V' amplitude, but is still
considerable. This decrease has a simple intuitive explanation. Due to the instrumental broadening the two
wings of Stokes V overlap and cancel each other increasingly, thus producing the observed result. Physically this
is related to the fact that the absolute areas of the two Stokes V' wings play a role very similar to that of the line
depth of the I profile, and not to that of its equivalent width, as can be easily understood by recalling that it is
the area of the Iy, profile (cf. Sect. 4.2) which corresponds to the equivalent width. Indeed, the equivalent width
of the Iy, profile, Wy, was found to change by approximately 20% between v = 0 and 150 mA for a Gaussian
instrumental profile, when neighbouring lines are not removed. This is a much smaller variation than that of 4,
or A,. Part of this change in Wi, may be due to the fact that the area asymmetry of Stokes V' is a function of
v as well, and the renormalisation needed, therefore also depends on v. However, part of the effect is due to the
circumstance that as the line broadens it becomes more difficult to determine Wy accurately. Integration has to
be terminated where the neighbouring lines start to interfere. In particular for a Voigt instrumental profile the
resulting decrease in Wy is significant. A way out of this dilemma is to use the line strength of the Iy profile, Sy,
defined as the area of the lower half of the line. We find that for a Gaussian instrumental profile Sy decreases
by less than 10% between v = 0 and v = 150 mA. For the range 0 < v < 50 mA the decrease is less than 1%.
Sv is therefore a quantity, which can be used to determine the filling factor almost independently of the spectral
resolution used.

6.4.4. Influence of Spectral Smearing on Stokes V Line Ratio

One would naively expect that if one chooses two lines which are practically identical in every other respect
except in the Landé factor (like the Fe I lines at 5247.1 and 5250.2 A), the ratio of their Stokes V' amplitudes
would not depend on the spectral resolution, or at least not do so strongly. However, the large effect of the
macroturbulence on the line ratio found in Sect. 6.3.2 suggests that we must expect a similar influence due to
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spectral smearing. The larger Landé factor of Fe I 5250.2 A means that for a kilogauss field its Stokes V profile
will be somewhat broader than the Fe I 5247.1 A line, due to Zeeman saturation (cf. Fig. 4 of Stenflo and Harvey,
1985). Its amplitude will therefore be less strongly affected by spectral smearing than that of the narrower Fe I
5247.1 A line. As a result, a decrease in spectral resolution will change the ratio between the V amplitudes of the
two lines, such that the Fe [ 5250.2 A line gets stronger with respect to the Fe I 5247.1 A line. Fig. 6.8 shows the
predicted effect. The Stokes V amplitude of the Fe I 5250.2 A line divided by 1.5 times the Stokes V amplitude
of the Fe I 5247.1 A line, or (as(5250) + a,(5250))/((as(5247) + a,(5247)) x 1.5), is plotted vs. v. On the right
hand side of the figure a few values of the magnetic field, based on the Milne-Eddington calculations of Stenflo
and Harvey (1985), are marked. The amplitude ratio increases steadily with decreasing spectral resolution, with
the consequence that the deduced field strength decreases with increasing v, if the effect of spectral smearing is
not accounted for in the interpretation. .~ ‘

1.0

0.9
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—1000 G
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‘Doppler’ width of instrumental profile v (mA)

Fig. 6.8 2/3 times the ratio of the Stokes V amplitudes of Fe I 5250.2 A and Fe I 5247.1 A vs. v. Upper
three curves: Network. Lower three curves: Plage. For some values of the line ratio the deduced field
strength has been marked on the right side of the figure.

For very large v the line ratio asymptotically approaches the value one, as is expected from theoretical
considerations, since for a very strongly smeared, i.e., extremely broadened profile, the Zeeman splitting is
always much smaller than the line width so that Stokes V behaves like in the weak field case. We have tested the
behaviour of the amplitude line ratio for v values upto v = 500 mA and have found it to behave as predicted. It
should be noted, however, that we carefully removed the neighbouring lines to both Fe I 5250.2 A and 5247.1 A, -
since their presence would no longer allow a comparison with the theoretical prediction.

This effect may explain the difference in line ratio between Stokes V profiles obtained with the Kitt Peak
McMath grating spectrometer (spectral resolution approximately 20 mA) and the FTS, as pointed out by Stenflo
and Harvey (1985). Once more the shape of the instrumental profile plays only a minor role.

In most cases, however, the line ratio technique has been applied to magnetograph observations obtained
with fixed exit slits (e.g. Stenflo, 1973; Wiehr, 1978). Let us denote the apparent field strengths of Fe I 5250 and
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Fig. 6.9 Bsaso/Bsaar vs. v Bsasp is the signal from a magnetograph slit placed in the wings of Fe I §250.2
A. Solid curve: magnetograph slit 10-35 mA from line centre. Dashed curve: 30-55 mA. Dot-dashed
curve: 50-75 mA. ’

5247 evaluated according to the assumption of a weak field by Bgoso and Bgger respectively. Thus
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where Vizso and Iszso are the spectrally smeared Stokes V and I profiles of the Fe I 5250.2 A line, gsgs0 the
Landé factor, and Ay, , and A, , the wavelengths of the edges of the exit slit windows in the blue and red line
wings, respectively. Thus the integrals in the denominator can be directly evaluated, to become: Iszs0(Asp,) —
Iszs0( Aoy ) = Tszs0(Ar,) + Iszs0(Ar, ). An analogous expression applies for the Fe I 5247.1 A line.

Fig. 6.9 illustrates the dependence of the Bszs0/ Bs247 line ratio on the width v of the Gaussian instrumental
profile for each of three (rectangular) magnetograph slits of equal width at the positions 10-35 mA (solid line),
30-55 mA (dashed line), and 50~75 mA (dot-dashed line) on either side of the zero-crossing wavelength. These
three slit positions were used by Stenflo (1973).

We have also tested the effect of spectral smearing on the line ratio without removing the neighbouring lines.
In this case the amplitude line ratio can actually become larger than unity (upper solid curve in Fig. 6.10). This
result for v 2 100 mA is due to the fact that Fe I 5247.1 A gets slightly more blended with increasing spectral
smearing than Fe I 5250.2 A. The dashed curve is the line ratio of only the blue wings of these two lines, while
the dot-dashed curve is the line ratio of the red wings. The blending in Fe I 5247.1 A is stronger than in Fe
I 5250.2 A in both wings, but mainly in the blue wing. Note that in contrast to Stokes I, the V profile gets
weakened by blends.

6.5. Conclusions

In this chapter we have presented a method for obtaining the true field strength in fAluxtubes from Stokes V,
which does not rely on radiative transfer calculations. The kilogauss fields found by previous investigators (cf.
Sect. 6.1) are confirmed. We have also outlined a procedure for determining the filling factor in a relatively model
independent manner although some problems still remain with telescope depolarization and the true continuum
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Fig. 6.10 2/3 times the ratio of the Stokes amplitude of Fe I 5250 A and Fe I 5247.1 A vs. v. Lower solid curve:
Line ratio after removing the neighbouring lines. Upper solid curve: line ratjo when neighbouring
lines are not removed. Dashed curve: line ratio of blue wing only (neighbouring lines not removed).
Dot-dashed curve: line ratio of red wing only (neighbouring lines not removed).

‘intensity in fluxtubes. The filling factor turns out to be one of the most difficult parameters to determine with
‘certainty. In Sect. 6.3 we have examined the CLV of the 5250/5247 line ratio. Model calculations show that the
observed CLV of this parameter can be reproduced equally well by a constant magnetic field of 1100-1300 G or
a magnetic field decreasing with height, as determined with the thin tube approximation with B(r=1) = 2000
G. The strong influence of macroturbulent broadening on the line ratio has also been demonstrated. If the lines
are broadened then higher field strengths are required to give a particular line ratio.

The fact that the CLV of the 5250/5247 line ratio cannot provide information on the height variation of
the magnetic field raises the question of whether there are other possible methods of obtaining such information.
One possibility is the CLV of the IR line Fe I 15648.5 A. Stenflo et al. (1987b) have been able to determine the
height variation of the magnetic field directly from the splitting of this line, and find a decrease with height.
However, in view of the results presented in this chapter, we require radiative transfer calculations of this line to
settle this question. Fortunately, there are also other indicators which suggest that the field strength really does
decrease with height. An example is the comparison of the fields derived at disk centre from the IR line (1400
G) and in the visible (1000-1200 G). Since the IR line is formed deeper in the atmosphere than the lines in the
visible (due to a minimum in continuum opacity near 1.6 u), this amounts to a height gradient as well. At disk
centre the w-component should not play a major role, unless the fields are strongly tilted.

Another interesting result derived from the IR line is that the o-components of its V' profile are individually
considerably broader than the complete I profile, cf. Fig. 6.11. Two possible explanations exist for this obser-
vation. Firstly, the magnetic field may have a range of field strengths distributed horizontally, either across the
diameter of each individual fluxtube or varying from fluxtube to fluxtube. The other possiblity is that velocity
broadening is responsible for this large Stokes ¥V width. This question may be decided in a future investigation
additionaly involving model calculations of this and other lines in the IR with smaller Landé factors.

We have seen the importance of changes in the line profile for the line ratio. It is therefore also necessary
to investigate the line ratio calculated using 1.5-D radiative transfer (i.e. radiative transfer along many lines of
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Fig. 6.11 Comparison between observed (solid curve) and computed (dashed curve) Stokes V profiles at u = 1.00
and 0.61. The computed Stokes V profile is determined by subtracting two shifted Stokes I profiles
from each other. Thus the difference in width of the individual components of the two profiles is a
measure of the difference in width between the [ profile and a single o-component of the V' profile.
The relative wavelength scale has been transformed into kG units (based on a Landé factor of 3.0).

sight with subsequent averaging of the emergent profiles) in a 2-D fluxtube model. In particular, away from disk
centre the line of sight contains a magnetic contribution over only a small part of its length. The results of such
calculations will be presented in a future publication (Solanki and De Martino, in preparation).

Throughout this chapter we have neglected low lying canopies whose presence has been suggested by Gio-
vanelli (1980), Giovanelli and Jones (1982), and Jones and Giovanelli (1983). A recent review of canopy observa-
tions has been given by Jones (1985). Can our observations set any new limits on the heights of such canopies?
Canopies in the photosphere would, due to the rapid expansion of the fluxtubes, cause the field strength to drop
drastically. We should therefore expect the line ratio to become unity in the presence of a sufficiently low lying
canopy. We find no sign for the existence of such canopies in any of our observations. The approach of the
line ratio to unity near the limb is naturally explained by changes in the line profile (even for a strong constant
field). This result is in agreement with the findings of Giovanelli and Jones who see such canopies mainly in
chromospheric lines.
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7.1. Introduction |

Mass motions, like the other basic properties of magnetic fluxtubes, have been extensively studied, both theoret-
ically and observationally. In the following brief review we shall restrict ourselves to the literature on motions in
the photospheric layers of fluxtubes.

Theorists have discovered a number of mechansims for producing mass motions in fluxtubes and have anal-
ysed the properties and the influences of such motions. Ribes and Unno (1976), Unno and Ribes (1979), Schiissler
(1984a), and Hasan and Schiissler (1985) have studied the effects of steady flows on the properties and stability
of fluxtubes. Parker (1978) first studied the convective instability in small fluxtubes produced by downflows.
Others to study the convective instability are Webb and Roberts (1978), Spruit (1979), Spruit and Zweibel
(1979), and Unno and Ando (1979). Venkatakrishnan (1983, 1985) and Hasan (1984, 1985) calculate the convec-
tive collapse fully dynamically, and Hasan (1984, 1985) finds that the convective collapse of fluxtubes gives rise
to oscillatory motions within them as predicted by Spruit (1979). Nordlund (1983) has carried out convective
collapse calculations in three dimensions. Venkatakrishnan (1986) has studied the resonant oscillatory motions
induced in fluxtubes by external pressure fluctuations. Overstable oscillations in fluxtubes have also been ex-
amined by Hasan (1986). The wave modes possible in fluxtubes when the effects of gravity are included have
been investigated (in a linear analysis) by e.g. Defouw (1976), Roberts and Webb (1978, 1979), Spruit (1981a),
Rae and Roberts (1982), and Roberts (1983). Finally, Hollweg et al. (1982) calculate the propagation of Alfvén
waves non-linearly, while Herbold et al. (1985) calculate the non-linear amplitudes of longitudinal waves from
the photosphere to the transition region, including the production of shocks.

Mass motions play an important role for fluxtubes and their surroundings. Examples are the heating of the
V_ﬂuxtube atmosphere by downflows (Hasan and Schissler, 1985), the stabilization of fluxtubes by vortical flows,
‘and their destabilization by downflows (Schiissler, 1984a), and the heating of the Chromosphere and Corona by
fluxtube waves (e.g. Herbold et al., 1985).

Early observational work with a gpatial resolution of usually a couple of arc seconds, both in polarized and
unpolarized light, suggested the presence of downflows of the order of 0.5 km sec ™! co-spatial with the magnetic
field, at supergranule boundaries (e.g. Frazier, 1970; Skumanich et al., 1975) and in active regions (e.g. Giovanelli
and Ramsay, 1971; Howard, 1971). Further references to such observations are given in Sect. 7.3.1. Giovanelli
and Slaughter (1978) have carried out an extensive empirical study of steady flows inside small fluxtubes by
measuring the zero-crossing wavelength of the Stokes V profiles (relative to their Stokes I wavelengths) of a
number of lines formed at different heights in the atmosphere, and so have been able to determine the height
variation of downflow velocity. They find that the velocity increases rapidly with depth, being negligible in the
chromosphere and increasing to 1.6 km sec™! near the r = 1 level of the photosphere. Wiehr (1985a) also finds
redshifts of the Stokes V profile compared to Stokes I of between 0 and 2 km sec™* for the Fe I 8468.4 A line
in different magnetic elements. Frazier and Stenflo (1978) also observed large downflows correlated with the
magnetic field, but also found some indirect evidence indicating that these downflows may be located in the
immediate surroundings of the fluxtubes. Such a ring of downflowing material surrounding the fluxtube appears
in the self-consistent model calculations of Deinzer et al. (1984b) as well.

To keep the fluxtubes from draining the corona on a timescale of minutes Giovanelli (1977) proposed a
mechanism for the inflow of matter into fluxtubes, based on the diffusion of neutral atoms across the field
lines. This process, which is driven by the horizontal gradient in gas pressure, works most efficiently near
the temperature minimum. However Hasan and Schiissler (1985) point out that the use of realistic diffusion
coefficients (collision cross-sections) leads to very small flows, of the order of 10 m sec ™! (see also Schiissler,
1986).

In contrast to the observations mentioned above, Stenflo and Harvey (1985) observe only redshifts smaller
than 0.3 km sec™! of the zero-crossing of the Stokes V profiles of Fe I 5250.2 A and 5247.1 A, with respect to’

"
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the core wavelengths of the simultaneously obtained Stokes I profiles. If the wavelengths of the corresponding
I profiles are corrected for the effects of convective motions according to Dravins et al. (1981), then they find
that the V profiles are actually blueshifted by 0.0 to 0.3 km sec™! (the blueshift increases with the amount of
magnetic flux). Brants (1985b) also finds no evidence for net flows in facul in an emerging flux region from
high spatial resolution observations in Fe I 6302.5 A. Recently, Koutchmy and Stellmacher (1987) have also not
found any downflows larger than 0.25 km sec™! in a network element. There are therefore conflicting claims in
the literature regarding the presence of downflows in fluxtubes. Furthermore, all previous authors determine the
shifts of Stokes V relative to Stokes I, and there are still some problems left with the precise core wavelengths
of Stokes I profiles in active regions. Kaisig and Schréter (1983) find that the cores of six Fe I lines formed in
active regions are blueshifted compared to their wavelengths in purely non-magnetic regions by approximately
0.05-0.25 km sec~!. On the other hand; the observations of Livingston (1982) suggest that the active region
profile of the Fe I 5250.6 A line has a relative core blueshift of the order of 0.01-0.02 km sec ™! (although at equal
intensity the active region profile is always redshifted as compared to the quiet Sun profile), while Cavallini et
al. (1985) observe active region relative redshifts of the order of 0.05-0.2 km sec™! for 3 Fe I lines. Preliminary
results of Brandt and Solanki (1987) for a number of lines observed in regions with filling factor < 11% suggest
that the lowest bisector points coincide to within %1 mA. Finally Miller et al. (1984) find that the line cores of
three Fe I lines observed at supergranular boundaries lie within =0.02 km sec ™! of the cores of these lines in the
quiet photosphere. All these measurements are limited to a few medium strong Fe I lines. The wavelengths of Fe
11 lines and of most Fe I lines have not been studied at all in active regions. In the light of these uncertainties we
shall determine Stokes V zero-crossing shifts for a large number of lines, both with respect to the simultaneously
measured Stokes I core wavelengths, and to laboratory wavelengths. The need for measurements of Stokes V'
line shifts without reference to Stokes [ is intensified by the fact that the Stokes V zero-crossing wavelength need
not correspond exactly to the wavelength of the Stokes I line core in the presence of a complicated velocity field.

There has also been some observational evidence for the presence of non-stationary motions in fluxtubes.
A correlation between fluctuations in the magnetic field and the velocity of the five minute oscillations was first
presented by Tanenbaum et al. (1971). Time series of the Stokes V zero-crossing wavelength shifts have been
obtained by Giovanelli et al. (1978). Although they failed to detect oscillatory motions besides the five minute
oscillations in their time series, this does not imply the absence of all other oscillatory motions in fluxtubes,

- Their spatial resolution of 2.5" x 3.5" means that they probably observed a number of fluxtubes simultaneously,
and could therefore detect only those oscillations in which all the fluxtubes were oscillating in phase. Five minute
roscillations with amplitudes ranging between 0.1 and 0.25 km sec™! have also been observed by Wiehr (1985a).

In addition, he presents observations of large changes in Stokes V zero-crossing wavelength, amplitude, and
asymmetry on a time scale of a few minutes, which appear to be independent of the five minute oscillations.
However, an instrumental source for these observations cannot be ruled out (magnetic region passing in and out
of the resolution element). Brants {(1985b) finds a scatter of greater than +1 km sec™?! in the velocity amplitudes
derived from Stokes V in facule, at least part of which he claims is not due to noise.

There are different methods of obtaining information on fluxtube velocities in the absence of spatially and
temporally resolved spectra. Stokes V zero-crossing shifts are mainly sensitive to stationary flows, or, to be more
exact, to stationary flows in the majority of fluxtubes in the resolution element. The shape of the Stokes V
profile, in particular the asymmetry between its blue and red wings, is sensitive to velocity gradients along the
line of sight. The width of the Iy profile (cf. Sect. 4.2 for a definition) is sensitive to horizontal, vertical, and
temporal variations in velocity inside fluxtubes, or from one fluxtube to another. In this chapter we will present
results based on the analysis of the zero-crossing shift (Sect. 7.2, from Solanki, 1986 and Stenflo et al., 1987a,
b) and the Iy line width {Sect. 7.4, from Solanki, 1986). Observations and a simple discussion of the Stokes V
asyminetry, whose interpretation is more involved, are presented separately in chapter 8. In Sect. 7.3 the results
of Sect. 7.2 are compared with older observations of Stokes V' zero-crossing shifts and a possible explanation for
the discrepancies between the various downflow velocities is given (from Solanki and Stenflo, 1986).
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7.2. Zero-crossing Wavelength Shifts

7.2.1. Absolute Wavelengths

The determination of absolute zero-crossing wavelengths requires that the measured wavelengths be corrected for
any error in calibration of the wavelength scale, for gravitational redshifts, and for the relative motion between the
observer and the observed region. Only the data obtained in 1979 have been reduced to an absolute Wavelength
scale. Since the 1984 data were obtained closer to the limb, and the solar rotation correcton increases rapidly
near the limb, the uncertainty in position of the entrance hole of the FTS makes any correction a dangerous
procedure for these data (cf. Stenflo et al., 1987b). In addition, the exact position of the rotation axis was not
noted during the observations. A possible future solution may be to apply Livingston’s method employing the
Mg Ib line to the CLV data in the visible spectral range.

The instrumental wavelength scale has been, whenever possible, checked by comparing the wavelengths of
atmospheric lines taken from Pierce and Breckinridge (1973) with the wavelengths of these lines in our spectra.
For two spectra it is possible to use the telluric Oy lines between 6278 A and 6307 A. Of these, the lines found to
be unblended by Balthasar et al. (1982) have been chosen. According to these authors the wavelengths of these
lines should be stable to within 15 m sec ™. Caccin et al. (1985), on the other hand, warn that pressure induced
shifts and asymmetries of O lines make them of questionable use as absolute wavelength standards. For two
other spectra the 5420.6 A and 5422.9 A lines of HzO are used, in the absence of anything better. One spectrum
contains no suitable atmospheric absorptions. However, according to Brault (1978) the FTS wavenumber scale
should be accurate to 0.0001 cm™?, and indeed, the FTS wavelength scale is found to reproduce the telluric
absorption lines to within 0.05 km sec ™! in all the spectra in which these are present.

Next, the gravitational redshift of 0.636 km sec ™! is subtracted from the wavelengths, and finally the relative
motion between the observer and the observed region is compensated for. This motion may be thought of being
composed of a number of components (Howard and Harvey, 1970), the most important of which near disk centre
are due to the rotation of the earth around its own axis, its orbital motion around the Sun, and solar rotation. The
velocity due to the first two components is calculated using a code described by Balthasar (1984). The limiting
factor for the accuracy of these calculations is probably the smearing of the order of 50 m sec ™! introduced by
the long integration times of the observations. Its main effect would be to broaden the lines slightly, but due to
the asymmetry of Stokes V' it may also cause a small shift of the zero-crossing wavelength, which will however be

~much smaller than 50 m sec ~{cf. Sect. 7.3.2). The rotation rate of the solar magnetic features has been studied
by e.g. Stenflo (1974). His values of the rotational velocity at different latitudes are used to compensate for
solar rotation. The main uncertainty in the wavelength shift due to solar rotation is introduced by the imprecise
knowledge of the position of the FTS entrance hole on the solar surface (cf. chapter 3). As an additional check
on solar rotation the Stokes I core wavelength of a strong line, whose core is formed above the layer of granular
motion and should therefore be unaffected by it, e.g. Mg I 5172.7 A, is determined and compared to laboratory
wavelengths. The difference between its solar (from Pierce and Breckinridge, 1973) and laboratory (from Moore,
1972) wavelength is 638 m sec™! which compares very well with the gravitational redshift of 636 m sec ™!, which
is the only expected shift if granular influences are absent. This method has been outlined by Livingston (1983).
However, the relatively broad core of this line limits the accuracy of the measurement of its core wavelengths.

The total uncertainty, in the Stokes V zero-crossing shifts relative to the laboratory wavelengths, resulting
from all the different sources, is estimated to be about +0.25 km sec ™ for the four data files with x > 0.9 which
contain telluric lines.

7.2.2, Stokes' V Zero-crossing Shift at Disk Centre

In this section the Stokes V' zero-crossing shifts of the lines from Tables 4.1 and 4.2 are analysed, both with
regard to laboratory wavelengths and to the wavelengths of Stokes [ profiles observed simultaneously in the same
region.

In Fig. 7.1a the Stokes V zero-crossing shift relative to the laboratory wavelength, vy, is plotted vs. Sy for a

plage region. We define
AL = Ala
vy = c—-—-——-——-—-——-( V)“ bl b), . (7.1)

where c is the velocity of light, A{, is the zero-crossing absolute wavelength of Stokes V', and Ay, is the laboratory
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wavelength of the line. The stars represent Fe I lines with excitation potential of the lower level x. < 3 eV, the
circles represent Fe I lines with x. = 3 ¢V, and the filled squares Fe II lines. These symbols shall retain their
meanings throughout the following figures. The scatter is mostly due to noise in the data and to inaccuracies in
the laboratory wavelengths, but some is of solar origin (see below). In particular the larger scatter of the Fe II
data, as compared to Fe I, is probably due to inconsistencies in the laboratory wavelengths of the ionised species,
since a similar scatter has also been observed for Stokes I alone by Dravins et al. (1986) who first proposed this
interpretation. The solid curve represents the smoothed mean of the Fe I data.

