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Abstract

We present submillimeter observations of 12CO J ¼ 3–2 and 2–1, and 13CO J ¼ 2–1 lines of the Venusian mesosphere and lower

thermosphere with the Heinrich Hertz Submillimeter Telescope (HHSMT) taken around the second MESSENGER flyby of Venus on 5

June 2007. The observations cover a range of Venus solar elongations with different fractional disk illuminations. Preliminary results like

temperature and CO abundance profiles are presented.

These data are part of a coordinated observational campaign in support of the ESA Venus Express mission. Furthermore, this study

attempts to contribute to cross-calibrate space- and ground-based observations, to constrain radiative transfer and retrieval algorithms

for planetary atmospheres, and to a more thorough understanding of the global patters of circulation of the Venusian atmosphere.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

NASA’s MESSENGER spacecraft swung by Venus for
a second time on 6 June 2007 at 23:10 UTC on its way to
Mercury. ESA’s Venus Express, on the other hand,
is orbiting around Venus since 11 April 2006. Both
spacecrafts carried out multi-point observations of the
Venusian atmosphere on June 6 for several hours. Among
the space-based observations, a world-wide Earth-based
Venus Observation campaign from 23 May to 9 June 2007
(and later) was initiated to remotely observe the Venusian
atmosphere.1 It contributes to the growing information on
Venus’s atmospheric characteristics and complement the
space-based data. Because Venus was close to its maximum
eastern elongation during the time-frame of the ground-
based observations, Venus was in a favorable position for
observations of both its day and night sides.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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The Venusian atmosphere is conventionally divided
QJ;into three regions: the troposphere (below 70 km),
the mesosphere (70–120 km), and the thermosphere
(above 120 km). Studying Venus’ mesosphere dynamics is
of special interest because this region is characterized by
the combination of two different wind regimes (a retro-
grade super-rotation and a sub-solar to anti-solar
flow pattern), and affects both the chemical stability
and the thermal structure of the entire atmosphere (Clancy
et al., 2003). The principal feature of atmospheric
general circulation is the super-rotation with typical wind
velocities of 60–120m s�1. Mesospheric temperatures
and CO mixing ratio experience global variations with
time (Clancy and Muhleman, 1991), probably due
to gravity wave breaking activity (Lellouch et al., 1994).
Submillimeter spectral line observations play an impor-
tant role in the investigation of the poorly constrained
Venus mesosphere (it is the only technique to provide
direct wind measurements in the mesosphere). Carbon
monoxide (CO) is an important tracer in the atmosphere of
Venus. Because its relatively strong transitions and the
pressure-broadened lineshapes, it is the best measured trace
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component of the mesosphere (Kakar et al., 1976; Wilson
et al., 1981).

This paper reports CO observations performed in June
2007 on the mesosphere of Venus as a part of the ground-
based observing campaign in support of Venus Express and
MESSENGER. We present some examples of the cap-
abilities of these data by the use of radiative transfer
and retrieval simulations: preliminary results of the
absorption line Doppler wind velocities, and thermal and
CO abundance vertical profiles.
Fig. 1. Synthetic image of Venus that approximates the telescopic view of

Venus as seen from the Earth at 8 June and 18:30 UT. Dotted lines of

longitude and latitude are shown on the surface in black, every 30�,

beginning at 0� longitude and latitude.
2. Observations

CO Venus observations were made with the Heinrich
Hertz Submillimeter Telescope (HHSMT), operated and
owned by the Arizona Radio Observatory (ARO). The
telescope is located at an elevation of 3178m on Mount
Graham, Arizona, and consists of a 10 m diameter primary
with a nutating secondary. The observations were obtained
on 8, 9, 10, 14, and 15 June from 18:30 to 0:30 UT. We
used the 345 superconductor–insulator superconductor
(SIS) and the 2mmJT/1.3mmJT ALMA Sideband Separ-
ating2 receivers, operating respectively at 320–375 and
210–279GHz to observe the CO J ¼ 2–1 (at a frequency of
230.538GHz), 12CO J ¼ 3–2 (at 345.79GHz), and 13CO
J ¼ 2–1 (at 220.398GHz). The 345 SIS receiver was used in
the single sideband mode with the signal frequency being
placed once in the lower sideband (LSB) and another time
in the upper sideband (USB), and the 2mmJT/1.3mmJT
one only in the LSB. Here, the mixer itself is intrinsically a
double sideband (DSB) mixer. The mixer is connected to
the same input port at both USB and LSB, and then a DSB
receiver can be used in two modes (to measure narrow-
band signals contained entirely within one sideband, and to
measure broadband (or continuum) sources whose spec-
trum covers both sidebands). System temperatures with the
345GHz receiver were typically 1500–2500 and 200–500K
with the 2mmJT/1.3mmJT receiver. Seven different back-
ends were used simultaneously: two 1MHz Forbes
filterbanks (FFBA and FFBB), two 970MHz wide
acousto-optical-spectrometers (AOSA and AOSB), two
filterbackends (FB2A and FB2B), and one 215MHz
CHIRP transform spectrometer (CTS, resolution of
�40 kHz) (Hartogh and Hartmann, 1990; Villanueva and
Hartogh, 2006).