Fig. 7.1 a wy vs. Sp, Le. the differ-
ence, in velocity units, be-
tween Stokes V zero-crossing .
absolute wavelength and the
laboratory wavelength, vs. the
line strength of the Stokes I - 0.5
profile, 5r. Plotted are the -~ o
unblended Fe I and II lines
in an FTS spectrum of an ac-
tive region plage. In this and
the following figures, the stars
represent Fe I lines with x. <
3 eV, the circles Fe I lines with J
Xe 2 3 eV, and the filled -0.5 -~ ; -
squares Fe II lines. The solid
curve is a smoothed mean of
the Fe I data.

vy (km sec™*

"1»0 T T T T T
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Line strength Sy (F)

N Fig. 7.1b shows the smoothed mean vy curves of the Fe I lines of four regions (marked a, b, ¢, and d in
this and the following figures), again plotted vs. S;. Due to the uncertainty in its position on the solar disk and
the absence of telluric lines to serve as a wavelength standard, the fifth observed region has not been included.
Note that in three regions the mean curves are blueshifted for some values of S and redshifted for other values.
If we interpret Stokes V zero-crossing shifts as steady flows, then both up- and downflows should be present at
different heights in these regions! One of the regions appears to show a downflow of around 0.15 - 0.2 km sec™?,
but within the error margin given in Sect. 7.2.1 all the data are compatible with an absence of global up- or
downflows in small magnetic fluxtubes, in contrast to the results of a number of previous studies (e.g. Giovanelli
and Slaughter, 1978; Harvey, 1977; Wiehr, 1985a).

The arrows on the right hand side of Fig. 7.1b mark the zero-crossing shifts of the Mg Ib lines at 5172 A
and 5183 A for the two spectra in which these lines are present (regions b and c). These lines have strengths of
approximately 38 F and 47 F respectively, after correcting for the blends in their wings. They also give upper
limits of approximately 250 m sec™! for any net flows inside fluxtubes. This increases our confidence in the
absolute wavelength values determined. The fact that the strong Mg Ib lines and the much weaker Fe I lines are
equally unshifted is completely contrary to the results of Giovanelli and Slaughter (1978), who find increasing
redshift with decreasing line strength. This contradiction cannot be accounted for by any mistake in our absolute
wavelength determination, since it is based only on the relative shifts between different simultaneously observed
lines.
| It is of interest to note that the curves representing the four regions all have a similar shape. Again, this
| shape is not affected by the uncertainty of 0.25 km sec ™ derived in Sect. 7.2.1, since that does not apply to
the relative shifts between the lines of the same region. Medium strong lines are slightly blueshifted compared
| to weak and very strong lines. Surprisingly therefore, the lines with largest amplitude asymmetry (see Fig. 8.5}

also have the largest blueshifts. However, the noise in the data is relatively large and we require further evidence
before accepting such a dependence of Stokes V' wavelength shifts on line strength. This additional evidence is
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Fig. 7.1 b vy vs. Sy for the smoothed mean curves of the Fe I lines formed in two active plages and in two
network regions. The arrows denote the vy values of the Mg Ib lines at 5172.7 A and 5183.6 A in
two of the regions. The regions are denoted by the letters a, b (strong plage), and ¢, d (enhanced
network). These letters mark the same regions in Figs. 7.1c and 7.3 as well. ¢ vy vs. Sy for the
least-squares fits to the Fe II data of four regions (solid lines). The dashed lines are the least-squares
fits to the data of two regions containing the strong Fe II 4923.9 A line, if it is neglected.

provided by the regression analysis carried out below.
In order to see if the Stokes V' wavelength shifts are also dependent on other quantities besides the line
strength, we carried out a regression of the following form (for Fe I lines only):

w = @1 + 2251 + 2357 + ZaXeVD; + T6ger A}/ v, + To(gea)A]/vD;. (7.2)

This simple regression equation is not meant to be unique or exhaustive, but is rather thought of as being the
simplest one describing the dependence of vy on the line strength, S;, the excitation potential, x., the effective
Landé factor, geg, and the wavelength, with reasonable accuracy. (ges) in Eq. (2) signifies the average Landé
factor of the sampled lines. The effects of adding further terms were studied, but were too small to warrant
their retention. Instead of A7, S; and vp, the respective parameters of the Iy profile can also be used without
changing the results substantially. Unlike the regressions carried out for line width and line depth by Solanki
and Stenflo (1984, 1985) (cf. chapter 4), no unique form of the z5 (Zeeman splitting) term is obvious here from
theoretical considerations. Different forms of the zs and zg (wavelength) terms were therefore tried, but again
the results were not changed noticeably.

Besides the expected dependence on Sy (with z, being negative and z3 positive), we found only a slight
dependence of vy on geg (at the level of 1.5-20), a marginal dependence on the wavelength, and a small but
noticeable dependence on x. (at the level of 2-40 for the different regions). An increase in redshift with increasing
xe is observed. This is consistent with the shape of the vy vs. Sy curve, since for equal line stength, lines with
higher excitation potential are formed deeper in the atmosphere, and should have line shifts comparable to those
of weaker low excitation potential lines. This is an additional indication that the dependence of vy on 57 is
real, and is not some artifact of the instrument or the data reduction procedure. This trend of vy (x.) does not
continue to Fe II lines, and they have been left out, since their inclusion in the regression analysis would have
necessitated a more complex form of Eq. (7.2) with more free parameters.

The regression reduces the scatter of the points in Fig. 7.1a only slightly. We therefore conclude that it is
mostly due to noise in our data and to inconsistencies and scatter in the laboratory wavelength measurements.

Fig. 7.1c shows the least squares fits for vy of the Fe II lines in the same four regions as in Fig. 7.1b. The
letters a, b, ¢, and d refer to the same four regions as in Fig. 7.1b. The dashed curves are the least-squares fits
for two regions containing the strong Fe II 4923.9 A line (S; ~ 9.3 F), when it is not included in the fitting
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procedure. A comparison of Fig. 7.1c to 7.1b suggests that the weaker Fe II lines are blueshifted compared to
Fe I lines of equal strength thus reversing the trend of increasing redshift with increasing x. shown by the Fe [
lines. This result explains why Eq. (7.2) is insufficient to handle Fe I and II simultaneously.

Next let us look at the shifts of Stokes V relative to the Stokes I profiles measured simultaneously in the

same region. Fig. 7.2 shows

vy = c=—-——-——-—(’\v)‘~ Ar) (7.3)

I

for a network region, plotted against the Stokes I line depth, d;. The scatter is again mostly due to noise, which
now has a contribution from the uncertainties in solar Stokes I instead of from laboratory wavelengths. The
dashed curve represents the smoothed mean, of the Fe I data. The dashed straight line is a least-squares fit to
the Fe II data. The large relative redshiff of the weak Stokes V lines is of course due to the increasing blueshift
of the Stokes I profiles for decreasing line depth. Also shown are the ‘corrected’ smoothed mean curves for both
Fe I and II (drawn solid). These are obtained from the original curves by subtracting the granular blueshifts of
the Stokes I profiles from them. The values of the Fe I blueshifts have been taken from Dravins et al. (1981), the
blueshifts of Fe II from Dravins and Larsson (1984). These authors list quiet Sun mean blueshifts of groups of
Fe I, respectively Fe II, lines having different line depths, wavelengths, and excitation potentials. The reason d;
was chosen as the abscissa instead of S; is because the average Stokes I blueshifts given by Dravins et al. (1981)
and Dravins and Larsson (1984) are ordered by line depth. The use of quiet Sun values to compensate for Stokes
I wavelength shifts in a network region needs to be justified. Miller et al. (1984) find that at supergranule
boundaries the Stokes I wavelengths are very similar to those on the quiet Sun. This is what. one would expect
if the filling factor, a, is small. For the network region plotted in Fig. 7.2 the filling factor is approximately 6%
(Sect. 6.2), which is probably small enough for the Stokes I core wavelengths to remain largely unaffected by the
magnetic field. Finally, even if the quiet Sun wavelengths may not be ideal for the task, the absence of any large
body of such data from active regions makes them the only reasonable choice.

Fig. 7.2 vy, the difference, in velocity
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Fig. 7.3a shows the uncompensated mean Fe I vy curves of all five regions. Applying the quiet Sun Stokes
I blueshift compensations to these data results in the curves shown in Fig. 7.3b. The arrows on the right side of
these figures mark vy7 of the Mg Ib lines at 5172 A and 5183 A. Since their Stokes I core wavelengths are expected
to be practically unaffected by granular motions, no blueshift compensation has been carried out, and the arrows
are at the same positions in Figs. 7.3a and b. A dependence of Stokes V wavelength shift (relative to Stokes I)
on the filling factor is clearly evident, with the regions of small magnetic flux having Stokes V profiles showing
practically no relative shifts at all, while the two plage regions show an average blueshift of approximately 250 m
sec™ !, This is in general agreement with what Stenflo and Harvey (1985) found for the Fe I 5250.2 A line. We
find no support for such a trend from the vy curves in Fig. 7.1b (which is not too surprsing, since its magnitude
lies at the limit of the accuracy of the absolute wavelengths). A simple explanation for this behaviour of wyy is
that the Stokes V wavelengths remain unaffected by increasing filling factor, while the granular blueshift of the
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Stokes I profiles decreases progressively with increasing filling factor (perhaps due to magnetic suppression of
convection near the fluxtubes), in accordance with the results of Cavallini et al. (1985) for three Fe I lines. This
interpretation appears to be supported by Wiehr’s (1985a) observation that when scanning across a plage, the
Stokes I profile is shifted, but the Stokes V' wavelength remains unaffected. The use of the quiet Sun Stokes |
blueshift values is therefore not justified for strong plages. However, the three regions with filling factor < 7%
support the conclusion reached from the vy data that only flows with small amplitudes are present in fluxtubes.
They actually suggest an upper limit of about 200 m sec™? on the velocities of such flows.
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Fig. 7.3c shows the uncompensated (dashed) and compensated (solid) least-squares fits to the Fe II vy
data. The average Fe II Stokes I granular blueshifts are considerably larger than the Fe I blueshifts according to
Dravins and Larsson (1984) and Dravins et al. (1986), being of the order of 600-800 m sec™*. The two lowest
curves in each group again belong to the two active region plages, suggesting that the granular blueshift of the
Fe II Stokes I profiles, like that of the Fe I profiles, is reduced in active regions. The corrected vy values of Fe Il
lines again lie close to zero. They have a slight tendency to lie bluewards of the Fe I lines, confirming the trend
suggested by the vy data.

- The comparison of the derived vy and vyr values also provides us with a method to check whether our
data are grossly affected by the five minute oscillations, since vy is susceptible to them, while vy is not (under
the assumption that both Stokes I and V are shifted by approximately the same amount by them). From the
similarity of the results of the analyses of vy and vy (at least for the regions with low filling factor), we conclude
that the five minute oscillations do not significantly affect the results of this section, as is expected due to the
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relatively long integration times of our observations.

As the main result of this section we can set an upper limit on the Stokes V zero-crossing shifts of about
4250 m sec™! in both the network and active region plages. If such shifts are interpreted as being due to steady
flows in magnetic fluxtubes, then the down- or upflow velocities have to be less than this value. Our data is
therefore compatible with an absence of steady flows in small magnetic fluxtubes.

7.2.8. Centre to Limbd Variation of Stokes V' Zero-crossing Shifts

The 1984 data allows us to determine the CLV of the zero-crossing shift. We follow Stenflo et al. (1987a, b)
and present such results for three Fe I lines. Fig. 7.4 shows the CLV of vy for Fe I 5250.2 A (filled squares)
and Fe I 5247.1 A (stars) along with their standard errors. The absolute shift vy of the 1984 data has not been
determined due to the problems described in Sect. 7.1. The solid curve in the diagram is the negative value of the
absolute wavelength shift of Stokes I profiles of the undisturbed, non-magnetic atmosphere induced by the solar
granulation. It has been derived from the data of Balthasar (1984), and represents the actnal “zero-level” to
which the observed points should be referred to in order to represent real net velocities. The super-gravitational
redshift of the Stokes I profiles near the limb can be explained by horizontal motions in the granulation, as was
first evinced by Beckers and Nelson (1978). Nordlund (1984) has presented detailed calculations of the CLV
of Stokes I line shifts of a number of lines including Fe I 5250.2 A with results similar to the observations of
Balthasar. Balthasar (1985) has given an intuitive explanation based on projection effects of up and downflows,
composed of hot and cool material, respectively.
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Fig. 7.4 CLV of vy; for Fe 1 5250.2 A (filled squares) and Fe 1 5247.1 A (stars). The solid curve is the absolute
wavelength shift with reversed sign of the non-magnetic Stokes I profile derived from the data of
Balthasar (1984). It represents the corrected zero-level for the Stokes V' Doppler shifts.

Fig. 7.4 shows that within the error limits, there are no significant net mass flows in fluxtubes, for all
disk positions (if we disregard the questionable observation at u = 0.1). The scatter of the points around the
“Balthasar zero-line” curve is typically 0.2 km sec™!. Thus the CLV of wy; for these two lines in the visible
supports the conclusion reached in the last section from wyr, that downflows in fluxtubes are smaller than 0.20

km sec™ !,
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Flow velocities in the deeper layers of small magnetic fluxtubes can be determined from the Stokes V zero-
crossing shifts of weak lines near 1.6u. Fig. 7.5 shows the CLV of vy of the IR line Fe I 15648.5 A. The 1.0 km
sec ™! redshift at disk centre of the V profile of this line is considerably higher than for comparable lines in the
visible and decreases only slowly to a smaller value ( 5 0.4 km sec™!) near the limb. On the other hand, it is a
factor of two smaller than the value given by Harvey (1977) for the same spectral line. The explanation for this
discrepancy, according to Harvey (1985b), lies in the fact that the earlier measurements are inferior to the newer
FTS observations, and may have been affected by systemetic error.

Fig. 7.5 CLV of vy for the Fe I 15648.5 A line.
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~ Before drawing any conclusions regarding downflows in the deeper layers of fluxtubes it is necessary to
subtract the blueshift of the Stokes I profile used as a wavelength standard. At visible wavelengths enough
determinations of the granulation-induced blueshift exist (at least in quiet regions) to allow this to be carried out
without any problems. The facts are quite different in the IR. Since no determinations of the absolute wavelength
exist, we have to use indirect evidence to obtain a rough estimate of the line shift. The main difference between
the weak 15648.5 A line and the Fe I lines in the visible is that the IR line if formed much deeper down in
the photosphere, near the level of log r(SOOOA) = 0 (Harvey, 1985b), where the influence of the granulation is
larger, leading to a larger Stokes I blueshift. This conclusion is supported by the fact that Fe II lines, which
are formed deeper in the atmosphere than Fe I lines, have much larger blueshifts (0.8 km sec™! with a scatter
of 0.4 km sec ™! according to Dravins and Larsson, 1984). Thus we expect the Stokes I profile of Fe I 15648.5
A to have a granular blueshift of at least this magnitude. For lines in the visible the blueshift increases with
increasing depth of formation, as established by Balthasar (1985) for lines formed in the range —1 < log r < —5,
where 7 is the continuum optical depth at 5000 A. If we make a linear extrapolation of his results to logr = 0,
the estimated depth of formation of the IR line, we obtain a blueshift of 900-1000 m sec ™!, comparable to our
measured apparant Stokes V redshift.
In view of this evidence, it appears possible that the true Stokes V wavelength shift of Fe I 15648.5 A does
not differ greatly from zero. However, it is necessary to obtain measurements of absolute wavelengths in the IR
before making any more definite statements.

7.2.4. Comparison With Transition Zone Velocities

Steady flows (i.e. flows having timescales of an hour or more) have been observed in the transition region over
both the quiet and active photosphere. For quiet regions at disk centre Gebbie et al. (1981) find spatially averaged
RMS velocities of about 4 km sec™! in C IV. Above active regions the observed velocities are larger, being of
the order of £5 to 10 km sec ™! near disk centre in C IV (Athay et al., 1982). Both upward and downward flows
have been observed, with downflows predominating. A correlation between photospheric magnetic field structure
and transition region flow velocity also appears to exist. Over shorter timescales velocities with amplitudes of
15 ~ 20 km sec™! or even higher have been reported (Dere et al., 1981; Feldman et al., 1982). For the rest of this
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section we shall suppose that these flows are predominantly localised in magnetic structures having fluxtubes as
their photospheric footpoints.

Assuming that the motions in active regions are mainly along magnetic field lines we can use the observed
transition zone velocities to calculate the photospheric velocities in magnetic elements of a unipolar region from
the conservation of mass. This requires a knowledge of the density in the transition region. Estimates of the
electron density, n., in active regions have been made from O IV lines, which are formed at temperatures just
slightly higher than C IV. However, depending on the method used quite different estimates of n, are obtained,
ranging from n. & (1-2) x 10*® em™32 (Hayes, 1985) to n, ~ 8 x 10'° cm™2 (Feldman and Doschek, 1978).

An upper limit for the velocity in the photosphere is obtained by using the higher values of the transi-
tion region velocities and electron densities., The total transition zone mass density, p, is then determined for
n(H)/ne = 0.77 (McWhirter et al., 1975]. By taking the corresponding value of p in the photosphere from the
HSRA (Gingerich et al., 1971) a value of less than 0.5 m sec ™! is obtained for the steady flow velocity at the
height of the temperature minimum (7 = 107%).

So far the expansion of magnetic elements with height has not been taken into account. A limit can be set
on this expansion by comparing the velocities measured in the active transition region and the upper bounds
for photospheric fluxtube velocities derived in this paper. Thus one finds that the magnetic filling factor in the
transition region can be up to 400 times larger than at the temperature minimum level for the parameters selected
above. If the lower value of the transition zone density is assumed this upper limit will be correspondingly larger.

We therefore conclude that the limit set on the photosphere fluxtube flow velocity in this paper is easily
compatible with both the large observed transition zone velocities and a dramatic chromospheric expansion of
fluxtubes, the presence of which has been proposed on theoretical (e.g. Gabriel, 1976), as well as on observational
grounds (e.g. Jones, 1985). However, at the present stage this is by no means a stringent limit and much greaier
accuracy in the measured photospheric line shifts is required if better limits on fluxtube expansion are to be set
in this manner. A detailed comparison between transition-region and chromospheric velocities in active regions
has been carried out by Mein et al. (1985).

7.3. Comparison With Previous Studies: The Importance of High Spectral Reso-
Jlution

"7.8.1. Where Have All the Downflows Gone ?

The polarimetric data presented in this chapter, as well as the analysis of Stenflo and Harvey (1985) of data
obtained with the Kitt Peak McMath vertical grating spectrometer point to an absence of downflows larger than
approximately 250 m sec™?, at least in the layers where the Fe I and II lines in the visible spectral range are
formed. This result is supported by the indirect evidence of Cavallini et al. (1986), who model the Stokes I
bisectors in active regions by superposing quiet Sun profiles, the Iy profiles from fluxtubes and symmetrical
profiles. The third profile is required due to the inhibition of convection by the magnetic field. Cavallini et al.
find that they are able to reproduce the observed bisectors only if the fluxtube profiles are unshifted.

On the other hand, until recently it was generally accepted that considerable downflows exist within small
solar magnetic fluxtubes. A number of authors have found a correlation between magnetic fields and downflows
measured in unpolarized light (e.g. Beckers and Schrdter, 1968a,b; Frazier, 1970; Simon and Zirker, 1974; Sku-
manich et al., 1975; Tarbell and Title, 1977; Frazier and Stenflo, 1978, to name but a few). However, due to
the small linear dimensions of magnetic elements, these observations cannot distinguish between the fluxtube
interior and the non-magnetic surroundings, although Frazier and Stenflo (1978) report some evidence for the
downflows to have a cross-section larger than the magnetic element. Evidence for downflows inside fluxtubes ob-
tained directly from Stokes V has to our knowledge been limited to a smaller number of studies by Giovanelli and
. Ramsay {1971), Harvey (1977), Giovanelli and Brown (1977), Giovanelli and Slaughter (1978}, Wiehr (1985a),
and Scholier and Wiehr (1985).

How can these conflicting results be reconciled with each other? It was first pointed out by Stenflo et
al. (1984) that if Stokes V is observed with low spectral resolution, then due to its asymmetry, with the blue
amplitude and area dominating over the red amplitude and area of most lines near disk centre (see chapter 8), the
observed zero-crossing wavelength will be apparently shifted towards the red. This effect has been quantitatively
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analysed by Solanki and Stenflo (1986) whose discussion we shall generally follow in this section. The procedure
used for the calculation of the instrumental smearing of the line profile has been outlined in Sect. 6.4. We shall
now present its effects on the Stokes V' zero-crossing wavelength.

7.8.2. Influence of Instrumental Smearing on Zero-crossing Wavelength

In this section we will discuss the effects of the instrumental broadening described in Sect. 6.4.2 on the zero-
crossing of Fe I 5250.2 A, and will also discuss the effects of finite spectral resolution on Giovanelli’s line-centre-
magnetogram technique.

Fig. 7.6 shows the change in zero-crossing wavelength, Ay (v) — Ay (0), in m sec™?, as a function of the
Doppler width of the instrumental profile v. The increase in Ay is due to the Stokes V' asymmetry. Since the
blue wing of Stokes V is stronger than its red wing, more of the blue polarity survives spectral smearing and the
resulting cancellation of polarities, thus pushing the zero-crossing towards the red. Due to the larger asymmetry
in our enhanced network Stokes V data, the induced zero-crossing shift is larger for the network than for the
strong plage. The effect depends only slightly on the shape of the instrumental profile.

1

Fig. 7.6 Ay (v) — Av (v = 0) in velocity units
vs. v, the e-folding width of the ap-
paratus function. The upper set of
curves represents the induced zero- .
crossing shift for network data
smeared with profiles of different
shapes. The lower set of curves rep-
resents plage data. Solid line: Gaus-
sian apparatus function. Dashed
line: Voigt apparatus function with
damping constant, ¢ = 0.1. Dot-
dashed line: Voigt apparatus func-
ton with a = 0.2.
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Often the Stokes V redshift is only measured relative to the Stokes I core wavelength, which means that we
also have to consider the effect of decreased spectral resolution on Stokes I. We have therefore convoluted Stokes
I with the same instrumental profiles used to smear Stokes V. The main results obtained by all four methods of
determining the I wavelength described in Sect. 4.4.1 are similar to each other: The Stokes [ profile is shifted only
slightly as a result of spectral smearing, as compared to the shift of Stokes V. The shift increases continuously
towards the blue for the enhanced network line profile, and reaches a value of approximately —230 m sec™?! for
v = 150 mA for a Gaussian apparatus function. Note that this shift is relative to the original unsmeared FTS
Stokes I profile. It should be compared with the +1330 m sec ™! by which Stokes V is shifted through the same
amount of smearing. For the active region plage, the Stokes I profile first shifts towards the red until it reaches
a maximum of about +60 m sec™! at v = 70 mA, before reversing the trend and shifting towards the blue. It
finally reaches a blueshift of approximately —110 m sec™! at v = 150 mA. The difference in behaviour of the
plage and network wavelengths reflects the difference in the shape of the Stokes I profiles of such regions. This
is also reflected in their bisectors (cf. Cavallini et al., 1985). We do not wish to place too much emphasis on the
details of the exact run of the Stokes I core wavelength with v, since even for relatively large spectral smearing
the shifts can be so small that noise in the signal may dominate. However, the main result remains unaffected by
this uncertainty: The Stokes [ shifts, induced by low spectral resolution, are small compared to similarly induced
Stokes V shifts.

Next let us turn to the line-centre-me;.gnetogram technique pioneered by Giovanelli and Ramsay (1971),
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and later used by Giovanelli and Brown (1977) and Giovanelli and Slaughter (1978) to measure downflows, and
by Giovanelli et al. (1978) to measure oscillations. Its principle is simple. Instead of placing two exit slits in
the wings of the line, a single exit slit is placed near the centre of the line. For a completely anti-symmetric
Stokes V profile, the circular polarization signal disappears when the magnetograph slit is exactly centred at the
zero-crossing wavelength, due to the cancellation of polarities. )

However, for an asymmetric profile this is no longer the case, and the line-centre-magnetogram technique
will give spurious line shifts, depending on the size of the exit slit and the spectrograph resolution (determined
by the grating and entrance slit). Fig. 7.7 shows the zero-crossing wavelength shift in m sec™! plotted vs. the
width of the magnetograph slit (in mA) for data from the enhanced network. The lowest curve represents the
original F'TS data, the other curves are the results for data smeared by Gaussians (representing the spectrograph
and entrance slit) with v = 10, 20, 30, '40, 50, and 60 mA, respectively, in the order of increasing redshift
(upwards in the figure). The effects of changing the different parameters are clearly vigible from the figure, and
need not be described further. The results for the active region plage are similar, although the induced shifts
are somewhat smaller, due to the smaller asymmetry of the plage Stokes V' profile. It should be noted that in
order to model the line-centre-magnetogram technique we have used a rectangular exit slit (instead of the usual
Gaussian instrumental profile).

Fig. 7.7 Zero crossing shift of the Fe I
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7.3.8. Reproducing Some Observations of Stokes V' Zero-crossings in the Literature

Giovanelli and Ramsay (1971) and Giovanelli and Brown (1977) observed the Ca 16102.7 A line with the Culgoora
instrument. Instead of a grating spectrograph they used a tunable Fabry-Pérot filter. The width at half maximum
of its transmission band is given by Ramsay et al. (1970) as 59 mA at 6100 A. They (Giovanelli and co-workers)
measured downflow velocities of around 0.5 km sec ™! relative to the Stokes I wavelength of the quiet Sun. After
correcting for the blueshift of Stokes I (Giovanelli and Slaughter, 1978; Dravins et al., 1981) a downflow velocity
of approximately 300-350 m sec™* remains.

Since the Ca 1 6102.7 A line is present in our spectra (in one enhanced network and one plage scan), we
have been able to carry out the simulations directly on its profile. Four different forms of the Fabry Pérot filter
function hav been chosen: A rectangle, a Gaussian, a Voigt profile with a = 0.1, and a Voigt profile with a = 0.2.
Of these the Voigt profiles probably approximate of the filter function best, due to its extended wings (Brault,
1982). The full width at half maximum of all four profiles is fixed at 60 mA, as suggested by the data of Ramsay
et al. (1970). The zero-crossing shifts induced by these instrumental profiles are (in the order in which they
were mentioned above) 60 m sec ™!, 130 m sec™!, 150 m sec™?, and 180 m sec™!. All these shifts, except the
one produced by the unrealistic rectangular profile, are sufficient to explain the difference between the earlier
results (assuming that they are based on Stokes V' profiles of similar asymimetry) and those presented in Sect.
7.2, within their 250 m sec ™! error margin. However, the residual redshift after subtracting these fictitious shifts,
is still larger than 150-200 m sec ™! except for the Voigt filter function with a = 0.2. This could represent a small
downflow, or a small line shift produced by asymmetries in the up and downflow phase of an oscillation, but
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there are other possible explanations as well. The amount of parasitic light (defined as light which is transmitted
outside the ‘normal’ instrumental profile of the filter) is quite large for the Culgoora filter according to Ramsay
et al. (1970). This is illustrated by the fact that whereas the relative depth of the Ca [ 6102.7 A line in the
Jungfraujoch Atlas (Delbouille et al., 1973) approaches 80 % , it is only slightly more than 50 % in the results
presented by Ramsay et al. (1970), to whom the exact nature of this parasitic light was unknown. Its effect
on the Stokes V profile remains an unknown factor whose importance we cannot judge. Giovanelli and Brown
(1977) also mention that the filter transmission varies with position in the field of view. It is therefore possible
that the effective filter function is broader in their actual measurements {which were carried out away from the
centre of the field of view). When the filter half width is increased from 60 to 80 mA in our simulations, the four
profiles, rectangular, Gaussian, Voigt (a = 0.1), and Voigt (a = 0.2), give the following shifts: 110, 200, 220, and
250 m sec™?! respectively. For the last thiree profiles the residual observed shift is now smaller than 100-150 m
sec™ !, Yet another possibility is that the mean asymmetry of the Stokes V profiles in their observed regions is
different from the FTS profiles we have used.

Giovanelli and Slaughter (1978) used the Kitt Peak vacuum telescope and magnetograph for their obser-
vations of downflow. Their entrance and exit slits measured 0.17 mm and 1.3 mm respectively. The intrinsic
resolution of the spectrograph corresponded to 0.03 mm. The dispersion was 0.28 A/mm for the IR lines Ca
11 8542 A, Fe 18688 A, and C I 9111 A, and 0.165 A/mm for Mg I by 5183 A (Harvey, 1985b). These values
correspond to a 47.6 mA entrance slit and a 364 mA exit slit for the IR lines, 28 and 215 mA, respectively, for
the Mg I by line.

We have simulated this instrumental setup by first convoluting a spectral line with a Gaussian representing
the entrance slit, and then convoluting the resulting profile with a rectangular function representing the exit slis.
Broadening due to the grating is neglected. We have carried out the above procedure on the strong Mg I by line
directly (it being present in the same FTS scans as Fe I 5250.2 A), as well as on the Fe I 5250.2 A line, instead
of the weak IR lines measured by Giovanelli and Slaughter which are not present in our spectra.

The Stokes V profile of the Mg I by line is shifted by less than 100 m sec™! towards the red through the
instrumental smearing. This is due to the large width of this line. Since the Fe I 5250 A line has a much smaller
wavelength than the IR lines used by Giovanelli and Slaughter, we assume that the spectral exit slit width was
the same as for the Mg I b; line, and not the larger value of the IR lines. In this way, at least part of the difference
in width between the profiles, due to the different wavelengths, can be taken into account. Even with the smaller
slit widths, fictitious redshifts of 900 m sec ™! and 1400 m sec™?! are induced for the plage and network profiles,
respectively. These values are substantially larger than those observed by Giovanelli and Slaughter (1978), who
‘find the largest downflow for the C 19111 A line, with a value of approximately 600-800 m sec™?, after correction
for Stokes. I blueshift. This difference may be due to smaller asymmetries of the line profiles they measure, as
compared with the Fe I 5250 A line. Since the IR profiles are not contained in our data, we cannot check this.
In any case, our simulations easily reproduce the magnitude of the observed zero-crossing shifts.

Wiehr (1985a) has used the Locarno Gregory telescope (Wiehr et al., 1980), with the entrance slit in the
form of a circular hole having an angular diameter of 8", corresponding to a linear diameter of 1 mm. The
dispersion of his spectrograph was 0.232 A/mm, which results in a spectral width of the entrance slit of 232 mA
(Wiehr, 1985b). Assuming that the spectrograph itself has infinite resolving power, the instrumental profile is
found to be a Gaussian with v = 92 mA. From Fig. 6 we see that the redshift induced by such a resolution is
300-350 m sec™?! for the active region profile of Fe I 5250.2 A, and 650-700 m sec™! for the enhanced network
profile. Wiehr observed in isolated Ca II plage elements which correspond more closely to our enhanced network
elements than to a strong active region plage. We can check this by comparing the Stokes V asymmetry of
Wiehr’s line profiles with ours, since the asymmetry is the primary cause of the induced redshift. We find that
the average amplitude asymmetry of Wiehr’s observations is (as/a,) = 1.69. If corrected for spectral degradation
this gives {(ap/a,)(v = 0) = 1.86 (cf. Fig. 6), which is closer to the asymmetry of our network observations than
to our plage observations. If we also take into account the fact that the wavelength of the Stokes I profile with
which Wiehr compares the Stokes V wavelength is blueshifted by 150-350 m sec™* (Dravins et al., 1981), the
total fictitious redshift becomes of the order of 800-1000 m sec™!, which compares very well with the 900 m
sec™! average redshift he measures.

Of course the Fe I 5250.2 A line which we have studied here differs in some respects from the Fe I 8468.4
A line used by Wiehr (1985a). Firstly, Fe I 8468.4 A is broader than Fe I 5250.2 A due to the wavelength
dependences of the Doppler and Zeeman broadenings. This reduces the effect of the Stokes ¥V asymmetry. On
the other hand, the Fe I 5250.2 A line has a larger Landé factor than Fe I 8468.4 A (g = 3 vs. g = 2.5) which
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should redress the balance somewhat. Also, we have not included the effects of spectral smearing on the Stokes
I profile in our analysis. Although this effect is small, for a network region it would result in a blueshift of the
order of 100 m sec™*, which would increase the fictitious relative Stokes V redshift by that amount. Finally, the
gero-crossing shift increases rapidly with the Stokes V' asymmetry of the spectral line, and we have not taken
into account the fact that Wiehr’s Stokes V average observed asymmetry is substantially larger than ours for the
Fe 15250.2 A line ({(ap/ar) = 1.86 for Wiehr’s data vs. 1.47 for our network profile).

Scholier and Wiehr (1985) find a redshift of Stokes V' relative to Stokes I in three magnetic regions and
a blueshift in only one region (region D in their Fig. 8). However, according to Pahlke and Wiehr (1986), the
analysis of a number of further regions has yielded an average shift of all the regions very close to zero. We
therefore conclude that the Stokes V observations in the literature are all compatible with a mean downflow
velocity of less than 250 m sec™! throu’g/hout the photospheric layers of fluxtubes, with the possible exception
of the IR measurements of Harvey (1977), or the results of the IR line presented in Sect. 7.2.3, so that some’
downflow may still be present in the deepest layers of fluxtubes. Circumstantial evidence points to the downflows
being small there as well. However, measurements of absolute wavelengths are required in the infrared to decide
this question conclusively.

7.4. Fluxtube Velocity Amplitudes Derived from Line Broadening

In this section we shall analyse the [y profile, whose width is determined by thermal Doppler broadening,
radiative and collisional damping, Zeeman splitting, and mass motion induced Doppler broadening. Using simple
representations of fluxtubes we shall model the profiles of Fe I and II lines and obtain a value for the rms velocity
in fluxtubes by comparing them with observed I; profiles.

7.4.1. Velocity Structure in the Quiet Photosphere

As pointed out in Sect. 5.4.1, it is necessary to model the quiet Sun profiles before attempting to determine
fluxtube properties. Following Evans et al. (1975), Smith et al. (1976), Holweger et al. (1978), and Nordlund
(1978) among others, we assume that the photospheric velocity structure can be described by a combination of
micro- and macroturbulence velocity. We assume a Gaussian distribution for the microturbulence velocity and
“convolute it with the thermally produced Gaussian to obtain the absorption coefficient profile (cf. Eq. (2.20)).
“Emic 13 used to represent the Doppler width of the microturbulence distribution. A depth independent &, = 0.8
km sec™* is chosen, as suggested by Blackwell and Shallis (1979) for the HSRA. The macroturbulence broadening
is represented by a distribution in the shape of a Voigt function H(amac, Emac). Emac is the ‘Doppler’ width of the
macroturbulence velocity distribution and anyac is the ratio of its ‘damping’ to ‘Doppler’ width (cf. Eq. (2.21}).
The macroturbulent velocity distribution is multiplied to the calculated emergent line profile which makes it
particularly simple to apply.

Using the modified HSRASP the observed quiet Sun Stokes I line widths and depths are fitted as illustrated
in Sect. 5.4.1 (Fig. 5.10). For the details of the fitting procedure we refer to that chapter and restrict ourselves here
to discussing the empirically determined velocity structure. Fig. 7.8 shows the parameters of the macroturbulence
profile as a function of S;. &L,., i.e. €pnac deduced from the Stokes I profile, is plotted in Fig. 7.8a, and al,,,
in Fig. 7.8b. The solid curves represent ¢. .., respectively al .., as determined from Fe I lines with x. < 3 eV,
the dashed curves £L, . and af ,. from Fe I lines with x. > 3 eV, and the dot-dashed curves ¢, .. and al . from
Fe II lines. It should be noted that the rms velocity (for al,,. = 0) is ¢L,./v/2. * We also wish to point out
that the &% .. and al,,. curves of Fe II are interpolated between Sy = 5 F and Sy = 9 F due to the absence of
unblended Fe II lines in that range of line strengths. This part of these curves is therefore dotted in Fig. 7.8 and
in subsequent figures. The line parameters are sensitive to changes in &%, at a level of about 0.1-0.2 km sec™?,
although the sensitivity is smaller for the strongest lines. The sensitivity to al ,. is of the order of 0.05-0.1. For
smaller al . the fit to the five parameters is still quite good, and even al .. = 0 reproduces the data reasonably
well. The values of &L, and af ,. needed to reproduce the observed profiles are compatible with those used by

Smith et al. (1976) and Nordlund (1978) for a smaller number of lines.
In Sect. 5.4.1 the fits to the full profiles of a selected group of lines is shown. Table 7.1 gives the &,

* Due to an oversight this factor of 1/4/2 was forgotten by Solanki (1985). All the numbers in the section on
velocities and in Fig. 2 of that paper should therefore be reduced by this factor in order to match the text.
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Fig. 7.8 a ¢L ., the width of the ‘Doppler core’ of the macroturbulent velocity profile, as derived from Stokes
I profiles observed in a quiet region, plotted vs. S;. The ¢.,. values derived from Fe I lines with
Xe < 3 eV are denoted by the solid curve, the &% .. values derived from Fe I, x, > 3 eV lines by the
dashed curve, and £, from Fe II by the dot-dashed curve. The Fe II curve is dotted between Sy =5
and 9 F to indicate that it is interpolated in that region. 6r = 2.5. b af ., the ratio of ‘damping’ to
‘Doppler’ width of the macroturbulent velocity profile plotted vs. Sy for the quiet Sun. The symbols
have the same meaning as in Fig. 7.8a.

and &l values determined from each line. The first two columns of Table 7.1 contain the identification (ion)
and solar wavelength of the ten lines, the third column lists the excitation potentials, the fourth column their

line strengths in a quiet region. The fifth and sixth columns list &, and af,,. respectively, while the seventh
v

column lists £ values needed to broaden the individual line profiles. ¢,  and af,,. from Table 7.1 compare

reasonably well with the values shown in Fig. 7.8 for lines of equal strength and similar excitation potential,
which were obtained from fitting the line parameters alone.

‘Table 7.1

Ion )‘ Xe SI EtInac a!Inac r‘:xac

(A) (eV) (F) (kmsec™?) (km sec ™1}

Fe 1 5048.44 3.96 3.68 1.4 0.15 2.1
Fe I 5083.3¢ 0.96 6.63 1.2 0.12 3.3
Fe I 5127.68 0.05 0.93 1.1 0.08 1.5
Fe I1 5197.57 3.23 4.39 1.2 0.15 2.9
Fe I 5247.06 0.09 3.53 1.3 0.10 1.9
Fe 1 5250.22 0.12 3.51 1.3 0.13 1.9
Fe 1 5293.96 4.14 1.42 1.4 0.05 1.3
Fe 1 5383.38 4.31 8.12 1.1 0.20 3.3
Fe 11 5414.07 3.22 1.40 1.8 0.07 2.0
Fe 1 5445.05 4.39 5.76 1.3 0.10 2.8

7.4.2. Macroturbulent Velocity in Fluztubes Without Microturbulence

Fig. 5.12 and the pertinent text in Sect. 5.4.2 illustrate the need for velocity broadening of spectral lines in
fluxtubes, the calculated line profiles being much narrower than the observed profiles. Since our knowledge of the
velocity structure inside fluxtubes is extremely rudimentary, we have decided, as a first step, to limit ourselves to
determining the approximate rms velocity amplitudes involved, without modelling flows or oscillations in detail.
Following the approach outlined in Sect. 4.2 for unpolarised radiation coming from the quiet photosphere, we
shall assume that the non-thermal, non-magnetic line broadening inside fluxtubes is produced by macro- and
microturbulent velocities. In this section we assume that macroturbulence alone is the broadening agent, and
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defer the study of the effects of adding a height independent microturbulent velocity until the next section. We
must stress, that the use of a macroturbulent (and later also of a microturbulent) velocity does not signify that
we assume the presence of true turbulent or convective motion inside fluxtubes. Rather, we use the turbulence

' velocity approach as a simple, convenient, and effective method of determining the line of sight amplitude of
what may in reality be a highly complicated velocity field. Since the data, which we use to empirically determine
the velocities, were obtained near disk centre (only the observations obtained in 1979 are used in this section),
and fluxtubes are expected to be nearly vertical due to buoyancy, the distortion resulting from geometrical
effects should be small, and the line of sight velocity amplitude should be a good approximation of the total
velocity amplitude. It must be borne in mind, however, that due to the averaging over time and over a number
of fluxtubes, motions limited either to a small fraction of the fluxtubes in the resolution element, or to short
timescales may have a negligible effect' on the observed line width. However, line broadening can also capture
motions which would not give rise to any Stokes V' asymmetry, or to a net wavelength shift.

As remarked earlier, the determination of velocity and temperature in fluxtubes is closely coupled and
consequently a part of the calculations have already been discussed in chapter 5. In particular the fits to the
line profiles are illustrated there. We shall therefore restrict ourselves to simply presenting and discussing the
velocity structure in fluxtubes.

The synthetic line profiles are broadened by convoluting them with a macroturbulence profile similar to the
one chosen in Sect. 7.4.1, with one difference, a¥%,. = O throughout. Noise and the proxiity of neighbouring
lines usually make damping wings in Stokes V' very hard to measure accurately (one should keep in mind that
v ~ 31 /3, which is small in the damping wings of the line}, so that, to the degree of accuracy we are interested
in, a¥ . can usually be neglected.

To see how strongly the empirical ¢, ,. values depend on the assumed temperature structure, a number
of models with different T(r) functions were calculated with temperatures ranging from 200 K higher than the
photospheric value at equal 7, to approximately 1000 K higher in the part of the atmosphere where the lines of
interest are formed. Some models (with too low temperatures) resulted in a part of the lines being too broad
to be compatible with the observations even without velocity broadening, but for the rest of the models, despite
differences in detail, the velocities obtained were surprisingly similar. Within the above temperature range, which
is wide enough to encompass the temperature structures of almost all empirical fluxtube models, the &Y, . values
-remain constant to within, on the average, +0.5 km sec™!. The sensitivity of 5},’m to the temperature is a function
of the line strength, with the £ ,. values derived from the weakest lines being constant to within 0.1-0.2 km
sec™!, whereas for the strongest Fe I lines ¢Y .. can vary by up to £1.5 km sec™! within this temperature range.
This dependence on line strength may be explained by the increasing sensitivity of line width on temperature
with the increasing importance of saturation effects.

The maximum values of €7, for plage data and §p = 1 vary between 3.2 and 4.4 km sec™! for Fe I lines
with x. = 1.5 eV, between 2.5 and 3.5 km sec™! for Fe I lines with x. = 4 eV, and between 3.6 and 4.9 km
gec™! for the Fe II lines. The general trend for all the models being for the velocity amplitude to increase with
increasing line strength for the weak and medium strong lines (S; < 8-10 F), but to even out and eventually
to decrease again for the strongest lines. The £Y,. values for the network show a similar trend, but are lower
than the velocities found in plages by, on the average, 0.3-0.5 km sec ™%, if we assume the same temperature
structure for the fluxtubes in both regions. The difference in velocity is only an artifact of this assumption of
equal temperature and disappears when a realistic temperature model of the fluxtubes is used.

We shall now concentrate on the velocity structures derived with the fluxtube temperature models discussed
in Sect. 5.4.2. In Fig. 7.9 €Y, is plotted vs. Sy, for both the best fit plage and network models. Since the plage
velocities are almost the same as the velocities in the network fluxtubes, only one curve has been drawn for each
group of lines. The scatter in the data limits the accuracy of our £ ,. curves to approximately +0.3-0.5 km
sec™t. The relative values of £Y,  for the Fe I low x., high x., and Fe II lines are consistent with Fig. 5.12. The
large difference in line widths between the Fe II data and profiles calculated from velocity free models gives rise
to a large &% ... For high excitation Fe I lines, on the other hand, the data and model curves in Fig. 5.12 lie
relatively close together, so that & ,. for those lines is small.

A comparison of Fig. 7.9 with Fig. 7.8a shows strikingly, that the dependence of the velocity on line strength
in the fluxtube is quite different from that in the photosphere. The initial value of £, is roughly similar to ¢l .
but becomes considerably larger than €., for larger S;. However, one should keep in mind that for the quiet
Sun we used a Voigt function for the velocity distribution, so that the &%, values cannot be directly compared
to €Y ... We shall return to this point in Sect. 7.5.
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Fig. 7.10 illustrates the effect on £¥,. of increasing the damping constant by a factor of 2.5. As expected, the
weak lines remain virtually unaffected by this change while the €7 . values for the strong lines are considerably
reduced. Small differences between £Y .. of the weak lines result from the fact that the temperature has to
be changed slightly between models with different 6r to retain the quality of the fit to the In(dy /d;) plot. The
velocities obtained now from the strong lines in the network are larger than those found in the plage regions. This
is consistent with the case of 6p = 1 (Fig. 7.9), since the increase in damping constant will more strongly broaden
the lines in the plage, these being less weakened than their network counterparts due to the lower temperature
in the plage. Models with ér = 2.5 reproduce the data somewhat better than models with ér = 1 and Fig. 5.14
actually shows the results of such models. From Figs. 7.9 and 7.10 we see that the photospheric sound speed
(9-10 km sec™?) is larger than the maximum rms velocity in fluxtubes (3-3.5 km sec™!) by a factor of about
3. This result is consistent with the initial assumption that the hydrodynamic structure of the fluxtubes is not
critically affected by any motions occuring inside them.

5 1 | ' H 1 g 1 i i i i
4 - TR _
T -]
& § ]
__E 3 - L ,E 3 "
3 i L g ] L
& X
e - 2 A L
I T T T T T 1 T T . ; .
0 : 5 10 1S 0 5 10 15
Line strength §; (I) Line strength Sy (F)
Fig. 7.9 ¢Y.., the macroturbulence velocity derived Fig. 7.10 &Y. vs. S; with €qmic = 0, and 6p = 2.5.

from the Iy profile, vs. Sr. Plotted are the
results for both network and plage data, if
Emic = 0, and &0 = 1. aK,ac = 0 is as-

sumed for all luxtube models. Symbols as

The different groups of lines are denoted
as in Fig. 7.8a. The lower curve for each
group of spectral lines represents a plage
region, the upper curve a network region.

in Fig. 7.8a.

Again full profile comparisons for the ten lines in Table 4.4 have been carried out. The ¢, values used to
broaden the synthetic profiles are listed in the final column of Table 7.1 (a¥,,. = 0.0 and 6p = 2.5). These values
lie quite close to those derived from hypothetical lines of the same strength, which are shown in Fig. 7.10. The Fe
15250.2 A line is also reproduced with an accuracy similar to Fe I 5247.1 A, a somewhat surprising result, since
its large Landé factor of 3 would lead one to expect that the first order approximation on which the calculation
of the I, profile is based may be insufficient for this line.

Could these non-thermal line broadenings have a non-solar source? The line broadening induced by changes
in relative observer-source velocity is negligible (= 50 m sec™!, Sect. 7.2.1). This is also true of smearing due
to finite spectral resolution. Anyway, both these processes affect I;; and Stokes I equally and therefore have no
influence on our analysis. Also, no difference is seen between the velocities determined from the full line profiles
(I and Iy fitted individually) and the vp, —vp, vs. Sy diagram (difference in I and I profiles fitted), suggesting
that non-solar effects of this type cannot be the cause. We have seen that the renormalisation of the continuum
of Iy necessitated by the area asymmetry of Stokes V, does not have a large effect on its half width (Sect. 4.4.3).
Another possibility is that the first order approximation, on which the Iy profile is based, is not accurate enough
for the detailed analysis of the line widths. If this were the case, then we would expect the line widths of the
Iy profiles to be strongly dependent on their Landé factors, since the quality of the approximation is better, for
smaller ratios of Zeeman splitting to Doppler width of the lire. The dependence of Iy line width on Landé factor
has been studied in Sect. 6.2, where we find that the widths of the Iy profiles increase with Landé factor exactly
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as expected in the presence of a kilogauss magnetic field. This, and the fact that the same £, value is required
to reproduce the observed profiles of Fe I 5250.2 A and Fe 15247.1 A (cf. Table 7.1) leads us to conclude that the
anomalously large Iy line widths have a solar origin. Even if the Iy profile does begin to deviate somewhat from
Stokes I for the lines with largest splitting, the test calculations in Sect. 4.2.6 have shown that this deviation is
such that the derived velocities would tend to be underestimated.

7.4.8. Effects of Adding Microturbulence

The observed Stokes V asymmetry (cf. Chapter 8) suggests that at least a part of the motions in magnetic
fluxtubes may be non-uniform over the typical range of formation of a spectral line. This non-uniform component
may be better approximated by microtdrbulence than by macroturbulence. Therefore, we shall describe the
results of some fluxtube model calculations which use a mixture of microturbulence and macroturbulence. In
principle it is possible to fit a line profile with either a mixture of macroturbulence and depth independent
microturbulence, or with a depth dependent microturbulence alone (Holweger et al., 1978). However, no new
physical insight is gained by using the second approach, and it is considerably more time consuming to carry
out, since all the line profiles have to be recalculated for each trial depth dependence of the microturbulence,
instead of simply being convoluted with different velocity profiles after being calculated only once for each chosen
temperature structure, as is the case for the macroturbulence. We have therefore restricted ourselves to the case
of a depth independent microturbulence.

Fig. 7.11 shows the effect of introducing a depth independent microturbulent velocity, &nic, on the macro-
turbulence EXW:O Fig. 7.11a shows €ch as derived by fitting the Fe I, x. < 3 eV data with Fe I, x. = 1 eV
lines calculated for models with &mic = 0, 0.5, 1 and 1.5 km sec™! respectively. §r = 2.5 for all four models,
and the temperature structure is also the same for all the models. The data are from a network region. As
expected, £/, decreases as £n; is increased. For weak lines the decrease is such that (¢Y,.)? + (&mic)? remains
approximately constant, so that the total turbulent velocity remains unchanged. For the strong lines this is no
longer the case. There &Y .. decreases much faster, and the total turbulent velocity also decreases. This is due to
the fact that increasing ;e increases the strength of the lines. This increase, and the associated increase in line
width is strongly dependent on the equivalent width of the line, being largest for lines with W), ~ 80 mA at disk
centre (Holweger et al., 1978). Although the strongest Fe I lines in our sample have large equivalent widths on

~the quiet Sun (W) > 100 at disk centre), and according to Holweger et al. (1978) should not be strongly affected

by the microturbulence, they are weakened in fluxtubes and thus come into the range of lines having a large
sensitivity to &mic. Fig. 7.11a also shows that assuming &n;c to be the same at all heights, 1.5 km sec™! is the
largest value it can have at disk centre, since for this value of £4c, £Y,. falls to zero for both the weakest and
the strongest Fe I lines. £.,;. values larger than that would cause these lines to be broader than the observed
values, even for ¥, . = 0. Although we have tested this result for only one temperature structure, the relative
insensitivity of the widths of weak lines to temperature means that it should retain its validity for a reasonable
range of temperatures. '

Figs. 7.11b and 7.11¢ are similar to Fig. 7.11a, except that they show the results derived from the Fe [ lines
with x. = 4 eV and the Fe II lines respectively. The high excitation Fe I lines also give a maximum &,;. value
of 1.5 km sec™!, but the Fe II lines would allow for higher microturbulence velocities.

We can improve on the limit for £,;. simply by observing how well the model curves fit the vp, — vp,
vs. Sy and In{dy /d;) vs. S; data simultaneously. We find that the data as represented by these plots are best
reproduced by the models with &uic = 0.5 km sec™! and 1.0 km sec™?!, which give fits marginally better than
those shown in Fig. 5.14.

For plage data the effect of &y, is qualitatively the same. The resulting maximum value for &,;. is again 1.5
km sec™?, and & between 0.5 and 1.0 km sec™* once more gives the best fit to the data. It therefore appears
that whereas the macroturbulence velocity inside the fluxtubes can reach values considerably higher than in the
quiet photosphere, the microturbulence velocity is of the same order.

7.5. Discussion and Conclusions

In this chapter we have attempted to empirically determine velocities in the photospheric layers of small solar
magnetic fluxtubes. In order to achieve this aim we have mainly made use of the velocity information contained
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in two parameters derived from the Stokes V profile; its zero-crossing wavelength, Ay, and the half-width, vp,,
of the integrated V profile, Iyy. Ay is mainly sensitive to ‘global’ flows; global in the sense that the majority of the
fluxtubes in the observed region show a line of sight flow in the same direction over most of the integration time
of the observations. vp,, on the other hand, is mainly sensitive to vertical velocity gradients and (statistical)
fluctuations of the velocity in space or time, as may result for example from oscillations or waves in a fluxtube,

or from the presence of different flow velocities in a number of fluxtubes.

We find no zero-crossing shifts larger than approximately 250 m sec™! in any of the observed regions
(including both active region plages and network elements near disk centre) for a large sample of unblended Fe I
and II lines, as well as the Mg Ib lines at 5172 A and 5183 A. This allows us to set an upper limit of this amount
on steady up- and downflow velocities in magnetic fluxtubes. The limit in accuracy of approxiately 250 m sec™?!
is imposed by uncertainties in the determination of the absolute wavelength of the V profiles, and partly also by
the scatter in the data points. This limit is totally independent of the wavelength of the simultaneously measured
Stokes I profile, since it results from the comparison of absolute Stokes V wavelengths with the laboratory
wavelengths of the respective lines.

A small dependence on line strength, Landé factor, and excitation potential of the Stokes V zero-crossing
shift is observed, suggesting that the true line shifts are not exactly zero for all the lines. However, they remain
much smaller than the large redshifts reported in a number of previous studies (e.g. Giovanelli and Slaughter,
1978; Wiehr, 1985a). We explain the discrepancy between the results of this and some previous studies by
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taking the difference in spectral resolution between the various observations into account. The smearing of the
Stokes V profiles due to insufficient spectral resolution, when combined with their asymmetry, leads to fictitious
redshifts. By using the approximate instrumental parameters which have been used to observe the large downflows
reported in the literature, we are able to reproduce the observed downflows to a reasonable degree of accuracy.
All observations of Stokes V' zero-crossing wavelength, with one possible exception are therefore consistent with
the upper limit of 250 m sec™! for downflows. The possible exception is the IR line Fe I 15648.5 A for which we
find a downflow velocity of approximately 1 km sec™! with respect to Stokes I. However, the granular blueshift
of the I profile of this line has not been measured directly. Indirect evidence suggests that it is of the same order
as the observed Stokes V relative redshift, which would thereby be cancelled. The observational case for large
downflows inside fluxtubes is therefore considerably weakened and from a theoretical point of view no need for
large flows inside fluxtubes appears to exist as well, as has been argued for example by Durrant (1977). Schiissler
(1986) estimates the velocity of the downflow induced by mass inflow into the tube due to diffusion across the
field lines. He finds that downflows of the order of 10 m sec™! are expected for fluxtubes with radii of around 100
km, which is perfectly compatible with our results. The siphon flow mechanism has been discussed as a possible
source of downflows by Hasan and Schiissler (1985), who conclude that it is unlikely to give rise to appreciable
net downflows in small fluxtubes. Furthermore, Ribes et al. (1985) find that a downflow velocity increasing with
depth, as suggested by Giovanelli and Slaughter (1978), results in line profiles of a shape quite incompatible with
the observations.

We therefore conclude that the mean steady flow velocity in the photospheric layers of small magnetic
fluxtubes is smaller than approximately 250 m sec™!, in both active region plages and the network. This
limit is compatible with the substantial velocities observed in the transition region above active regions, even
in the presence of magnetic canopies. Of course our analysis does not rule out the possibility of strong flows
occuring inside fluxtubes under certain circumstances, for example in connection with their convective collapse,
our observations being restricted to mature active regions and the enhanced network.

The comparison between Ay and Stokes I core wavelengths, Ar, for many lines near disk centre tends to
confirm the conclusion that if stationary flows are present at all inside fluxtubes, then they are small. It suggests
that their velocity is less than approximately 200 m sec™*. It also provides support for the observation of Cavallini
et al. (1985) that the granular blueshift of Stokes I is reduced by 100-200 m sec™! in active regions.

Centre to limb observations of vy of two lines in the visible also support the absence of downflows. The
CLV of vyy of the IR line Fe I 15648.5 A gives somewhat ambivalent information on downflows in the deepest
layers of fluxtubes. Due to the uncertainty in the granular blueshift of the Stokes I profile of this line, downflows
upto about 0.5 km sec™! cannot be completely ruled out at the level of 75090 & 1 in the fluxtube. However,
the construction of a self-consistent fluxtube model, which has a downflow in the relatively dense layers arouund
r = 1 but is stationary above that poses major problems.

How are the small observed Stokes V shifts to be interpreted, if lines with positive as well as negative
wavelength shifts may occur in the same region? The dependence of line shift on line strength, wavelength and
excitation potential is well known for the Stokes I profile, and has been convincingly explained by the correlated
velocity and temperature structure of the convective cells associated with granules (Dravins et al., 1981). We
suggest that the wavelength shifts observed for the Stokes V profiles may be the result of a similar mechanism. Of
course, due to the strong magnetic field in fluxtubes all motions must be along the field lines, so that convective
motions must be replaced by oscillations. These oscillations (or waves) will require respectable amplitudes and a
correlation between flow velocity and temperature, even if, like the five minute oscillations, they are coherent in
all the fluxtubes of an observed region. This requirement is set by the long integration times of our observations,
which ensure that the five minute oscillations are practically averaged out. The present analysis hints at the
danger of interpreting small shifts ( < 300 m sec ™!} of the Stokes ¥ profile of a single line as being evidence fora
stationary up- or downflow inside a fluxtube, since lines with positive and negative shifts may be present in the
same observed region, and also since even data with such long integration times and gathered over such a large
region as ours still show a significant scatter.

That fluxtubes are not totally devoid of mass motions, also follows from the analysis in the second part of
this paper, where line profiles calculated in a fluxtube model atmosphere are compared with the data. It is found
that a broadening due to velocity is required in order to reproduce the observations. We have approximated the
velocity field influencing the polarized light by assuming it to be composed of Gaussian macro- and microturbulent
velocity profiles. We stress once more that we do not thereby imply the presence of true turbulence or of convective
motion inside the fluxtubes. Macro- and microturbulence have only been chosen due to their effectiveness and
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simplicity of use. Total rms turbulent velocities of between approximately 1 and 3.5 km sec™! are derived from the
I, spectra, depending on the strength and the excitation potential of the line. Interestingly, plage and network
model I profiles require essentially the same amount of velocity broadening to fit the data (if the appropriate
temperature models are used), suggesting that the velocity structures of fluxtubes in the two types of regions are
very similar.

The dependence of &mac on the line strength is quite different for the magnetic and the non-magnetic data.
This is best illustrated in Fig. 7.12, where the difference between £,  for a network fluxtube and &L, for the
quiet Sun is plotted vs. Sr. Both &L ,. and €Y .. have been determined using models with &nic = 0.8 km sec™!
and amac = 0. We are therefore comparing like with like (at the cost of a slightly worse fit to the quiet Sun data
than with af .. # 0). As expected, £i,. is larger than ¢l .. for most of the lines. The near similarity in &%,
and €Y, for the weak lines is probably only due to their relative insensitivity to velocity broadening due to,
e.g., velocity gradients. One problem with such a comparison, specially for the Fe I lines, is that since they are
considerably weakened inside the fluxtube, their sensitivity to velocity broadening is also changed. This could
falsify the picture given by Fig. 7.12 somewhat. However, since for most lines the sensitivity decreases as they

are weakened, this would tend to underestimate £%,. — &L .., so that the effect may in reality be even larger.
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We have also studied the influence of the fluxtube temperature structure on the empirically determined
velocity, and find that within reasonable limits of the temperature variation (i.e. over a range of about 800 K at
a fixed 7 value), the macroturbulence velocity remains on the average constant to within +0.5 km sec™1.

Calculations based on the assumption that part of the velocity in the fluxtube is better represented by a
microturbulence show the expected decrease in £Y .. with increasing &qic. The data place an upper limit of 1.5
km sec™?! on €pic in fluxtubes, assuming that it is height independent. Best values for £y appear to lie between
0.5 and 1.0 km sec™%.

In Sect. 7.4.2 it is shown that the large Iy line widths are not an artifact of the method of data analysis, the
long integration times, or the spectral resolution. They are therefore of solar origin. An obvious solar source are
the ubiquitous five minute oscillations. These have been measured in Stokes V' by Giovanelli et al. (1978) who
find amplitudes of about 0.25 km sec™? for lines formed in the photosphere, and by Wiehr (1985a), who reports
amplitudes of 0.1-0.25 km sec™! for the Fe I 8468 A line. These amplitudes are considerably smaller than the
values of E,‘;ac we find here, so that we are led to conclude that other mass motions besides the ones induced by
the five minute oscillations have to be present in small fluxtubes. However, from the line broadening analysis
alone, we cannot differentiate between the effects of a steady flow with a vertical or horizontal velocity gradient,
oscillations or waves within single fluxtubes,; or steady flows with different flow velocities in different fluxtubes.

By combining the main results of Sects. 7.2 and 7.4, we see that motions are present in fluxtubes which
strongly broaden the spectral lines, but do not significantly shift them. Oscillations, waves, or a distribution of
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up- and downflows in different fluxtubes (for example via a siphon flow between two fluxtubes connected by a
loop) could explain the observations within the context of a (multicomponent) one-dimensional model. Motions
outside the fluxtubes may also broaden the Stokes V' profiles, even at disk centre, if we take their expanding
geometry into account. However, the large difference in ¢¥,. and €L, (illustrated in Fig. 7.12) would appear
to limit their contribution to the total velocity induced line broadening. However, it is possible that the velocity
field in the immediate surroundings of fluxtubes differs considerably from the average over a larger portion of an
active region.

The presence of motions with such large amplitudes means that non-radiative heating may play an important
role even in the deep layers of the fluxtube photosphere (cf. Hasan and Schiissler, 1985). Such motions will also
have to be taken into account in the empircal modelling of fluxtubes, since their neglect could lead to false values
of the empirically determined temperahf;e structure (see also chapter 5).

Finally, we wish to point out that the present work is exploratory in nature, and contains a number of
shortcomings. PFirstly the accuracy of the absolute wavelengths of Stokes V' can be increased in future FTS
observations. This would allow the setting of stronger constraints on downflow velocities in fluxtubes. Certainly
more work will have to be done in the infrared as well. The large width of the wings of the Fe [ 15648.5 A Stokes
V' profile compared to the corresponding [ profile, illustrated in Fig. 6.11, may be due to large amplitude non-
stationary motions. However, further work will be needed to decide this question. The macro/microturbulence
approach has its shortcomings, as has been pointed out by Gail and Sedlmayr (1974) and Carlsson and Scharmer
(1985). Therefore calculations with a proper model of the motions in fluxtubes need to be carried out.




8. Stokes V Asymmetry

8.1. Brief Review

First indications of an asymmetry between the areas of the blue and red wings of Stokes V' have been provided
by the broad-band observations in circular polarization of sunspots by Illing et al. (1974a, b, 1975). In their
first paper they measure the centre to limb variation (CLV) of [V/IdX (bandwidth 100 A) over the u = cosf
range 0.95 > u > 0.37, and find that the broad-band circular polarization peaks near p = 0.74 where it can
reach values of 1-2 x 10™3. They also find that most of a typical sunspot shows the same sense of polarization
with a slow variation in the degree of polarization (they call this region 1), while a smaller portion shows rapid
(spatial) changes in sign of [ V//IdA (region 2 in their nomenclature). In their second paper, they note that the
sign of [ V/Id) in region 1 is correlated to the sign of the sunspot magnetic field polarity. They also speculate
that region 2 may correspond to regions of small scale magnetic field reversal. Finally, in their third paper
they investigate the spectral dependence of the magnitude of broad-band circular polarization, and also discuss
possible mechanisms for its production. They find that [V /Id) of region 1 decreases when going from the green
to the yellow part of the spectrum. The behaviour of region 2 is more ambivalent.

Further measurements of broad-band circular polarization in sunspots are presented by Kemp and Henson
(1983). They extend the spectral coverage of such observations to a range extending from 3700 A in the UV to
4.5 4 in the IR, and find a sharp drop in [ V/Id\ from the UV through the visible, a modest peak at 1.66 4 and
then a further decline upto 4.5 u. Their spectral resolution is 5 A.

A number of explanations have been considered for these observations. Illing et al. (1975) rule out continuum

circular polarization (produced by a mechanism described by Kemp, 1970) as a possible source of the observed
[V/IdX. For the field strengths of a.few kG found in sunspots Kemp (1970) and Kemp et al. (1970) predict
a circular polarization level of 107% in the continuum, while Illing et al. and later Kemp and Henson measure
values of 10~2 (averaged over lines and the continuum). This continuum effect only becomes important for very
large field strengths, as found on white dwarfs (see Angel, 1977, 1978 for a review).
' The strong imbalance in splitting pattern exhibited by some molecular transitions and the resulting imbalance
in the two circular polarization components can also lead to broad-band circular polarization. Harvey (1973b)
has observed this molecular effect for the CN(0,0) band in sunspots. It has played an important role for the
determination of magnetic field strengths in white dwarfs (Angel and Landstreet, 1974). A detailed theoretical
calculation is presented by Illing (1981), who can reproduce the order of magnitude of the broad-band observations
of llling et al. under certain assumptions.

The remaining mechanisms for producing broad-band circular polarization are based on asymmetries of
atomic Stokes V' profiles. In particular the areas of the blue and red wings have to be different, i.e. A4 =
Ap — Ar # 0 (cf. Sect. 4.4.1 for further definitions of Stokes V' asymmetry). As shown in Sect. 2.4.2, the Stokes
V profile for an atomic transition is exactly antisymmetric in a static atmosphere in LTE (see also Auer and
Heasley, 1978; Landi Degl’Innocenti and Landi Degl’Innocenti, 1981). Therefore, one of these conditions must
be violated in order to produce atomic Stokes V profiles which give rise to a net [V /IdA

The mechanism preferred by Illing et al. (1975) is based on the presence of a correlated gradient in velocity
and magnetic field along the line of sight. The Stokes V' profiles of ordinary atomic spectral lines can then become
asymmetric and give rise to broad-band circular polarization. A more detailed description of this mechanism is
given in Sect. 8.4. It nicely explains the spectral dependence of [ V/Id) of spot region 1 (since the spectral line
density decreases from the green to the yellow) and the correlation between the sign of f V/IdA and magnetic
field polarity. Auer and Heasley (1978) point out, that if the line of sight is not parallel to the magnetic field
(i.e. v 5 0°,180°), then a velocity gradient alone is sufficient to produce an area asymmetry in Stokes V.

In the following we briefly discuss some other analyses of Stokes V' asymmetry involving velocity gradients.
Grigorjev and Katz (1975) calculate all four Stokes parameters in the presence of both magnetic and velocity
field gradients (of a simple parameterised form) and produce asymmetric Stokes V profiles. Landman and Finn
(1979) carry out radiative transfer calculations of the Stokes parameters in a two dimensional sunspot model
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(with the magnetic field calculated self-similarly via Schliter-Temesvary theory). They choose the following set
of parameters: B,(r = 0,2) &~ 3200 G, BL(r =0,20) ~ 1 G km™! and velocity v given by

v =42 X 10'5% km sec™?, (8.1)

where p is the gas density and the point (r = 0,2p) refers to the centre of the spot at its surface. They
find qualitative agreement with the observations of Illing et al. but get too small values of the net circular
polarization. Makita (1981) presents observational evidence that the observed broad-band polarization is due to
atomic spectral lines by showing that when thsse are spectrally masked the circular polarization signal disappears.
He also argues that both strong magnetic and velocity field gradients are required to reproduce the observed
fV/IdX in sunspots. Landi Degl’Innocenti and Landolfi (1983) analyse the effects of a velocity gradient on
Stokes V and @ via the response function. Like Auer and Heasley they keep the magnetic field independent
of height. Ribes et al. (1985) calculate Stokes V line profiles of thirteen photospheric lines for four theoretical
models incorporating gradients in both magnetic field and downflow (cf. Unno and Ribes, 1979 for a description
of these models). They compare the calculated profiles of Fe I 5247.1 A and Fe I 5250.2 A with the observed
profiles of these lines taken from Stenflo et al. (1984). It is evident from the figures of Ribes et al. (1985) that
none of these models produce profiles which resemble the data.

Finally, Kemp et al. (1984) propose atomic orientation as a method for producing Stokes V' asymmetry.
Briefly, the mechanism rests on the fact that atoms become ‘aligned’ when excited anisotropically by a stream of
particles or by (not necessarily polarized) anisotropic radiation. In a magnetic field, the alignment develops into
orientation, i.e. the atoms acquire a finite orbital angular momentum L, along the field lines. Kemp et al. {1984}
present both theoretical and laboratory evidence for the existence of asymmetric Stokes V profiles produced by
this mechanism. They briefly and qualitatively discuss the application of this process to produce broad-band
circular polarization in sunspots. Landi Degl’Innocenti (1985b) discusses the application of this idea to small
fluxtubes. However, he requires a velocity inside the fluxtube (and therefore a velocity gradient with respect to
the non-magnetic surroundings from where the light enters the tube in his model) to produce a Stokes V' area
asymmetry.

8.2. Observations

8.2.1. Disk Centre Observations

First observations of the asymmetry of solar atomic Stokes V line profiles were presented and discussed by Stenflo
et al. (1984). More detailed analyses have been published by Solanki and Stenflo (1984, 1985). In this section
we shall present and discuss their results. All the data presented in this section were obtained near disk centre.

The Stokes V asymmetry is nicely illustrated in Fig. 8.1 in which Stokes V and —8I/8X for the Fe I 5247.1 A
and 5250.2 A lines are plotted. The —3I/3) profile has been normalised to the blue peak of the Stokes V profile,
and is almost antisymmetric. In particular, the areas of the blue and red wings of —3I/3 A are exactly equal.
If the areas of the wings were different, the integration would result in different continuum levels for Stokes I,
which is never observed.

A comparison of —~8I/3X to Stokes V shows that the latter has a very asymmetric form, with both the
amplitudes and areas of the blue and red wings being different, i.e. Aa # 0 and A4 # 0. The parameters of the
absolute asymmetry, A4 and Aaq, are defined in Sect. 4.4.1.

Let us now consider the amplitude asymmetry of the Stokes V' profiles of the Fe [ lines listed in Table 4.1.
Fig. 8.2a shows the absolute amplitude asymmetry, Aa, for an active region plage plotted vs. the Stokes [ line
strength, Sy. The large scatter of the points can be reduced significantly by using the regression expression,

Aa= 23 + 2257 + $3512 -+ :L‘4513 + 2587 X ey (802)
to subtract the dependence on excitation potential. The result is shown in Fig. 8.2b. The dependence of Aa

on the wavelength and on Landé factor has also been studied by adding further terms to Eq. (8.2}, but no
dependence on either quantity has been found, for which reason these terms have been discarded again.



128 The Photospheric Layers of Fluztubes

| FE 1 5247.0585 | FE 1 %250.2071
0.8 . L 0.8 - L
o.u o - 0.y v L
N
v 0.0 ¢ 0.0 A —
Lt )
e L
[asi} D
iy ] L o
-0.4 L -0.4 o -
/
| -0/
-0.8 T . T -0.8 T T
5247.0 s247.2 $250.0 5250. 2 <0.y
WAVELENGTH (A) WAVELENGTH ()
Fig. 8.1 Stokes V (thick curve) and 81/8) (thin curve) of the Fe I 5247.1 A and 5250.2 A lines, based on data

recorded in an enhanced network element near disk centre. The §1/3) curves have been normalised to
the amplitudes of the blue wings of the respective Stokes V' curves. Note the pronounced asymmetry

between the blue and the red wings of Stokes V.
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Fig. 8.2 Absolute amplitude asymmetry, Aa = ap — a,, plotted vs. I line strength, S;. ap and a, are the
amplitudes of the blue and red wings of V. a Raw data for a plage region. b The same data reduced
to the case that x. = O using Eq. (8.2). The smoothed average (cubic spline) is drawn as well.

Fig. 8.3a and b show the relative area and amplitude asymmetries, §A and 6a (see Eqgs. (4.47) for the
definitions), for an active region plage plotted as functions of S;. The solid curves drawn through the data points
are smoothed averages (cubic spline fits). Note the different shapes of the two curves. The relative area asymmetry
actuélly becomes negative for the strongest lines of our sample, while the relative amplitude asymmetry remains
positive. The different shapes of the § A and §a curves suggest that slightly different mechanisms are responsible
for producing them, as is intuitively clear. The amplitude asymmetry of any one particular line depends only on
the maximum V amplitudes and is therefore sensitive to only a limited height range, whereas the area asymmetry,
being an integral quantity, is sensitive to a much larger range of heights.
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Fig. 8.3 a Relative amplitude asymmetry, §a = (ap — a.)/(as + a), vs. Sy for a plage. b Relative area
asymmetry, 6A = (Ap — 4,)/(As + A;), vs. St for the same plage as in Fig. 8.3a. The solid curves
are smoothed averages (cubic splines).

Due to the difference in (B) between the network and the active region plages, which leads to a difference in
amplitude of the V profiles, it is impossible to compare the absolute asymmetries of the active and quiet regions
without prior knowledge of the average magnetic field. The relative asymmetries, however, are on the same scale
and can accordingly be compared easily. They are plotted for both the plage and network regions in Fig. 8.4. The
relative asymmetry appears to be slightly smaller for the plage than the network regions, although the scatter is
quite large. ‘

Fig. 8.4 The shaded areas are bounded by the 0.3 L : . ] .
envelopes of the smoothed relative am- amplitude asymmetry
plitude (dark shading) and area (light
shading} asymmetry curves of all the
regions observed in 1979, plotted vs.
Sr. The dashed line running between
the amplitude asymmetry envelopes
is a boundary between the curves of
the plage and network regions. The
smoothed plage curves lie below this
line whereas the network curves lie
above it.
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In Fig. 8.5 Aa is plotted vs. Sy for both Fe I and II lines. The areas with light shading indicate the location
of Fe I points with x. > 3 eV, the areas with intermediate shading Fe [ lines with x. < 3 ¢V, and the areas with
dark shading Fe II lines.

As pointed out in Sect. 4.4.2, the Fe II Iy profiles have widths larger than expected from an extrapolation
of the vp, — vp, vs. x. dependence of the Fe I lines. A similar dependence is observed for Aa. The Fe II lines
are more asymmetric than expected from the Fe I lines. This similarity in behaviour of vp, — vp, and Aa of
lines of different x* suggests a relationship between the width of Iy and the asymmetry of V. As we have seen
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in chapters 5 and 7 the width of Iy is strongly influenced by velocity broadening, so that this correlation points
towards a relationship between asymmetry and velocity. We shall discuss such a relationship in greater detail in
Sect. 8.4.1.

We have checked that our observed asymmetries are not caused by instrumental effects and really represent
fluxtube physics on the Sun. Thus, for instance the polarity of the observed magnetic field does not affect the
behaviour of the Stokes V asymmetry. The predominance of the amplitude and area of the blue wing of Stokes
V over the red wing applies to both positive and negative polarity regions. This means that the broad-band
circular polarization produced by our asymmetric profiles shows the same relative relationship to the magnetic
polarity as found by Illing et al. (1974b). It also excludes the possibility that the instrument somehow favours
one sense of circular polarization over the other. Furthermore, the absence of a strong wavelength dependence
of the Stokes V asymmetry suggests that the effects of possible differential chromatic properties of any of the
optical elements have not infiltrated our results.

~ For Fe I lines around 5250 A a similar value of the Stokes V' asymmetry was found with the vertical grating
spectrograph of the McMath telescope (Stenflo and Harvey, 1985), with which a much larger number of magnetic
regions could be sampled. Therefore Stokes V' asymmetry is not an artifact of the FTS. The results also do not
depend on the time of day, and are thus uncorrelated to the position of the obliquely reflecting heliostat mirror.

Since the original discovery, other observations of Stokes V asymmetry have also been published. Wiehr
(1985a) has observed Stokes V' of Fe I 8468.4 A near disk centre with the Locarno Gregory telescope, and also
finds an asymmetry of the type described above, as do Scholier and Wiehr (1985). Further confirmation comes
from the broad-band observations of the full solar disk and of its north and south hemispheres by Kemp et al.
(1987). Their measurements are compatible with the broadband signal obtained from the FTS data by Stenflo
(1984b) who integrated over 50 A running windows. In particular, the spectral dependence of the broad-band
circular polarization of the two data sets is remarkably similar, suggesting that the signal of Kemp et al. (1987)
is mainly due to lines. Since observations with completely independent telescopes and instrumental techniques
have yielded a similar Stokes V' asymmetry, we conclude that this asymmetry is real.

8.2.2. Centre to Limb Variation of the Stokes V. Asymmetry

In Fig. 8.6 the CLV of the Stokes V asymmetry of a few selected lines is represented. Fig. 8.6a shows the relative
area asymmtry S A for Fe I 5250.2 A (filled squares) and Fe I 5247.1 A (stars). The thick and thin curves are
smoothed means of Fe I 5250.2 A and 5247.1 A respectively. The §4 values of the nearby lines Fe I 5250.6 &
and Cr I 5247.6 A have also been checked and have been found to closely resemble those of the plotted lines.
Surprisingly, 6 A changes sign near u = 0.4, so that near the limb it is negative. This means that the area of
the red Stokes V wing becomes larger than the area of the blue wing. The fact that four spectral lines in three
different spectra exhibit this negative asymmetry means that it is not a fluke, or due to noise. Therefore, near
the limb 6 A of these medium strong lines behaves more like the strongest lines near disk centre. Whether this
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effect is due to the greater height of formation near the limb, or is due to the change in the angle of the line of
sight cannot be decided as yes.

Fig. 8.6b shows the relative amplitude asymmetry éa for the four lines mentioned above. Since Fe 1 5247.1
A and Fe I 5250.2 A behave differently in this figure, all four lines have been plotted. One can see that, for an
unknown reason, it is Fe I 5247.1 A whose behaviour is anomalous. We shall therefore disregard Fe I 5247.1 A
during the following discussion. The solid line is a smoothed mean curve for the Fe I 5250.2 A data points. For
© > 0.4 the behaviour of §a is very similar to that of § A. However, near u = 0.4 éa simply drops to zero while
6 A becomes negative.
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Fig. 8.6 Centre to limb variation (CLV) of four lines near 5250: Fe I 5247.1 A (stars), Cr I 5247.6 A (pluses),
Fe I5250.2 A (filled squares), Fe I 5250.6 A (crosses). a Relative area asymmetry §A. Thick curve
is a smoothed spline fit to.5250.2 A, the thin curve to 5247.1 A. b Relative amplitude asymmetry
§a. Thick curve is a smoothed spline fit to 5250.2 A.

Another line for which the CLV of the Stokes V' asymmetry has been studied is the Fe I line at 15648.5
.A. Figs. 8.7a and b show its § A and 6a values respectively, as a function of u. Due to the weakness of this
line, the error bars are considerably larger than for e.g. Fe I 5250.2 A. Inspite of this, the IR line appears to
have a considerably smaller § 4 near disk centre, which becomes sizeably negative when going towards the limb.
However, the large error boxes would also allow this line to have a small or vanishing 6 A throughout. The
amplitude asymmetry is small as well (compare with §a ~ 10% for Fe 1 5250.2 A at u = 1), but shows a tendency
to increase slightly towards the limb. It is negative for all u. Once more, observations with a better S/N ratio
are required to give more definite results. A statistical analysis of further lines in the IR may also shed some
more light on this. The small §4 and éa values of Fe I 15648.5 A are in accordance with the small asymmetries
of lines of similar strength in the visible.

8.3. Effects of Spectral Smearing on Stokes V Asymmetry

The Stokes V asymmetry is also affected by spectral smearing. Fig. 8.8 shows the change in Stokes V relative
area asymmetry 6 4 induced by changing v. The asymmetry increases dramatically with v for both the enhanced
network and active region observations. We explain this result by noting that as the profiles are smeared, equal
amounts of each polarity are cancelled, so that the net polarization (the numerator of 6 4, Ay~ A, = AA) remains
the same (giving the contribution of the line to the broadband polarization in the limit of v — oo}, but the sum
of the absolute areas of the Stokes V wings (the denominator Ap + A,) decreases (cf. Fig. 6.7). The quantity 64
is therefore bound to iIncrease with increasing spectral smearing.

Indeed A4y — A, is found to be constant within our numerical accuracy of a couple of percent, in the range
0 € v € 150 mA for different solar regions and instrumental profile shapes. This resolution independence of
Ay — A, is reflected by the fact that the curves of Fig. 8.8 are almost inversely proportional to the curves in
Fig. 6.7. However, although A, — A, is independent of spectral resolution, it is strongly dependent on the filling
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factor (since A, and A, are both approximately proportional to the filling factor), and is not particularly useful
for comparisons amongst observations of different regions.

As however Sy is also approximately proportional to the filling factor and insensitive to the spectral resolution
used, the quantity (4s— A,)/Sy is practically independent of both resolution and filling factor. Sy has a different
physical meaning from Ap + A, and the insignificant v dependence of (A4 — A,)/Sv which we find, is not simply
an artifact, but reflects this difference.

Fig. 8.9 shows the relative amplitude asymmetry, éa, as a function of v. The behaviour of this quantity is
more complicated, but can nevertheless be understood in general terms, by considering the following three effects:
Firstly, a + a, decreases strongly with v (Fig. 6.6). This tends to increase the relative amplitude asymmetry.
Secondly, the absolute amplitude asyminetry; ap — 4., decreases initially even more rapidly with v, which is quite
contrary to what is observed for the aréa asymmetry. The main reason for this rapid decrease is that the blue
peak, being narrower than the red peak, is more strongly affected by spectral smearing, so that a; decreases faster
than a,, approaching the latter asymptotically. For large v both peaks are so broad that this effect becomes
small, allowing the relative amplitude asymmetry to increase again. Thirdly, due to the overlapping and partial
cancellation of the blue and red wings and also due to the general broadening of the Stokes V' profile, the blue
and red maxima move apart, and no longer necessarily represent the same part of the line. This affects both
ay — g, and ap + a,. However, this last effect is difficult to isolate, so that we cannot judge its importance for
the overall behaviour of éa.

In contrast to the case of the area asymmetry, the Sy normalised amplitude asymmetry (as — a,)/Sy is not
a useful parameter, being strongly resolution dependent. This is because ap — o, depends so strongly on v while
Sy does not.

8.4. Interpretation of Stokes V Asymmetry

8.4.1. Correlatton Between Stokes V Asymmetry and Velocity Broadening

In order to interpret the asymmetric Stokes V line profiles observed in small fluxtubes, let us briefly recall the
interpretations proposed for the broad-band circular polarization in sunspots. Of course we can immediately rule
out the interpretations involving polarization of the continuum or asymmetric molecular lines, since our spectrally
resolved observations clearly show that atomic Stokes V profiles are asymmetric. Two possible mechanisms
remain: velocity gradients and atomic orientation. In this section we present some evidence favouring the
former mechanism. It follows from these observations than any broad-band circular polarization observed outside
sunspots will be due to the asymmetry in atomic Stokes V profiles. The same is most probably also true for
sunspots (recall the observations of Makita, 1981). Stokes V observations with high spectral resolution in sunspots
are therefore very desirable.

A comparison of Fig. 7.9 with Fig. 8.5 suggests a correlation between the velocity broadening represented by
v . and the absolute amplitude asymmetry Aa. We would now like to place this analysis on a more quantitative
footing. Fig. 8.10 shows ¢Y . (derived assuming &,;. = 0) plotted vs. a3 — a,, both quantities having S; as a
parameter. The S; values 0, 2.5, 5, 7.5, 10, and 12.5 F are marked by notches in the curves. For the Fe II lines
the point at §; = 9.3 F is marked instead of Sy = 7.5 F. The Fe Il curve between §y = 5 F and S; = 9.3 F
is dotted to indicate that it is interpolated between these values. The asymmetry data and €Y. values are for
an enhanced network region. The model for which Egac is derived, is the best fit network model with &,;. = 0
and 4r = 2.5, The peculiar hook-like shape of the curves is due to the decrease in asymmetry and ¢Y .. above
S = T-8 F, and is without deeper significance, being only an artifact of plotting the data with Sy as a parameter.
The straight line is a least-squares fit to the three curves. A straight line fit to the data is also suggested by
comparing Fig. 7.9 with Fig. 8.5.

The correlation coefficient for these two quantities is 0.85 (on a scale ranging from ~1 to +1, with %1
meaning perfect correlation, and O a total absence of correlation), which is high enough to suggest the existence
of a simple linear relation between the fluxtube velocity amplitudes, as determined from the line broadening,
and the asymmetry of Stokes V, specially if we take the rather large errors, indicated by the error box in the
lower right of the figure, into account. Its size is primarily dictated by the considerable scatter in the asymmetry
values of the different lines.

;: »
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Fig. 8.10 Macroturbulence velocity in the flux-

tubes &Y . vs. ap — a,. The curves S ' ‘ ' : ’ ' ;
are plotted with S; as a parameter. i L
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It is interesting to note that the asymmetry tends to disappear for very weak lines, while the velocity
broadening does not. The least squares fit gives ¥ ,. = 1.6 km sec™? for aj — a, = 0.

The foregoing analysis clearly demonstrates that a relationship exists between Stokes V' asymmetry and
the velocity in fluxtubes. However, the nature of such velocities is not quite clear. Auer and Heasley (1978)
have shown that for one dimensional LTE models velocity gradients are required. These may be coupled with
a magnetic field gradient. The velocity gradients may be produced by a steady flow, or they may be the result
of oscillations or of waves inside the fluxtube. Finally, if we consider the expanding geometry of fluxtubes, then
flows outside the fluxtube may cause .an asymmetry of Stokes V. In the next Sections we consider the case of
steady flows in one dimensional fluxtubes observed at disk centre.

8.4.2. Stokes V Asymmetry Produced by Velocity Gradients: General Considerations

Since Stokes V asymmetry has also been observed at disk centre and fluxtubes are expected to be nearly vertical
due to buoyancy, the mechanism proposed by Auer and Heasley (1978), which does not involve a magnetic field
gradient and works only for v 5 0, is less likely to be the cause, at least near disk centre. In addition, Makita
(1981) has pointed out that this mechanism is much less efficient at producing an asymmetry than the one
originally proposed by Illing et al. (1975) involving both a velocity and a magnetic field gradient along the line
of sight. In the following we shall therefore consider the mechanism of Illing et al. in greater detail. Of course,
for the general case of v # 0 and dB/dr # 0 the asymmetry is caused by a combination of the two effects,
which are both automatically taken into account by radiative transfer codes. An advantage of the Auer and
Heasley mechanism is that it allows an analytical solution. We shall, therefore, later use it to show that the area
asymmetry disappears for very weak lines.

Fig. 8.11 illustrates schematically how Stokes V asymmetry can be produced in a very simple model consisting
of two plane parallel slabs lying on top of each other. We assume that u = 1 and that the magnetic field is vertical.
Then the radiative transfer equations for circular and linear polarization decouple and we can consider right and
left circularly polarized light independently (Stepanov, 1958a, b; Stenflo, 1971). In the bottom frame (z) n4,
the ratio of the line to continuum absorption coefficients for right and left circularly polarized light, are shown
at a depth in the atmosphere where the magnetic field strength, B, is large and the velocity, v = 0. In the
second lowest frame (21) n4 are shown higher up in the atmosphere where B is small and v is large and positive.
We use the usual sign convention: v(r) > O for downflows. The third frame from the bottom (477) shows the
emergent profiles I (r = 0) (i.e. the intensity profiles of right and left circularly polarized light coming from inside
the magnetic element) and finally the top frame (iv) shows the corresponding Stokes V' profile, V = I, — I_.
The difference between the areas of I, and I, and therefore also the asymmetry in Stokes V is produced by
a combination of saturation effects and gradients in v(r) and B(r). In reality, light from the non-magnetic
surroundings is mixed with /., but when creating Stokes V' this non-fluxtube light does not contribute, so that
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we need not include it in Fig. 8.11. Ao is the laboratory wavelength of the line, Ay the actual zero-crossing
wavelength of Stokes V. Note the redshift, Ay — Ao of Stokes V' in Fig. 8.11. As is suggested by the figure, it is
the combined gradients of B and v which are important for the production of the asymmetry. In particular, the
absolute value of v has no effect on the asymmetry, so that we can write

v(7) = vo + v1(1) = v(70) + (v(r) — v(r0)), (8.3)

with 7o chosen such that the contribution function of the line is approximately zero there. vy = v(7) is an
arbitrary constant velocity as far as the asymmetry is concerned. Note, however, that this is not true for By
[if we write in analogy to Eq. (8.3): B(r) = By + By(r)], since the magnetic field affects the line profile in a
completely different manner. o
Fig. 8.11 Bottom frame: n4 (absorption coefficients for right and left
circularly polarized light) deep. in the atmosphere. Second
lowest frame: 7+ higher in the atmosphere. Third lowest A
frame: I, the emergent intensity profiles for the two polar- Ao
izations. Topmost frame: V = I, — I..
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Fig. 8.11 also illustrates another simple point. Near disk centre for all but the very strongest lines the

observed asymmetry is always such that the blue wing of Stokes V' dominates over its red wing, i.e. §a > 0 and
64 > 0. In order to reproduce the the sign of § 4 correctly,
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d|B(r)jdv(r) _, (8.4)
dr dr
must be true in the region of the formation of these lines at disk centre. The fact that only the absolute value
of B(r) is important, while the sign of v(r) also plays a role is again due to the different ways in which v and B
affect the line profile.

Eq. (8.4) has some straightforward, but interesting consequences. If d|B(r}|/dr > 0 (i.e. magnetic field
strength decreasing with geometrical height), then for a downflow the velocity must decrease with 7, while for
an upflow it must increase with 7. In the former case we expect the resulting Stokes V' profile to be in general
redshifted, while in the latter case we commonly expect a blueshift. Of course, it is always possible to choose
v in Eq. (8.3) such that the emergent line profile shows no shift relative to its rest wavelength. However, if
we want to interpret v(r) as a stationary flow inside fluxtubes then we must require that the sign of v does
not change at any height in the fluxtube photosphere. Since the possible vi(r) values are constrained by the
observed asymmetry, this additional condition greatly limits the choice of vg. Thus it may no longer be possible
to reproduce both the observed profile shape and zero-crossing shift with a stationary flow. In the next section
we present the results of some model calculations which test this point. In order not to be unduly restrictive we
shall also accept v(7) functions which retain their sign only over the height range over which the calculated lines
show any sensitivity to the velocity.
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The crude model presented above suggests that very weak lines, with their absence of saturation, should
have Stokes V profiles with disappearing area asymmetry. This can be proved analytically for the model of Auer
and Heasley (1978), which assumes a static Milne-Eddington atmosphere with constant field strength B overlain
by a thin moving layer with the same field strength and the velocity v.

In the notation of chapter 2, and using the expression for the unnormalised Stokes V' profile in a Milne-
Eddington atmosphere, we obtain for the (unnormalised) V' profile emerging from the underlying static layer (if
we neglect magnetooptical effects; cf. Eq. 2.66)

v =-2eloty (), (8.5)

where ny (0) is the absorption coefficient for a static atmosphere (i.e. with stationary velocity, v = 0), and
D = (1+n1(0))? = n3(0) — n#(0) — n(0). (8.6)

The linearised change in the V profile caused by the thin moving layer is

AV = 9_’;%:9.@9 <17V(v) (1 - E?E) + v ()72(0) = v (0) — rlv(O)m(v)> , (8.7)

where nv (v) and ny(v) represent the line absorption coefficients in the moving layer of velocity v. The final
emergent profile is then

Vit =V + AV = é—r—%ﬁ@ (nv(v) (1 - ﬁ?ﬁ) + nv (v)n1(0) — nv (0)nr(v) — nv (0) (1 + f‘)) : (8.8)

For a very weak line with #; << 1 and ny < 1 we have D &~ 1, ny(v)n:(0) < nv(v), and nv (0)ns(v) < nv(0),
so that Eq. (8.8) reduces to

Viot = A7By,fo (nv(“) (1 - %ﬁ) - nv(0) (1 + KN;)) - (8.9)
‘The emergent V profile is therefore a sum of two profiles which are antisymmetric about z = A — Ag = 0 and
‘z = v, respectively. Although the profile shape need not be antisymmetric, it will not exhibit any area asymmetry,
since it is the sum of antisymmetric profiles (cf. Sect. 2.4.2).

In view of this result we would expect in Fig. 8.4 the weak lines to show no asymmetry. This does not
appear to be the case in this figure, but we hasten to add that the scatter is very large for the smallest lines
(in particular in the relative asymmetry, because we divide by the small area) and not too much weight should
be given to those lines in this figure. Compare also with Fig. 8.3b, where this scatter is directly visible and the
small offset of the mean curve at S; = 0 is brought into relation.

It follows from the above discussion, that according to this model, the Stokes V area asymmetry is due to a
combination of Zeeman splitting, saturation, and velocity gradient. This is in contrast to the o-r area asymmetry
of Stokes Q (Sect. 4.2.3), which is a result of Zeeman splitting and saturation alone.

8.4.8. Test Calculations of Stokes V Asymmetry Using Stationary Flows

In this and the following section we present numerical calculations of Stokes V' profiles including their asymmetry.
Initially, we investigate the diagnostic contents of the Stokes V' asymmetry and see how well the simple picture
presented in the last section compares to the results of numerical radiative transfer calculations. Later we
quantitatively test the hypothesis that the observed Stokes V asymmetry is caused by stationary downflows
inside fluxtubes by comparing the numerical results with the data. All calculations have been performed at
disk centre assuming vertical fluxtubes. Only one line of sight along the fluxtube axis has been considered (i.e.
v =0°).

Restricting B(7) and v(r) to functions linear in 7, we have tested how the asymmetry of a line is influenced
by its strength, excitation potential, and Zeeman splitting. Constant B and v gradients are chosen, since lines
of different strengths and excitation potentials are formed at different heights in the atmosphere and this choice
makes certain that all lines are treated approximately equally. In the following we list some of the results.
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e We find that 64 always has the signs predicted by Eq. (8.4) in Sect. 8.4.2 for both up- and downflows.

e Whereas §A is always positive for d|B|/d7 > 0 and dv/d7 < 0, §a can be either positive or negative. Its
value depends on the exact velocity gradient and on the spectral line. Thus for diagnostic purposes § A is
better for determining the outline of the velocity structure, while the amplitude, is more sensitive to the
details.

o §A is only weakly dependent on the Landé factor for the cases we have tested. Lines, with otherwise equal
properties and with Landé factors ranging from 0.5 to 3.0 have been tested. This also suggests that the
absolute value of B is not of dominating importance. It is possible that the last result is an artifact of the
limited number of model calculations.

e da is somewhat dependent on Landéfa.étor, although the dependence is not clearly defined for the models
we have calculated.

e The area asymmetry increases strongly with the amount of saturation in the line. For lines of equal excitation
potential, this means that 6 A increases rapidly with increasing S;. This result is in agreement with the
discussion of Sect. 8.4.2.

e da also shows an increasing tendency to become positive as the amount of saturation increases, but this
trend is less clear cut.

e For a given line and an otherwise unchanged atmosphere, an increase in temperature leads to a decrease
in the calculated asymmetry of that line. This effect is small for Fe II lines and markedly larger for Fe
I It increases dramatically with decreasing excitation potential (for lines of equal strength in the original
atmosphere), and is mainly due to the temperature weakening and the associated decrease in saturation of
the lines.

e The shapes of the lines calculated with linear v(r) are not in the least similar to the observations, even if we
use a B(r) calculated via the thin tube approximation. For example synthetic Fe I 5250.2 A profiles have
§A > 0 but da <0, while the observations show that both 6§ A and §a are positive.

8.4.4. Comparison With Observations

In this section we attempt to match spectral lines calculated with a model containing a stationary downflow to
the data. We have tried to simultaneously reproduce the asymmetry of four lines selected from Table 4.4, namely
Fe 15250.2 A, 5127.7 A, 5083.3 A, and Fe I 5197.6 A. The first three are low . Fe I lines with strongly different
*8; values, while 5197.6 A is an Fe II line slightly stronger than 5250.2 A. We use a number of temperature
models: the plage and network models derived in chapter 5, a model with T'(r) similar to that of Chapman
(1979), and models with T = Tyspa + AT, where AT = 400 K and 800 K, and AT # AT(r). Initially we chose
the magnetic field as calculated with the thin tube approximation, with B(r = 1) = 2000 G, as suggested by the
results of chapter 6. Later B(r) was allowed to be specified freely in an attempt to reproduce the lines better.
No constraints have been placed on the v(r) structure throughout. We first determined v(r) [and later also B(r)]
by trying to reproduce one particular line profile, usually Fe I 5250.2 A, and then calculated the other profiles
with the same atmosphere and velocity structure.

In Fig. 8.12 we have plotted the observed and calculated profiles of the four selected lines. The observations
were obtained in an active region plage (FTS4) and the calculations were made using the plage temperature
model derived in chapter 5. Since we are at the moment only interested in the line shape, the synthetic profiles
have been shifted and multiplied by factors to make them match the data.

Although 5127.7 A can be reproduced reasonably well simultaneously with 5250.2 A, the synthetic 5083.3 A
profile does not fit the data at all. While the calculated values of the relative area asymmetry, §A(5127) =
0.7%, 6A(5250) = 5.1%, and 6A(5083) = 28.1%, increase steadily with line strength, in accordance with
the results of the test calculations of Sect. 8.4.3, this is not true for the observed values, with 6 A(5127) =
~1.8%, 6 A(5250) = 5.3%, and 6 A(5083) = 5.2%. The 64 of the calculated profiles of 5250.2 A and 5127.7 A lie
within the error in the data, but the observed profiles of 5250.2 A and 5083.3 A have approximately equal relative
asymmetry which leads to a mis-match between the data and the calculations because the observed asymmetry
does not increase steadily with line strength as the model requires. The relative behaviour of these lines is similar
for the other tested models as well, none of which reproduces the data better.

We also tried improving the fit to 5083.3 A alone, but the fit to 5250.2 A then begins to deteriorate. Only
5127.7 A remains almost unchanged, due to its relative insensitivity to velocity gradients. Actually, 5083.3 A
poses considerable problems by itself, since the shape of its complete V profile is very difficult to reproduce. In
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Fig. 8.12 Profiles of Fe I 5083.3 A, Fe 1 5127.7 A, Fe 11 5197.7 A, and Fe I 5250.2 A, as observed in an active
plage (solid curves) and calculated (dashed curves) using a stationary downflow, which is chosen such
that the Fe I 5250.2 A profile is reproduced. The calculated profiles have been shifted and normalised
to the observations.

order to check whether this problem is due to a hidden blend, or some other peculiarity of this particular line,
we have also briefly used the Fe I 5127.3 A line, which has an excitation potential and line strength similar to
5083.3 A. However, 5127.3 A also exhibits the same problems.

The difficulty is due to the fact that the observed asymmetry of the strong low excitation lines requires
the presence of relatively small velocity gradients, while, at the same time, these lines are also considerably
velocity broadened (chapter 7). In fact, such lines have nearly the largest velocity broadening of all the Fe I lines.
Therefore, if a stationary flow with a small gradient is chosen as the only velocity in the fluxtube, then the line
width cannot be reproduced. If, on the other hand, we try to reproduce the large width with only a velocity
gradient, an immense value is required and the asymmetry becomes much too large.

A possible way out of this dilemma is to use a combination of stationary velocity with a small vertical gradient
and a turbulence velocity, composed for example of a micro- and a macroturbulence. The former produces the
asymmetry, while the latter gives the line the required width. Although the resulting profile does not yet have
the right shape, it is considerably closer to the observed profile than if any one of the mechanisms is used alone.
Nonetheless a stationary flow inside the fluxtube cannot by itself account for the profile of Fe I 5083.3 A.
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When using the velocity derived by fitting Fe I 5250.2 A to calculate Fe II 5197.6 A we find that this line
also has a too large asymmetry compared to the observed profile (§Acaic = 11.4% for the plage model, while
§ Aobs = 4.4%), although the amplitude asymmetry is similar to the observed one (Fig. 8.12). The factor of two
larger asymmetry of the calculated Fe II 5197.6 A line profile compared to that of Fe I 5250.2 A is mainly due
to the fact that the former is considerably less weakened by the higher temperature of the fluxtube model.

We have also observed that all the good fits to the shape of Fe I 5250.2 A, involving only a stationary
downflow, have a zero-crossing wavelength shifted towards the red by a value greater than approximately 0.9
km sec™!., A shift is induced by the requirement that the velocity must retain the same sign over the whole
photosphere. Note that we reduce the shift to a minimum by setting v = O just below the height at which the
line starts to become sensitive to the vel})citj? gradient. This choice is somewhat unrealistic since, due to mass
conservation, the velocity cannot disappear completely. Therefore, the observational constraint that the Stokes
V zero-crossing shift is less than 0.25 km sec™! (chapter 7) also speaks strongly against a purely stationary flow
being the source of the Stokes V' asymmetry. The argument that, since asymmetry and zero-crossing shift of
5250.2 A cannot be reproduced simultaneously by stationary flows, these cannot be the main cause of Stokes V
asymmetry in fluxtubes has been invoked earlier by Pahlke and Solanki (1986).

The zero-crossing shift can be reduced still further if we use a turbulence velocity to produce a part of
the line broadening. Thus by broadening the 5250.2 A line with a mixture of micro- and macroturbulence of
amplitude \/¢2, + €2,,. ~ 1.5-2.0 km sec ™! we have been able to obtain a zero-crossing shift as small as 0.4-0.5
km sec™!, which is considerably closer to the upper bound of 0.25 km sec™! set by the observations in chapter
7. However, the additional turbulent velocity implies that we no longer have a pure downflow,

Finally, if we accept that the temperature in the network is higher than in the plage (as suggested by
the analysis of chapter 5), we have the paradoxical situation that the higher temperature leads to smaller
asymmetries of the synthetic profiles in the network for a given velocity and magnetic field structure, but the
observed asymmetries can be considerably larger than in the plage. Thus, we have been able to reproduce the
observed network profile of 5250.2 A with the network model of chapter 5 only by increasing both the velocity
and the magnetic field gradients significantly.

8.5. Conclusions

In the present chapter we have presented extensive observational evidence for Stokes V' asymmetry, a brief
overview of the various mechanisms proposed to produce it, and a detailed discussion, including model calcula-
tions, of the simplest of these mechanisms involving a stationary flow with a height gradient inside the Auxtubes.
A comparison of the calculated profiles to the observations highlights the limitations of this mechanism. The
following three arguments summarize the case against a stationary flow as the sole responsible agent for the
observed asymmetry. ‘

e We are unable to reproduce the profiles (§ A values) of e.g. Fe I 5250.2 A and Fe I 5083.3 A, or Fe I 5250.2

A and Fe II 5197.6 A simultaneously.

e We are unable to reproduce the asymmetry and the line-width of Fe I 5083.3 A simultaneously.

e We are unable to reproduce the asymmetry and the zero-crossing shift of Fe I 5250.2 A simultaneously.
We therefore conclude that stationary flows inside fluxtubes are not the main contributors to the asymmetry in
the Stokes V profiles. This result is indirectly supported by the calculations of Ribes et al. (1985) who have
calculated line profiles for the theoretical fluxtube modeis of Unno and Ribes (1979} which contain stationary
downflows. The resulting profiles also do not match the data at all.

Do these arguments imply that velocities are ruled out as the source of V asymmetry altogether? We believe
not. Firstly, there is the indirect empirical evidence for a connection between asymmetry and velocity broadening
presented in Sect. 8.4.2. Secondly, as the detailed modelling in chapters 5 and 7 has shown, large amplitude mass
motions are present in fluxtubes, which broaden the lines considerably, but do not significantly shift them. Due
to the strong vertical (and, for a small fluxtube, also horizontal) stratification, gradients in velocity and magnetic
field along the line of sight are bound to occur. Thus the velocity will automatically tend to produce some
asymmetry in the line profiles. However, the velocity structure will be considerably more involved than the
simple v(r) profiles considered here. For the purposes of empirical modelling it may be represented as the sum
of many individual (stationary) v(r}, so that Stokes V profiles calculated for a large number of v(r} will have to
be summed up to give a resultant which can be compared to the observations. One problem with this approach
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is the large number of free parameters which makes a purely empirical analysis impractical and requires that
a physically self-consistent and dynamical model of fluxtubes be used. This is beyond the scope of the present
investigation.

The assumptions made in the present work, one line of sight with a stationary velocity, are quite restrictive.
Thus it is possible that in reality velocities outside the fluxtube also play a role in producing the asymmetry.
We conclude that, although stationary flows inside fluxtubes can, to our mind, be ruled out as the dominating
source of Stokes V asymmetry, the broader question of whether velocity is the main source of § A, or if the optical
pumping mechanism of Kemp et al. (1984) plays the major role still cannot be decided at present.




9. An Expansion Model

9.1. Introduction

A rich literature exists on theoretical mc;dels“of small magnetic fluxtubes. A variety of approaches and approx-
imations for determining the magnetic structure of a fluxtube with height have been tried, some of which are
listed below. Many models employ the so-called “thin tube approximation” or “slender tube approximation”,
where the internal magnetic field, pressure, temperature etc. are assumed to be uniform across the cross-section.
The magnetic field is also supposed to be purely axial and unrestrained by tension forces. Examples of such
models are given by Parker (1955, 1979, 1982a, b), Defouw (1976), Roberts and Webb (1978, 1979), Unno and
Ribes (1979), Meyer et al. (1979), Spruit (1981a, b), Hasan and Schiissler (1985), Ferrari et al. (1985), and
Kalkofen et al. (1986) among many others. Such models have been used to investigate mass motions in flux-
tubes, their stability, and possible heating mechanisms. Most empirical models of small luxtubes are also of this
type including the ones presented in this thesis. Potential and force-free field models of small fluxtubes have
been constructed by Spruit (1976), Browning and Priest (1982, 1983), Simon et al. (1983}, and Van Ballegooijen
(1985a). Van Ballegooijen has also calculated Stokes profiles in such models, while Caccin and Severino (1979)
have determined the continuum signature of Spruit’s model. A further class of models has been introduced by
Schliter and Temesvary (1958) and is based on the so-called similarity assumption, where the magnetic field is
assumed to have a cross-sectional shape independent of height. Self-similar models of small fluxtubes have been
calculated by Wilson (1977a, b), Solanki (1982), and Osherovich et al. (1983). Chapman and Gingell (1984)
have calculated the continuum contrast of the last named of these models. Deinzer et al. (1983, 1984a, b) have
published fully self-consistent MHD models in two dimensional slab geometry (including an energy equation and
the effects of the fluxtube on its surroundings), while Kndlker et al. (1985, 1987) have used the same method
to calculate slightly thicker tubes. Steiner et al. (1986) have calculated models of small fluxtubes based on the
self-consistent method of Pneuman and Kopp (1971), including a current sheet. Finally, Nordlund (1983, 1985,
1986) has presented dynamical 3-D fluxtube models. Schiissler (1987) has compared some of these theoretical
models with the observations in detail.

In this chapter a theoretical model is presented which includes the effects of magnetic tension, but which,
at the same time, is simple enough to serve as the basis of future empirical analyses of fluxtube properties. The
radiative transfer calculations of Van Ballegooijen (1985a, b} suggest that the geometry of fluxtubes is quite
important for the spectrum, and a (simple) 2-D model is therefore required to carry out such calculations. This
has been confirmed by De Martino {1986) and Solanki and De Martino (in preparation). This model also serves
to study another effect, which has so far received only little attention, namely the merging of fluxtubes. We
expect that any discrete set of fluxtubes will merge into larger field distributions if we go high enough into the
atmosphere, since an unobstructed fluxtube will expand indefinitely with height.

The merging problem has so far been considered consistently only for entire network and plage regions, under
the assumption of a potential field (Gabriel, 1976; Anzer and Galloway, 1983a, b). Spruit (1984) has studied the
effect of fluxtube merging on wave amplitudes, but does not calculate the merging height self-consistently. We wish
to investigate the structure and merging of individual small fluxtubes instead of the behaviour of whole ensembles
of them, and also to attack the problem from an MHD standpoint. Since both the thin tube approximation and
the similarity assumption lead to problems (no internal structure for the thin tube approximation, fixed horizontal
variation of the magnetic field for similarity theory which is incompatible with the merging of fluxtubes}), and
a full MHD solution is too extensive for our later requirement of a model with which to empirically determine
fluxtube properties, we use an expansion technique to solve the MHD equations.

The MHD equations are expanded in a power series about the axis of the fluxtube. The zero-th order
solution is then the thin tube approximation, and higher order terms take into account the finite width of the
fluxtube. We shall solve the equations to second order. A similar expansion approach has been suggested by
Browning and Priest (1982, 1983). This chapter is based on the work of Pneuman et al. {1986).

-
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9.2. Basic Equations

If we neglect the transport of energy, then a magnetised gas with infinite conductivity (and a magnetic per-
meability of 1) in an external constant gravitational field can be described in the MHD approximation by the
equation of continuity, divergence freedom of B, the momentum transport equation, and the equation of state of
an ideal gas

3
5% + V(pv) =0, (9.1)
VB =0, (9.2)
dv _ -—VP+-}-(V><B)><B+F 9.3)
P = P9 pp ) (9.
P = pRT/m,, (9.4)

where p is the density, v the velocity vector, B the magnetic field vector, g the acceleration due to gravity, F the
vector of the viscous force per unit volume, P the gas pressure, R the universal gas constant, and m, the mean
particle mass.

For the stationary structure of a solar magnetic fluxtube in the absence of flows (cf. Sect. 7.2) we need use
only the magnetohydrostatic approximation, and the above set of equations reduces to

VB =0, (9.5)
VP = Zl;(v x B) x B + pg, (9.6)
P = pRT/m,. (9.7)

We now assume that the fluxtube is rotationally symmetric around the vertical z-axis, i.e. we reduce the
problem to two dimensions. Let r, 6, and z be ordinary cylindrical coordinates. In this geometry Egs. (9.5) to
(9.7) become '

o () B2 o
0= P;Li( Bg)+B,§£-"—, (9.9)
- (%} g) — -3, (‘9;2' - aj’) 5,22,  (0.10)
0= %af;(rB,) + _a_a%, (9.11)
where B,, By, and B, are the three compontents of the magnetic field, and H the scale height defined by
H(z) = %, (9-12)

k being Boltzmann’s constant, 7" the temperature, Ry the solar radius, G the gravitational constant, and Mg
the solar mass. Fig. 9.1 illustrates some of the basic quantities.

Further calculations are simplified by transforming Eqgs. (9.8)~(9.11) into non-dimensional form. To this end
we define the following non-dimensional quantities

z=r/H", (9.13)
y=z/H*, (9.14)
b= B/B", (9.15)
p= P/P*, (9.16)
c=T/T", (9.17)

where B*, P*, and T* are the values of B, P, and T at the reference height z = 0 on the axis of the fluxtube

(Fig. 9.1), and
kT*R3,

H* = (9.18)

T GmyMy'
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Fig. 9.1 Schematic of fluxtube geometry
showing pertinent definitions.

P
B*, P*, T*, cte.
Eqgs. {9.8)-(9.11) then become
dp _ 3k, b, by 8
ﬂax =bs ( dy Oz ) z az(”b")’ (9-19)
b, 3 3bg
0= - 8$($b3) +b, "5;, (9.20)
dp  p\ _ db,  9b, ETR
ﬂ<3y+0>_" b’(ay“'aw) 5y (6-21)
19 8b;
—;%(xbr) 3y 3 (9'22)
where "
5=“£? (9.23)
We now expand all variables in a power series in z.
bs = ho + hoz® + hyz® + -, (9.24)
be = f1z+ faz® + -+, (9.25)
bo = g1z + gz + . (9.26)

We express b, by an even series in z, while b, and by are given by odd series. This is consistent with power
series expansions of potential fields and analytical force free fields (cf. Ferraro and Plumpton, 1966). For p and
o expansions containing only even terms are used as well, as suggested by the form of the Egs. (9.19)-(9.22).

p = po+ poz? + pazt + -+, ‘ (9.27)
O =0p+ 0o +ogzt+ . {9.28)

The gas density can be determined via the ideal gas equation (9.7) and need not concern us further in this
chapter.! Now Equations (9.19) - (9.22) assume the form

28(pz + 2paz® + - ) = (ho + hae® + ) (1 + faz®+ ) — (2hg + 4hyz® + --))

(9.29)
= (g1 + gs2° + - - ) (291 + 4g37° + - ),

t 1t is not required for radiative transfer calculations either.

s
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0=2(f1+ faz®+ )91 + 2932 + - ) + (ho + haz® + -- ) (g + ghz? + ), (9.30)
B((o0 + o2a® + -+ )(ph + Pyz® + ) + (po + paz® + )

= (o¢ + ooz? + ) ("‘(fl-’c‘*‘ faz®+ - ')((f{ﬂﬂ‘ faz®+ ) (9.31)

- (2h2.’£+ h4$€3 + - )) b (glx + 9333 B )(gllm+ g:’3$3 ot )>’

0=(2f1 +4fsz®+ ) + (ho + hoz® + --), : (9.32)
where the prime denotes differentiation with respect to y. Equating equal powers of z up through terms of O(z?)
yields, '
z° terms:
! =
oopo + po = 0, (9.33)
ho(f] = 2ha) — 243 = 2fps, (9.34)
2fig1 + hogy = 0, (9.35)
2f1+ho=0. (9.36)
z? terms:
Bloops + o2py + p2) = —do fi(f1 — 2h2), (9.37)
ho(f3 — 4ha) + ha(f] — 2h2) — 69193 = 4Ppa, (9.38)
4f193 + 291 f3 + hogs + hagy = 0, (9.39)
4fs + hYy = 0. (9.40)

In addition to these equations, the solution must also satisfy the boundary condition that the total pressure
P+ B?/8x does not change across the boundary (we assume a discrete boundary of the fluxtube)

(28p+ %) _ =9, (9.41)

z=e

where

® = (8xP. + B?)/B*2. (9.42)

P, and B, are the external gas pressure and magnetic field strength respectivley, and ¢ = R/H* the non-
dimensional radius of the tube. The external gas pressure P, is not to be mistaken with the electron pressure
denoted by the same symbol in other chapters of this thesis. Another condition for b, is that the total amount
of axial magnetic flux is conserved

/bz:cd:c = const. (9.43)
0 N

Expanding Eqgs. (9.41) and (9.43) according to a (it being a special value of z) and retaining terms upto a? we
obtain
(28po + h3) + a*(2Bpz + f7 + g% + 2hoha) = &, (9.44)

hoa? = a*?, (9.45)

where a* = R*/H*.

Eq. (9.45) introduces as an additional unknown the radius of the tube a(y). As remarked earlier, these
calculations are carried out without an energy equation and instead the temperature is specified prior to solving
the MHD equations, so that we need not consider ¢y and o2 to be unknown variables. Keeping this in mind we
have ten equations (9.33)-(9.40) and (9.44), (9.45) in the eleven unknowns po, p2, ps, ho, k2, h4, f1, f3, 91, 91,
and a. However, the variables py and h4 appear only in Eq. (9.38), so that by omitting this equation, we are left
with nine equations for nine unknowns and have therefore got a closed system.
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hg and ps can be determined from the other nine variables by using Eq. (9.38) and the equation resulting

from the z* terms of Eq. (9.29), i.e.
B(oopy + pa+ 02ph + 04py) = = 0o(fifs — fafi + 4f1ha + 2f3ha) (9.46)
’ = 03(f1f; = 2fiha) = 009195 + g391) ~ 029191

This procedure, although not completely self-consistent, will be used later to check whether ps and h4 are small
enough to ensure the validity of our solution.
We can rewrite our set of equations in such a way that pg, fi1, 91, p2, k2, and o are expressed in terms of hg
and the prescribed temperature ¢ and oz alone. Thus
3y

fa
Po = exp (—“/ ;§'>, (9.47)
o .

hl
fi = __EQ’ (9.48)
g1 = giho, (9.49)
Yy ¥
o d
p2 = ho (p’é + / wagzo dy) exp <- f ;%), (9.50)
4] © o]
1 f fd
[og
hy = =2k = ¢i"ho - ﬁ(pE + f 0220 dy) exp <“/.ﬁ>’ (.51)
0 0 aQ
a*

(9.52)

Furthermore, we express fs and gs as functions of hg and he. Using Eq. (9.51) it is possible to write f3 and gs
in terms of only one unknown, namely ho, but the resulting expressions are complex and do not offer any new

insight.
1
fo == hh, (9.53)
¢ ] H 1
o =3 (05 = & [ Fabsho — 2hakt) av). (9.54)
0
0

It is, therefore, only necessary to determine hg in order to obtain all the unknowns. A differential equation for
ho can be derived from the boundary condition Eq. (9.44). Let us first consider the case of a solitary fluxtube
embedded in a non-magnetic atmosphere. By substituting Eqs. (9.47)~(9.52) into Eq. (9.44) we obtain

2 § 87 P,
e (hg(l - ZJ) +28p0 - =55 ) (9.55)

u__}___ 2 ..
B~ g (k) =

where 6§ = a*?g*2, This is the only place where the twist of the magnetic field enters into this equation. If we
take only the RHS of Eq. (9.55) and put it equal to zero, setting § = 0 as well (no initial twist), then we regain
the well known thin tube approximation. In general, however, fluxtubes will be present in groups (e.g. in network
elements or in active region plages) and will merge above a given height. If we have a collection of identical,
vertical, and cylindrically symmetric fluxtubes which, at the reference level y = 0, occupy a fraction « of the
area, then each of these tubes will expand with height and they will eventually merge with each other when their
areas have increased by a factor 1/a. Since the internal fields of the individual fluxtubes become vertical and
uniform near the height at which they merge, the breakdown in cylindrical symmetry around that level should
not significantly affect our analysis. However, twisted fields have to be treated separately, since for them the field
does not become vertical and uniform above any given height.

We model the merging as follows. The space between the fluxtubes is assumed to be filled with a small
external seed field of magnitude B,, which has a value B} at the reference height y = 0. The conservation of flux
relates B, to the field strength along the fluxtube axis

B.= Bho ( ;21010;) (9.56)
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The filling factor a can be defined unambiguously in our model due to the sharp boundary. Recall that a is
independent of y. It follows from Eq. (9.56) that B, increases with height as the fluxtube expands. In particular,
"as the value of hg approaches @, B, becomes large and mimics the effect of a neighbouring fluxtube by forcing the
model tube to become straight. We wish to note that the seed field is used only as a convenient way of obtaining
smooth merging. If it is chosen to be sufficiently small at the reference level its strength does not influence any
of the properties of the solution such as the merging height, or the shape of the fluxtube (cf. Sect. 9.3.1).
Now, assuming the external magnetic field to have the form given by Eq. (9.56) we again carry out the
substitutions made to derive Eq. (9.55) and obtain a second order non-linear differential equation for hq,

1 2 5 1 .2 1-a\?
Ry — 275(%)2 =3 (h?)('l - E) +2Ppo = 23 (SWPe + Bk} ( ) )) ~ (9.57)

ho-*&

We solve this equation numerically. Before describing the method of solution and the results we first define the
merging height and the external atmosphere to the fluxtube.

We consider the fluxtubes to be merged when the quantity h{/ho (a measure of how vertical the field is)
becomes less than some small, arbitrary value. In practice we say the tubes are merged when

! ho < 0.05. (9.58)

A short distance above this height the internal field of the fluxtube without twist (i.e. § = 0) becomes uniform
(ha — 0) and hg approaches the constant value

B*
ho = a+(1—a)—1§%. (9.59)
The fluxtube is now vertical and straight, and in the limit of a vanishing seed field (B} — 0) its boundary lies
immediately adjacent to that of its neighbours, so that the concept of individual fluxtubes loses its meaning for
greater heights. .

For specifying the external gas pressure, we will employ the HSRASP (cf. Sect. 4.5.1). We choose our
reference level, y = 0, at the 5900 = 1 level of that model.

The actual numerical integration of Eq. {9.57) is carried out using the routine DGEAR of the IMSL (Inter-
‘national Mathematics and Statistics Library), which is based on the backward differentiation formula method
(cf. Gear, 1971, and Hindmarsh, 1974), an implicit linear multistep method. In order to carry out the integration
we must specify hg and hj at y = 0. ho equals unity there by definition and hj is adjusted so as to make ho
smoothly approach a constant value (given by the filling factor o} at large distances. Experience has shown that
the solution of Eq. (9.57) is critically dependent on h{,. Even slight changes cause the solution to diverge to
either +co or 0 at a finite value of y. Moreover, as we proceed to increasingly deeper layers (y < 0) we expect
ho to approach the thin fluxtube solution to an ever closer degree. This means that wherever we choose our
reference level to lie, the degree of depth in the physical atmosphere must be reflected in a relationship between
the reference values on the right-hand-side of Equation (9.57). If the internal temperature is identical to the
external temperature then, the deeper the reference level, the closer the right-hand-side initially must be to zero.
This amounts to a relationship between P*, B*, Py, B, and § which reads

U =8r(P*-P)-B*+(1-6B*~0 (9.60)

if the reference level lies deep enough down in the atmosphere. ¥ is not identically zero because of radial variations
in the base conditions. In practice, we use Equation (9.60) to determine P*. The small difference in ¥ from
zero is a weak function of a* and is adjusted until a solution is found which is well behaved as y increases in the
negative direction.

How does this approach compare to similarity theory? Major differences exist between our approach and -
models based on similarity theory, such as those of Schliiter and Temesvary (1958), Deinzer (1965), Yun (1970,
1971), Landman and Finn (1979), Solanki (1982}, and Osherovich et al. (1983}, even if we exclude the merging.
The main difference results from the fact that similarity theory constrains the radial form of the magnetic field
and pressure. The radial force balance can then be satisfied exactly, for any chosen temperature distribution,
but the axial force balance can be achieved for only one particular horizontal temperature distribution. This
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is of course unrealistic, since the horizontal temperature distribution is in general determined by the chosen
energy equation. The expansion technique takes the opposite course. First the temperature is specified, either
empirically or through an energy equation and then the radial variation of the field strength and pressure is
calculated. As will be shown in Sect. 9.3, the field strength is found to be distinctly non-gelf-similar.

9.3. Discussion of Results

In Sects. 9.3.1 and 9.3.2 we study untwisted tubes, looking at the effects of twist separately in Sect. 9.3.3. Finally
in Sect. 9.3.4 we compare our second order solution with the thin tube approximation and also try to estimate the
significance of the fourth order terms. THere are a number of free parameters in the model which can be varied.
One of these is the temperature. Except for a few calculations we have kept the temperature fixed throughout
this chapter, assuming the temperature inside the fluxtube to be the same as the temperature outside at equal
geometrical depth (we keep o2(y) = 0). We might expect this to be not far from the truth when radiative
coupling between the fluxtube and its surroundings is sufficiently efficient, and mechanical heating plays only a
subordinate role. \

9.8.1. Merging Height and Fluztube Cross-Section

First let us examine the effect of the seed field on the fluxtube cross-section. Fig. 9.2 shows R(z) for fluxtubes
with different B} /B* values. If we choose the temperature as o2(y) = 0, oo(y) = ousra(y), then P* follows
directly from Eq. (9.60). In particular, in the limit of vanishing B} the solution becomes independent of B*
and is determined only by a* and o (as long as Eq. (9.60) is satisfied). We have chosen a radius of 100 km and
a filling factor of 0.1. This filling factor lies between the lower values for network fields in quiet regions and
the higher values corresponding to strong plages (chapter 6). The value for the radius is close to that given by
Muller and Keil (1983) for facular points in continuum observations of the quiet Sun network. Since we keep the
pressure uniform across the cross-section, the calculated fields are potential. As expected, the smaller the seed
field strength, the closer the tube expands towards its theoretical limit

1 *
R = \/;R . (9.61)

It appears from Fig. 9.2 that the merging height as defined by Eq. (9.58) is approximately independent of the
strength of the seed field.

Spruit and Zwaan (1981) find that, in active regions, small fluxtubes exhibit a broad range of diameters
ranging from below their best resolution up to 1.6” (fluxtubes larger than this are seen as pores). We have
therefore also studied the effect of fluxtube diameter on the merging height, although we have concentrated
mostly on the so called facular elements, which according to Spruit and Zwaan (1981) have diameters < 0.5".
The cross-section variation and merging height for different values of B* but a fixed filling factor of 10% is shown
in Fig. 9.3. The dashed curve represents the locus of merging heights which, curiously, is essentially a linear
function of R, and, hence R*. Since the filling factor is fixed, a larger value of R* corresponds to fewer fluxtubes
per unit surface area on the Sun. We see then that, the larger the fluxtubes, the higher the level above 75000 = 1
that they merge. The horizontal line in the figure represents the temperature minimum level of the HSRA which
we shall consider to be the base of the chromosphere. Hence, unless the tubes are very thin (< 25 km), merging
takes place in the chromosphere for this filling factor.

By combining the thin tube approximation with the conservation of magnetic flux in an isothermal external
atmosphere, Spruit (1983) derived a simple expression for the merging height as a function of the other physical
parameters. It reads

Zp=~—Hha, (9.62)

where 2z, is the merging height and H is the isothermal scale height. From the comparison of Eq. {9.61), which
gives a merging height independent of R*, with Fig. 9.3, shows that the merging height clearly increases with
R*, we conclude that the magnetic curvature forces have a significant influence on the merging height.

Next we vary o from 0.025 to 1 while keeping the radius R* constant at 100 km. The resulting cross-sections
are plotted in Fig. 9.4, with the merging height indicated by the dashed line. As expected, the merging height
varies inversely with filling factor. The shape of this curve is approximately logarithmic in accordance with that

- |
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Fig. 9.2

Fig. 9.3
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predicted by Equation (9.62), but the constant of proportionality between 2z, and Ina does not correspond to
the appropriate scale height. For a < 0.1, i.e., for network fields, the merging takes place in the chromosphere.
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In strong plages, however, the filling factor can be considerably larger and merging can occur in the photosphere.

Let us next vary the temperature inside the fluxtube. If the internal temperature differs from the external
value, the merging height becomes dependent on B*. We model the temperature difference in a crude manner,
by supposing the ratio of the external (T.) to internal (T;) temperature to be a fixed value for all heights in
the atmosphere (we also keep oz = 0 throughout). Fig. 9.5 shows the merging height as a function of T, /7; for
B* = 1300, 1500, and 1700 G.

For T./T:; < 1, the merging height increases with increasing B* whereas, for T./T; > 1, the reverse is
true. The reasons for this behaviour are the following. For T, /T; < 1, the internal gas pressure falls off more
slowly with height than the external gas pressure and, at some height they become nearly equal. Here, the
internal magnetic field must become small in order to satisfy the boundary conditions and the cross—section then
becomes large enough to ensure merging. Since Equation (9.60) must be satisfied at the reference level, the
internal pressure, P*, has to be lower for larger field strengths, B*. This means that the height at which the
internal gas pressure becomes larger than the external gas pressure increases with increasing B* resulting in a
correspondingly higher merging height. Due to the presence of the seed field term in Equation (9.57), which
dominates over the pressure terms near the merging height, valid solutions can be obtained even above the level
at which the internal gas pressure becomes larger than the external gas pressure. Due to magnetic tension the
fluxtubes do not become straight suddenly at this height, so that the merging height (defined in Section 3.1)
can lie above this level. The lines in Fig. 9.5 are drawn dashed for small T,/7T; since the low merging height
and the related very rapid expansion of the tube lead the model to the limits of its validity. For T./T; > 1, on
the other hand, the internal pressure falls so rapidly with respect to the external pressure that it soon becomes
unimportant. Now, the internal magnetic pressure dominates and produces more rapid expansion and quicker
merging as the field strength is increased. Note that, as T; becomes very small compared to T, the merging
height approaches an asymptotic value independent of T;. This is because the internal gas pressure now decreases
so rapidly with helght that it becomes totally unimportant not far above the reference level.

9.9.2. Internal Structure of the Fluztube

The horizontal variation of B, and B, are shown at different heights in the atmosphere in Fig. 9.6. The base
pressure for this model is assumed to be uniform i.e. P} = 0. The radial variation of the field is shown at intervals
of 100 km, upwards from the reference level. T, /T; = 1 for all the models discussed in this section. We see that,
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Fig. 9.5 Dependence of merging height upon ratio of external (T;) to internal (T;) temperature for different
base magnetic field strengths.

__at low heights, B, is almost uniform, as expected from the thin fluxtube approximation. As we proceed upward
the axial field becomes more nonuniform, declining outward from the center of the tube. Then, near the merging
height, it becomes more uniform again and is, of course, constant after merging. This variation of B, with radius
and height is clearly not self-similar. Note that the correction terms to ho and fi (z2h2 and z°f3) are not large
but also not negligible.

The case of a tube with base pressure increasing outwards, such that a*?p% = 1 is shown in Fig. 9.7. Near the
reference level the magnetic field is now distinctly more non-uniform, in order to provide the ourward magnetic
pressure gradient needed to balance the inward gas pressure gradient at the lower boundary. However, at and
above the merging height no difference is seen with respect to the case with horizontally constant gas pressure.
How can this be explained? The horizontal gradient of the gas pressure does not disappear, since as opposed to
the variation of the magnetic field quantities, the gas pressure does behave self-similarly if the temperature inside
the tube is the same as that outside. This can be seen by using Eqgs. (9.47) and (9.50) to write the expression
for the total pressure for the case of a horizontally uniform temperature (o2 = 0),

y
« d
p=rpo+alpa+ - (1+£%p3ho) exp (-— / ;—y> (0.63)

But, from Equation (9.45) we have ho = (a*/a)?, so that

p (1 + pra*? (2)2> exp (— /y %) (9.64)

Obviously, this is a singular case since the self-similar property disappears if the internal and external tempera-
tures are unequal or if the internal temperature varies with z. The above equation shows that the lateral pressure
gradient persists even after the fluxtubes have merged. This means that the magnetic field cannot be exactly
uniform after merging. However, the pressure declines exponentially while the magnetic field remains constans

.
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after merging, so that this non-uniformity damps out rapidly above the merging height. Even below the merging
height, magnetic tension makes the field decrease considerably less rapidly than the pressure.

In Fig. 9.8 the internal magnetic field structure of a fluxtube with the pressure at the lower boundary
decreasing with radius is shown. The magnitude of py is chosen such that a*?p; = —1. The result is as expected
with the axial magnetic field now increasing outward in the lower part of the tube in order to provide the
required pressure gradient. Higher up, the solution is similar to the other two cases. The independence of the
radial dependence of the field on the horizontal pressure variation has already been explained further up.

Fig. 9.8 The same as Fig. 9.6 but with the base
gas pressure now decreasing outward. As (km)
expected, the axial field at the base now
increases outward to counterbalance the
outward gas pressure gradient but then BOQ o e e s s e e
begins to decline outward as the influence
of the pressure declines. Eventually, as
in the previous cases, the field becomes

uniform near the merging height. —
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9.8.8. Fluztube Models With a Twisted Freld

Because the higher order terms in the expansion become quite large if the twist is too significant, it is safe within
the context of the expansion method we are using to investigate only relatively small values of the initial twiss.
Nevertheless, several interesting results do emerge from the investigation of even quite small pitch angles. For
initial pitch angles less than 15°, the twist has .only a small effect upon the cross-section and merging height,
the calculation to second order showing a slight decrease in the cross-section at greater heights as compared to
the untwisted case. However, we believe this result could be spurious for the following reason: As can be seen
from Eq. (9.57), the net effect of By (through the term containing 6) is of the same sign as the external pressure
and tends to enhance the axial field at the axis, ho, in agreement with the results of Parker (1974). However,
the flux condition correct to second order, Eq. (9.45), contains only hopa? and not the fourth order term in the
axial field hoa*. Because hg is enhanced, the final calculated cross-section from Eq. (9.52) will be underestimated
without the inclusion of the fourth order term which can become significant at great heights where, in the twisted
case, the radial gradient of B, becomes large. Therefore, the result that the cross-section is slightly decreased
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for increasing twist should not necessarily be taken as a contradiction to the opposite results of Parker (1974,
1976)*. It may merely show the inadaquacies of a second order expansion when the twist becomes large (as it
does near the merging height). In any case, the effect on the cross-section is expected to be quite limited due to
the restrictions imposed by merging. We feel that, despite this problem, some qualitative conclusions on twisted
tubes can still be reached. '

Since, to first order, the pitch angle of the field, 71, is given by

1

B
ny = tan” Ez = tan""! g}a, (9.65)

Z
we see that the twist increases with height as the fluxtube broadens in accordance with the results of Parker
(1974). Moreover, the number of turns per unit length along the tube remains approximately constant, i.e.

1
N ~ =tann = const. (9.66)
a

Fig. 9.9 shows a plot of the tangent of the pitch angle as a function of height for three values of the initial twiss.
These curves are calculated correct to second order, i.e.,

-1 10+ gaa®

=t .
" an ho + h2a2

(9.67)
The twist increases initially with height, reaches a maximum value as the fields begin to merge and then decreases
again to an asymptotic constant value. It is the second order terms in Eq. (9.67) which lead to the decrease in pitch
above the merging height. The decrease above the merging height of (negative valued) hs, as the field becomes
more uniform, is the dominent cause. The fact that the tube radius remains approximately constant above the
merging leads to the twist showing an asymptotic behaviour high in the atmosphere, with the asymptotic value
1 given approximately by

1
tann; ﬁ tan n*, (9.68)

where n* is the pitch at the boundary of the fluxtube for y = 0. Eq. (9.66) is only approximate, since hy does
not disappear above the merging height as is readily visible from Fig. 9.10. It should also be kept in mind that
cylindrical symmetry breaks down above the merging height (since the field does not become uniform at any
height above merging!), which makes the discussion of twisted tubes in that region questionable.

In Fig. 9.10 the horizontal variation of B, and By (which replaces B, in this figure) is shown at various
heights for the model with tan n* = 0.225. At the base By < B, but at greater heights By becomes larger than
B, near the surface of the tube, consistent with Fig. 9.9. The reason for the strong decrease in B, across the
tube in the higher levels, even after merging, is that the azimuthal field produces an inward magnetic pressure
force. Since the pressure in this model is horizontally uniform, an outward magnetic pressure force is required to
balance it. Therefore with increasing height and correspondingly increasing twist B, decreases ever more rapidly
outwards.

9.8.4. Comparison With the Thin Fluztube Approzimation and the Importance of Higher Order Terms

If we set the RHS of Eq. (9.57) equal to zero, then we obtain the magnetic field structure in the thin fluxtube
approximation, but now modified to include merging with a seed field. In Fig. 9.11 the shape of the fluxtube
cross-section calculated with the modified thin tube approximation is compared with the cross-section of the
second order expansion solution. Both thin tube and expansion models have internal temperature equal to the
external temperature, o = 0.1, no twist and uniform base pressure (this last condition is trivially fulfilled for
the thin tube approximation). Tubes having four different radii are shown, namely 25, 50, 75, and 100 km. It is
evident that the differences between the two solutions increase with height until they reach a maximum near the
merging height. Above that level the seed field forces both tubes to behave the same. Magnetic tension evidently
makes the tubes merge at a greater height. This effect increases with increasing radius, so that the second order

* Although, our analysis is quite different from that of Parker (1974, 1976) in that we specifically include the
radial component, B,, in our treatment.



154 The Photospheric Layers of Fluztubes

1.5 | | ] ] ] ] | ]
tann® = 0.225
1.0 - =
S tann* = 0.150
I . g -
§ tann* = 0.075
0.5 — -
On D 4 I t ' T I T ‘ 1]

0 200 400 600 800 1000
height (km)

Fig. 9.9 Variation of pitch angle with height for a twisted fluxtube for different values of the initial twist at
the base. For all these tubes, R* = 100 km and o = 0.1. We see that the twist increases strongly
with height. But, near the merging height, it reaches a maximum and then declines to a constant
value.

solution merges at ever greater heights (compare with Sect. 9.3.1), while the thin tube solutions all merge at
approximately the same height, in accordance with the results of Spruit (1983).

In order to estimate the validity of our expansion technique, we plot in Fig. 9.12 the second and fourth order
terms in the expansion of the axial magnetic field strength at the boundary, normalized to its value on the axis,
i.e.,

bz h2 2 h4 4

iz 4 —=a” + ——g”, 9.69

ho ho ho (.69)
This plot corresponds to the ‘standard’ model with o = 0.1, B* = 100 km, no twist, and with the temperature
and pressure uniform over the cross—section. For this case, Equations (9.38), (9.46), and (9.51) yield simply

pa =0, (9.70)

ha = —i-h{,’, (9.71)
— _____L no__ _1__ (Iv)

he=—1ohy = 64h0 . (9.72)

Near the reference level both the second and fourth order terms are small. The second order term increases in
magnitude with increasing height until it starts decreasing again rapidly towards zero slightly below the merging
height, which for this model lies at 750 km. The fourth order term remains small over most of the height range.
Near the merging height it reflects the rapid change in ko, since it is proportional to the curvature of hz.

Both the fourth order terms ps and h4 remain small for most of the models studied by us, including those
with p; # 0. However, they are strongly dependent on the radius of the tube. Furthermore, hy may become
large for tubes with large twist.
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Fig. 9.10 Radial variation of By (dashed) and B,
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0.225, R* = 100 km, and « = 0.1. Like
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9.4. Conclusions

Besides the long term goal of a model to serve as a basis of empirical radiative transfer calculations, the model
presented in this chapter has served two purposes. Firstly, higher order departures from the thin tube approxima-
tion due to magnetic tension have been studied. Secondly, the effects of neighbouring luxtubes on the structure
of a given fluxtube have been treated. In particular, the merging of fluxtubes has been examined in some detail.
To accomplish these goals we have chosen to use an expansion technique in which the appropriate variables such
as magnetic field strength, gas pressure, and temperature are expanded in power series in the radial variable,
perpendicular to the tube axis. We simplify the appropriate MHD equations for the height variation of the
various coefficients by equating equal powers to any ascending order of accuracy desired. If this process is carried
out to second order, one ultimately obtains a nonlinear second order differential equation for the magnetic field
along the axis of the fluxtube which must be solved numerically. A small seed field filling the space between
the fluxtubes is used to cause the smooth merging of fluxtubes. The seed field does not affect the structure or
merging of the fluxtube as long as 1ts magnitude is small.

For untwisted tubes with internal temperature equal to the external temperature and no horizontal variation
of pressure and temperature we find that the merging height increases linearly with fluxtube radius for a fixed
filling factor, while for fluxtubes with a fixed diameter the merging height varies inversely with filling factor. For
such fluxtubes the merging height is independent of the base field strength, whereas for tubes whose temperature
differs from the temperature of the surroundings this is no longer the case. Thus for tubes which are hotter
than the surrounding photosphere the merging height increases with increasing field strength, whereas for cooler
fluxtubes, the reverse is true.

In general, we find that the thin fluxtube solution is quite good low in the atmosphere, but, as the tubes
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expand, deviations soon become apparent, with the greatest departures occuring near the merging height. Our
solution shows that the effects of magnetic field line curvature extends the merging to greater heights than
:predicted by the thin fluxtube approximation modified by the use of a seed field. However, the departures are
small enough for the thin tube approximation to remain a useful tool for many applications.

The horizontal structure of the magnetic field is found to be decidedly non-self-similar for the horizontally

~constant temperature structure employed. For horizontally uniform base gas pressure the magnetic field starts
out approximately uniform at the base, declines outwards ever more as the tube expands and finally becomes
uniform again above the merging height. In contrast to self-similar solutions, which require a specific temperature
structure to satisfy force balance in both directions, the expansion solution can be coupled to an energy equation,
or to an empirically determined temperature structure.

Some physical implications of slightly twisted fields at the fluxtube base have been discussed. For such
fields the twist does not have a large effect on the overall cross-section and merging height. In accordance with
the results of Parker (1974), the pitch angle increases strongly with height due to the expansion of the tube.
However, as the fields begin to merge, the pitch angle reaches a maximum and then begins to decrease towards
an asymptotic value. In contrast to the untwisted fluxtube, the axial field decreases outwards from the axis even
after merging. Presumably, after merging, fields of opposite polarity will come into contact with each other,
resulting in magnetic reconnection which could serve to combine tubes integrally with their neighbours (Parker,
1983a).

It is generally agreed that the magnetic field of unipolar regions expands until it comes into contact with field
lines coming from neighbouring regions. Different theoretical models have been proposed for this expansion (e.g.
Gabriel, 1976; Anzer and Galloway, 1983b). The results from these models have been interpreted to give “canopy
heights” of around 1500 km above the photosphere in quiet regions, where “canopy height” is interpreted as the
height at which the atmosphere begins to be dominated by the magnetic field. On the other hand Giovanelli
(1980), Giovanelli and Jones (1982), and Jones and Giovanelli (1983) have found evidence from magnetograph
recordings for magnetic canopies lying between 500 and 800 km in the atmosphere, near both active and quiet
network regions. They define canopies as regions of magnetic field overlying non-magnetic regions. If their
interpretation of the observations is correct, then we should expect on the basis of our analysis that the individual
fluxtubes would not be fully merged when the canopy begins to form, i.e. when the fields become strongly inclined.
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Fig. 9.12 Variation of the second and fourth order terms in the expansion for B, with height. The curves show
the ratio of these terms to the zeroth order terms. The second order term grows with height and
becomes quite significant near the merging height but then drops quickly to zero. The fourth order
term is very small at low heights but also increases near the height where the fields merge. This figure
corresponds to our “standard” model with B* = 100 km and « = 0.1. For fluxtubes thinner than
this, these terms should become correspondingly smaller.

‘Consequently, there clearly is a need to study the structure and merging of non-vertical fluxtubes. This need is
supported by the observations of Solanki et al. (1987) that in half of the regions investigated the fluxtubes are
inclined by over 10° to the vertical.

This model may in future be used to calculate Stokes line profiles and thereby to test some of the assumptions
underlying past and present empirical models of solar magnetic fluxtubes. For example, it can be used to test how
strongly the Stokes profiles calculated in the cylindrical geometry of the model (1.5-D calculations along many
lines of sight) differ from profiles calculated in slab geometry or in a plane-parallel model. For more details see
De Martino (1986) and Solanki and De Martino (in preparation). Another possible use for this model is to test
the importance of magnetic tension in fluxtubes models as reflected by the Stokes profiles. Thus, by comparing
the line profiles produced by the thin tube and the expansion model, it may be possible to decide whether models
more sophisticated than the thin tube approximation are needed for fluxtube diagnostics. The expansion model
can at a later stage also be used as the basis for empirical modelling of fluxtubes. For this purpose its simplicity
can become a distinct advantage over more sophisticated models, since it can be calculated with a minimum of
computer time, leading to a considerably greater flexibility.

However, in the long run, exact MHD solutions for this problem are certainly feasible. This has been
demonstrated, for example, by the time-dependent relaxation technique employed by Endler {1971), Steinolfson
et al. (1982), and Suess (1983) for the coronal streamer problem and by Deinzer et al (1984a, b) for fluxtubes
in slab geometry. Another promising approach is the iterative method used by Pneuman and Kopp (1971) for
streamers, which has recently been applied to sunspots by Pizzo (1986) and to small fluxtubes by Steiner et al.
(1986).




10. Outlook

Man reist ja nicht, um anzukommen,
sondern um zu reisen

J.W. Goethe

We shall not bore the indefatigable reader who has fought his way through the last nine chapters with a summary
of the results, since one is provided in the abstract. Neither shall we weary him with a discussion of their
implications, such discussions are included in chapters 5 through 9. Instead, in this final chapter we shall outline
some of the future perspectives opened up by this work. A number of promising avenues await exploration and
the questions inviting consideration are legion. Below we list only some of the work possible in the near (and
sometimes more distant) future. A part of it is already underway.

1.

v/

More data, both of high and of moderate spatial resolution, are required in order to resolve a number
of problems. Some examples of open questions which can be addressed with additional moderate spatial
resolution data are: 1) What is the dependence of fluxtube properties on filling factor, the position on the
solar disk, the age of an active region, the distance from a sunspot, etc.? A large sample of observations will
be required to determine these dependences with any measure of certainty. #) What are the properties of the
deeper and the higher layers of fluxtubes? These are known only in their rudiments and their determination
requires polarimetric data in chromospheric lines and at various wavelengths in the infrared. 1) Are fluxtubes
inclined and what is their geometry? The data available to date are usually limited to Stokes I and V, but
complete profiles of Stokes @ and U will also be needed in future if we want to answer this question.

Better diagnostic techniques are required as well. In particular Stokes Q and U are almost virgin territory as
far as fluxtube diagnostics are concerned (some exceptions are to be found in Hagyard, 1985). Besides being
absolutely necessary for determining the direction of the field, Stokes @ and U are also capable of serving as
diagnostics for the field strength, temperature, and perhaps even velocity inside the fluxtubes. For a more
detailed discussion see Solanki et al. (1987). An example is the o-m asymmetry of Stokes Q (the summed
area of the two o-components is not equal to the area of the r-component, cf. Sect. 4.2.3). It can be used
to set constraints on the temperature inside fluxtubes. A further example of the potential of Stokes Q is
presented further below.

The diagnostic potential of Stokes V has also not been used to the full. For example, the “thermal line
ratio”, introduced by Landi Degl’Innocenti and Landolfi (1982) and first applied by Stenflo et al. (1987a)
requires further development before it can be used as a reliable guide to fluxtube temperature. In addition
to new techniques, long established methods like the 5250/5247 line ratio technique of Stenflo (1973) need
to be studied further. In chapter 6 we found the unexpected result that the CLV of the ratio of the V
amplitudes gives only little information on the height variation of the magnetic field. However, the ratio of
the full line profile of 5250/5247 at disk centre probably does contain some (model dependent) information
on B(z) as pointed out by Stenflo (1984a). A proper analysis would require 1.5-D calculations (since flux
conservation is important). A reinterpretation of conventional 5250/5247 line ratio data has recently been
presented by Semel (1986). He demonstrates that if a weak field of opposite polarity is assumed outside
the fluxtubes then the observed line ratio (at disk centre) can be explained with a field strength inside the
fluxtubes considerably below the generally accepted value of 1 kG. With conventional line ratio observations it
is probably not possible to differentiate between the two interpretations. However, the 5250/5247 Q line ratio,
being insensitive to polarity, should be able to decide between them. The Stokes @ line ratio also contains
information on the height variation of the magnetic field strength. Since its m-component is formed higher
in the atmosphere than its c-components (for a not completely split line), a comparison of the 5250/5247 =
and o line ratios will give the B gradient if we know their respective heights of formation (see point 3 below).
The advantage of using Stokes Q is that we see higher in the atmosphere {Stokes V is zero at the wavelength
where the m-component is strongest). The proper application of this method will, however, also require 1.5-D
radiative transfer calculations and ideally data with better signal to noise ratio than currently available.

In order to improve the diagnostics we also need to know the heights of formation of the spectral lines
in fluxtubes. To this end we may use either the method of Van Ballegooijen (1985a), or of Wittmann
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(1973a, 1974). Since Van Ballegooijen’s method, although possessing a sounder physical foundation, gives
the emission contribution function, which unfortunately mixes the contributions to the continuum and the
line (cf. Gurtovenko and Sheminova, 1983; Magain, 1986; see also Fig. 4 of Van Ballegooijen, 1985a), a further
investigation of both methods seems appropriate at the moment. A promising approach would be to combine
Magain’s definition of the line depression contribution function with Van Ballegooijen’s formalism for solving
the radiative transfer equations.

Data near A = 1.6y are crucial for determining two important and so far only very badly known parameters
of fluxtubes, their temperature and their field strength near 75000 = 1. T(7s5000 ~ 1) gives the continuum
intensity without the usual problems, namely limited spatial resolution and the influence of the dark ring
surrounding fluxtubes (Deinzer et al,, 19_§4b) which hamper direct observations; and the fact that only the
product of continuum contrast and filling factor is measured with indirect methods (Schiissler and Solanki,
1987). Together, temperature and field strength near 75g00 = 1 may allow constraints to be set on the possible
heating mechanisms (e.g. mainly radiative or mainly mechanical heating in the deep photospheric layers of
fluxtubes). A

1.5-D radiative transfer: Future empirical models must combine a 2-D MHD model of a fluxtube without
energy equation (e.g. thin tube model, the expansion model of chapter 9, or the exact solution of Steiner
et al., 1986) with radiative transfer along many lines of sight (1.5-D). Specially away from disk centre the
effects of limited fluxtube diameter should play a major role. 1.5-D calculations of Stokes I, in conjunction
with fluxtube models of varying sophistication, have been carried out by e.g. Chapman (1970}, Caccin and
Severino (1979), Rees and Semel (1979, they also consider Stokes V'), Owocki and Auer (1980}, Chapman and
Gingell (1984), Deinzer et al. (1983, 1984b), and Walton (1987). So far only Van Ballegooijen (1985a) has
studied the influence of the fluxtube geometry (including expansion, and finite diameter) on all four Stokes
profiles.

1.5-D radiative transfer calculations must be carried out systematically to test the difference to the present
generation of 1-D) models. A first step, in which the Stokes profiles from a plane-parallel, slab and cylindrical
fluxtube are compared, is in preparation. Only a single fluxtube is considered, namely the standard model of
chapter 9. In a second step the influence of neighbouring fluxtubes on the emergent line profiles must also be
taken into account. Only slab geometry need be considered, since Stokes V is found to behave very similarly
for slab and cylindrical geometry. Also, a proper combination of radiative transfer with a group of merging
cylindrical fluxtubes becomes prohibitively complicated and expansive in computing time. The influence of
filling factor will then no longer restrict itself to changing the amplitude of the V' profiles, but will also affect
the line shapes. Not only the distance between fluxtubes will play a role, but also their diameters, possibly
allowing information on the true diameters of small fluxtubes to be obtained. All previous attempts have
only been able to set upper limits (e.g. Mehltretter, 1974; Stenflo, 1976; Ramsey et al., 1977).

NLTE effects will have to be taken into account in a future calculation. This is particularly true if the
continuum intensity of fluxtubes really is so high as suggested by the indirect analysis of Schiissler and
Solanki (1987), since Solanki and Steenbock (1987) find that the departures from LTE increase rapidly with
increasing difference in temperature between the levels at which the continuum and the lines are formed.
As far as the diagnostics are concerned, it is the empirically determined temperature which is most strongly
affected by NLTE, with departures from LTE mimicking a higher temperature. Therefore, an empirical
model using NLTE radiative transfer of the Stokes profiles is an important (but probably distant) goal. As a
first step the NLTE departure functions may be calculated without any polarization using a standard NLTE
code (e.g. that described by Steenbock and Holweger, 1984; Steenbock, 1985). The Stokes code described in
chapter 2 can then be used to calculate the complete Stokes vector if Eqs. (2.69) and (2.70) are incorporated.
This requires only a minor change in the present code.

An application of the methods presented in chapter 4 to FTS spectra at various limb distances should pay
rich dividents. Besides being an independent test for the temperature models developed in chapter 5 such
an analysis may also provide a first (indirect) glimpse at mass-motions not observable at disk centre, e.g.
Alfvén waves (Parker, 1979; these torsional waves can be excited by a whirl flow in the surroundings, which
in turn is due to the bathtub effect, Nordlund, 1983; Schiissler, 1984a) or the jiggling of fluxtubes by granular
motions (Parker, 1983b, 1986).

As the data continue to improve and the empirical models must attain ever greater complexity to interpret
them properly, it becomes increasingly feasible to compare the observations directly with profiles calculated
from self-consistent theoretical models (i.e. models including an energy equation, e.g. Spruit, 1976; Deinzer et
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al., 1984a, b; Knolker et al., 1985, 1987; Nordlund, 1986). Particularly, when the theoretical models become
more comprehensive. The present status of such models and how they compare with observations has been
reviewed by Schiissler (1987).

Although the static models mentioned above are quite useful, theoretical models become inescapable when
we want to study dynamic phenomena. A possible short term project would be to take model calculations of
different wave modes in fluxtubes and calculate their time and/or space averaged Stokes I and V signals. A
similar analysis for the non-magnetic atmosphere has recently been published by Keil and Marmolino (1986).
A linear calculation (cf. Roberts, 1986) should be sufficient for the beginning. It actually has the advantage
that the wave amplitudes are free parameters which can be varied to fit the observations of line broadening.
Furthermore, a combination with the observed zero-crossing shifts as well as Stokes V' asymmetry may even
be able to select between the different wave modes.

By integrating running windows over our FTS spectra we can obtain the broad-band Stokes V' signal of
solar magnetic fluxtubes. The CLV of this signal may decide whether the broad-band circular polarization
measured by Kemp et al. (1987) on the solar disk near the poles is produced by the Stokes V asymmetry
in small magnetic fluxtubes or not. Their results suggest that the broad-band polarization is incompatible
with the sign of the asymmetry seen at disk centre (with the blue wing being stronger than the red wing).
As discussed in Sect. 8.2.2 the asymmetry changes sign close to the limb for a few medium strong lines, but
the CLV of the asymmetry of all lines must be determined in order to decide whether the thin strip near the
limb with opposite sign has enough weight to override the asymmetry of the major part of the solar disk.
The Iy profile is also susceptible to new applications. For example, it allows us to obtain an idea of the line
bisector inside fluxtubes, thus opening another approach to the study of fluxtube properties, in particular
their internal mass motions. The main problem in this context is the Stokes V area asymmetry and the
rather rudimentary manner of removing it (Sect. 4.2.5). However, the influence on the line bisector of the
renormalisation procedure, in which the blue wing of V' is multiplied by \/ A, /A and the red wing by \/A4s/4,
prior to integration can be tested by also determining the bisectors of the profiles renormalised by multiplying
only the blue wing with A,/As, respectively only the red wing with A;/A,. The bisectors determined with
these last two renormalisations delineate the two extremes within which the true bisector must lie.
Furthermore, by substracting the suitably weighted I profile from the Stokes I profile observed in the
same active region, it may also be possible to recreate the line profile arising solely from the non-magnetic
environment of fluxtubes. A method for doing this with a minimum of a priori assumptions has been presented
by Schiissler and Solanki (1987).

Finally, some of the methods developed here and elsewhere can be easily adapted and applied to stars. In
particular, the regression technique pioneered by Stenflo and Lindegren (1977) can be used to measure stellar
magnetic fields if data with a sufficient number of unblended lines and high enough spectral resolution are
used. A first step in this direction has been taken by Mathys and Stenflo (1986), who have determined the
field strength on an Ap star using this method. However, it shows most promise for solar type stars whose
tangled magnetic fields cannot be studied with polarimetric methods (cf. chapter 1). The Stenflo-Lindegren
technique has a considerable advantage over the usually used Robinson method, since it is considerably
less sensitive to blends. Another possible diagnostic for stellar magnetic fields is the Stokes I line ratio
of 5247/5250 introduced by Schiissler and Solanki (1987) to determine the product of magnetic flux and
continuum contrast of solar magnetic fluxtubes.
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SUPPLEMENT




SONNIGE FERIEN!

Wie wirs mit garantiert sonnigen Ferien (24 Stunden Sonne pro Tag hautnah erleben!). Un-
sere leuchtenden Strande, von den Einheimischen “Plage” genannt, warten auf Sie! Kein Rum-
mel, keine Platzprobleme, Millionen von Quadratkilometern Strand ohne einen anderen Menschen.
Schauen Sie dem faszinierenden Spiel des granularen Meeres zu, verfolgen Sie das Geschick einzelner
Flussrohren, oder liegen sie einfach auf dem Riicken und geniessen Sie den Anblick vom Wald der
Flussréhren, der sich iiber Ihnen schliesst. Als Abwechslung empfehlen wir Ihnen eine Abkiihlung
im angenehmen Schatten einer Umbra. Und am Abend tanzen Sie zu den heissen Rythmen der
vielen ausgezeichneten Bands, z.B. der weltberithmten “Los 5 Oscillationes”.

Melden Sie sich heute schon an bei:
CORONA TRAVEL.
Sie finden uns am
Sonnenweg 10,
Heliopolis.

ACHTUNG! ACHTUNG! ACHTUNG! ACHTUNG! ACHTUNG!

Damit Thre unvergesslichen Erlebnisse in unserem Ferienparadies wirklich unvergesslich bleiben,
schenken wir jedem Teilnehmer (KOSTENLOS) die revolutiondre, neue sphérische 360° Kamera
fiir die endgiiltigen Panorama-Aufnahmen: die Photo-Sphare, ein Produkt der Spektrum AG.
Gegen ein bescheidenes Entgelt liefern wir Thnen auch das phantastische Profi-Modell fiir leuchtend
brilliante Farbpanoramen: die Chromo-Sphare.

KEINE ANGST!

Wir mochten betonen, dass Sie keine Angst vor Terroristen zu haben brauchen. Unsere speziell
ausgebildete Sicherheitskrafte werden sie effizient und mit hundert prozentiger Sicherheit schiitzen
vor den Ellerman Bomben und den ‘Coronal Bullets’.




The Stony Path to Publication

As reflected by anotated quotations

S.K. Solanki: 1982, in preparation v
Only a vague idea of dubious quality exists so far and nothing has actually been done yet,
but it can nevertheless be quoted: That’s one more for the citation index.

S.K. Solanki and A.N. Angsl: 1983, Astron. Astrophys. to be submitted

A.N. Angel, a Diplomastudent, has now turned up and has toiled away day and night for the
last six months to produce some reasonable results from that initial, dubious idea based on
assumptions which are about as solid as fresh jelly. The primary author has constructively
spent the mean time at conference dinners. Oh yes, he has also decided on the journal to
submit the paper to {(only the best will do), once it is written. His contribution is therefore
quite sufficient for him to place his name first.

S.K. Solanki and A.N. Angel: 1984, Astron. Astrophys. to be submitted

A.N. Angel has long since left the institute (and as a result is blissfully ignorant of what
shall follow), but the primary author has so far had no time to write up the results in the
form of a short paper. He talks of being overworked, but could the real reason be too many
conference dinners? Keep in mind the exhausting after dinner speeches.

S.K. Solanki and A.N. Angel: 1985, Astron. Astrophys. submitted

With large helpings of fuzzy logic, a rigorous disregard of the laws of physics, a ruthless
suppression of any nagging doubts, and a careful choice of words the paper has finally been
completed and the great day of submission, 1.4.1985, has arrived. With an immense sigh
of relief the packet with the three copies of the manuscript has been sent off to the editor.
A.N. Angel, who had actually done all the work and is well acquainted with the noisy data,
the inherent numerical instability of the analysis procedure, and the. hopelessly muddled
situation as far as the interpretation is concerned, was against publishing the “results”, but
as the poet so rightly wrote: “Fools rush in where angels dare not tread.”

S.K. Solanki and A.N. Angel: 1985, Astron. Astrophys. to be rejected

A rarely used quotation. At this stage only the referee knows this current status and he is
not likely to quote it in this form, since it would reveal his closely guarded identity.

S.K. Solanki and A.N. Angel: 1985, Astron. Astrophys. rejected

Another rare quotation. The rejection first plunged the primary author into a state of
deepest dejection, followed by maniac outbursts of anger and a wild but fruitless search for
the identity of the referee.

S.K. Solanki and A.N. Angel: 1986, Astron. Astrophys. resubmitted

In his heart of hearts the primary author knows that this paper is not really worth the
pulp for the preprints, but, after all, he spent a whole week writing it. Sufficient reason for
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10.

11.

12.

13.

writing a scathing letter to the editor demanding another, more competent, referee. Note
that most astronomers prefer to stick to the tried and tested “submitted” at this stage.

‘S.K. Solanki and A.N. Angel: 1986, Astron. Astrophys. to be rejected again

Here we go again. The second referee appears to be as heartless and incompetent as the
first.

S.K. Solanki and A.N. Angel: 1986, Astron. Astrophys. rejected for the second time

What comment can do justice to the feelings of the (primary) author now? With a heavy
heart he decides to forget about getting this paper published.

T.H.E. Devil, S.K. Solanki and A.N. Angel: 1987, Astrophys. Junk submitted

Enter T.H.E. Devil, professional name placer on other peoples papers, senior member of
the staff of an unnamed institute and a close friend of the editor of that final refuge for
the hopelessly incompetent astronomer: Astrophys. Junk (often also abbreviated simply
as Ap. J.). T.H.E. Devil spies a good opportunity for advancing the cause of the two
unsuccessful authors (poor devils) and naturally also of himself. The rest of the story is
quite straightforward.

T.H.E. Devil, S.K. Solanki and A.N. Angel: 1987, Astrophys. Junk accepted

Within a week of submission, the card of acceptance has already arrived. A miracle, if we
keep the vagaries of our so highly developed postal system in mind. We can only conclude
that this referee worked really fast, or, perish the thought, that this paper was never sent
to a referee. "

T.H.E. Devil, S.K. Solanki and A.N. Angel: 1987, Astrophys. Junk in press

The proofs have been hurriedly corrected and sent off again. As usual, most of the corrections
are necessitated not by typesetters’ errors, but by faults in the submitted manuscript.

T.H.E. Devil, S.K. Solanki and A.N. Angel: 1987, Astrophys. Junk 13, 13

The article has finally appeared and is already totally obsolete. However, although it may
be rather useless as far as the advancement of scientific knowledge is concerned, it does add
one more entry to the steadily growing list of publications of the authors.

And the moral of the story?
For publication inspiration can be almost completely replaced by transpiration.




How to Build a Fluxtube Model: Selected Recipes

Fluxtubes are highly decorative objects and most of us would surely wish to have one livening up
the drawing room. There is, however, a practical problem in the fact that few of us have a drawing
room of sufficient size. Recall that a typical fluxtube is expected to be about 100 km or more in
diameter and after all we want the pretty little fluxtube in the drawing room and not the other
way round. Out of this problem has arisen the fluxtube models industry which churns out scaled
down versions of the real thing in /Lar‘ige numbers. Although:a host of such ready-made fluxtube
models are available on the market at a wide range of prices (depending on the number of special
‘realistic’ features which a given model incorporates), I still feel that building a fluxtube model
yourself gives a unique feeling of satisfaction which I, gentle reader, cannot bear to withhold from
you. So I have put together the do-it-yourself recipes of a few almost random examples of fluxtube
models. Read on, make your choice and build one, or better still, forget about making a choice
and build them all.

The Baked Fluxtube

Every housewife can surprise her husband by serving a baked fluxtube for dinner. { The recipe
starts off simply enough: Take some dough and rollit flat. But soon comes the difficult part: Form
a tube of the following shape:

Fig. 1

and put it into the oven to bake at a typical photospheric temperature (=~ 5000 K). If you are
lucky then you may be able to observe any one of a number of dough instabilities occuring in your
model. E.g. kink instability (Fig. 2), or fluting instability (Fig. 3), 4 or perhaps even the big
one, viz. total (convective?) collapse. In some rare cases it may happen that none of these highly

1 In this age of enlightenment and equal rights, it could also be the other way around, the

house-husband being the one doing the serving to the stressed business wife.
€ The kink and fluting instabilities in the baking fluxtube are sometimes collectively called the

Salvador-Dali effect, since their effects remind some people of his melting clocks.
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engrossing and optically beautiful processes takes place and you actually end up with an intact
fluxtube model. Take it from the oven, fill it to approximately half its height with ice cream, and
serve it without further delay. You have now produced the famous hot-wall cool-bottom model of

the Huxtube.

Fig. 2 | Fig. 3

The Open Air Fluztube Model. Also Called the Show it to Your Neighbours Model

Drawing rooms have one disadvantage, they have walls. So even if you were to fill yours completely
with innumerable strange and wonderous fluxtube models, your neighbours might never learn about
them. And, to be honest, who makes fluxtube models just for the fun of it? If, however, you are
lucky enough to possess a garden with a pond then you already have almost all the raw material
in hand to make your neighbours turn spinach green with envy. You ask: How to do it? It’s easy:
Take some balsa wood, saw out pieces of the right shape and size, glue together and you are on
your way. The first approximation of a model is schematically illustrated in Fig. 4.

Fig. 4
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With a few simple additions this model can be made considerably more realistic. For example
you can add a ring of lead at the thin end of the model, so that it will float upright with the stately
grace of a 15 meter yacht in a steady breeze. You now have not just any old model, but have
produced a buoyant fluxtube. The beauty of this scheme is that you can play with it. By making
waves in the pond you can simulate the buffeting of your tube by the surrounding granulation.
There is no question that its great fun for the kids too. Be careful, however, not to add too much
lead, since you don’t want it to sink (with about the stately grace of, well, a lump of lead) before
the amused eyes of your neighbouyrs. Should this happen (after all nobody is perfect), then the
important thing is not to bat an eyelash and state with an air of haughty confidence (or studied
indifference if you prefer) that you were modelling the submergence of magnetic flux. That ought
to leave them at a loss. This sophistication should be quite enough for most neighbours, but even
the most hard boiled samples will give up the fight if you put a water hose into the model from
the bottom. Suddenly switching the water on and off will then produce a fountain, which is a
delightful approximation of that enigmatic member of the zoo of solar phenomena: the spicule.

The Josef Beuys or Pop Art Model

This one’s for the arty set. Take a funnel. Balance it on its narrow end. Hey presto, that’s your
fluxtube. If you so wish, then you can also paint it some impossibly horrid colour and within
minutes you will be the proud (?) possessor of the Andy Warhol version of the basic model which
is particularly popular on the western side of the Atlantic. Note: A well known member of the jet
set (an ex solar physicist) first got rich and famous when he sold such a model to the Museum of
Modern Art of Schildburg for a still secret, but sickeningly high, sum.

The Permanent Model

For people who like enduring values I suggest a model out of reinforced concrete. A solid foundation
for many a famous fluxtube collection has been laid with such a model. Besides being trendy and
a never exhausted source of conversation with guests it can serve a useful purpose if you build one
in the middle of the drawing room. For example as a support for the ceiling. As a bonus it opens
up whole new possibilities when playing hide and seek. Finally, if you decide against constructing
one yourself, it is also a model of how to keep the economy on a sound footing and how to keep
the ever complaining building industry satisfied. Its money spinning potential has been realised
with characteristic speed by the construction firms. Thus, the new sales slogan of the staid Golden
House Inc. reads:
A model home needs a model fluxtube,

while the new up and coming Slick Brick Corp. is planning a crash publicity campaign having the
motto:

We’ll get you the flux
For just thousand bucks.
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The Wine Glass Model

Take a burgundy glass. Fill it well with vintage burgundy (what else?) and place it on a table
with a plain white table cloth. Take a deep look (now you know what a fluxtube looks like in Har).
Take a deep breath. Take a deep gulp (feel that downflow?). Once the burgundy is gone you will
have a white-light picture of a fluxtube. Repeat the procedure until you see two models. Then
the fun begins. Watch numerous instabilities and the constant jiggling motions of your model.
Artificial seeing is also a possible by-product. Warning: people sometimes get addicted to this
kind of model.

And then there is the merging wine glass variant: Fill many burgundy glasses and place them
on the table, packed as tightly together as possible. You now have a beautiful view of a whole
network element. From there on the procedure is the same as above. The advantage is that, since
you do not have to refill the glasses each time, you get to the instability stage quicker.

The Computer Model

Computer models of fluxtubes are time consuming to program, expensive to run, unreliable and
often outright wrong. This is why no one builds such models, except some particularly woolly
minded astronomers, and all of us know enough about astronomers to realize what this means. So
take the advice of an experienced hand and keep your fingers away from computer models.

Concluding Salestalk

There are still many, many more fluxtube models to be made. Lack of space does not allow me to
describe such dainties as the evacuated fluxtube model starring your vacuum cleaner, or the bathtub
fluxtube with the stabilizing whirl flows. If this little introduction to fluxtube modelling leaves
you hungering for more information, then read my forthcoming comprehensive book entitled “The
avand 2 of Fluxtube Dynamos and Other Useful Electrical Tips for Bicycle Mechanics, Plumbers,
and Foolhardy Astronomers”. For those who prefer slightly lighter fare, there’s the “Hitchhiker’s
Guide to Galactic Fluxtubes”, or “Zen and the Art of Solar Cycle Maintenance”.