Observations were carried out during good atmospheric
conditions (low water vapor), although on 10, 14, and 15
June it was partially cloudy. The observing mode was
always dual beam switching. Pointing was checked every
2–3 h. The typical integration time per individual spectrum
was around 4min.
2Developed as part of the ALMA project, this system is the first of this

kind to incorporate the latest SIS mixer technology: the image-separating

mixers. Here, the image separating system operates truly separating image

noise and signal. It uses an old 1.3 and 2mm quasioptical JT Dewar and

cross-grid to separate the two orthogonal linear polarizations.
The angular diameter of Venus was 23:4400 at the
beginning and 25:5500 at end of our campaign, respectively.
The fraction of illumination for Venus was 49.95%
and 45.68%, as seen by observer. Fig. 1 shows a synthetic
image of the apparent disk of Venus that approximates the
telescopic view of Venus as seen from the Earth at 8 June
and 18:30 UT.3

The CO J ¼ 2–1 line was mapped on eight different
beam positions on Venus disk, 12CO J ¼ 3–2 line on 8
positions, and 13CO J ¼ 2–1 line on one. The later
one represents the first detection of this line on a plane-
tary atmosphere using the HHSMT. A summary of
the observations carried out is provided in Table 1.
Fig. 2 shows the mapping of the beam positions on
Venus disk.
3. Data analysis

The measured spectra were reduced with the CLASS
software package of the Grenoble Astrophysics Group.4

A total of 36 spectra of Venus were taken.
3http://aa.usno.navy.mil/
4http://www.iram.fr/IRAMFR/GILDAS

http://aa.usno.navy.mil/
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Table 1

Observation parameters

Beam position daa dda Obs. no. Scan no. Line Date, June 2007 Receiver/sideband

1 12 �2 1 9–11 12CO J ¼ 3–2 08 345 SIS—USB

2 �12 �3 2 12–14 12CO J ¼ 3–2 08 345 SIS—USB

3 4 8 3 15–20 12CO J ¼ 3–2 08 345 SIS—USB

4 9 �5 4 21–26 12CO J ¼ 3–2 08 345 SIS—USB

5 0 0 5 29–30 12CO J ¼ 3–2 08 345 SIS—USB

5 0 0 6 36–39 13CO J ¼ 3–2 08 2mm/1.3mm ALMA—LSB

5 0 0 7 45 12CO J ¼ 3–2 09 345 SIS—LSB

1 12 �2 8 47–51 12CO J ¼ 3–2 09 345 SIS—LSB

2 �12 �3 9 52–57 12CO J ¼ 3–2 09 345 SIS—LSB

6 9 �3 10 58–63 12CO J ¼ 3–2 09 345 SIS—LSB

7 �9 3 11 64–69 12CO J ¼ 3–2 09 345 SIS—LSB

5 0 0 12 73–74 12CO J ¼ 3–2 09 345 SIS—USB

5 0 0 13 80–81 12CO J ¼ 3–2 10 345 SIS—USB

1 12 �2 14 82–93 12CO J ¼ 3–2 10 345 SIS—USB

8 �12 3 15 94–105 12CO J ¼ 3–2 10 345 SIS—USB

6 9 �3 16 107–118 12CO J ¼ 3–2 10 345 SIS—USB

7 �9 3 17 119–130 12CO J ¼ 3–2 10 345 SIS—USB

5 0 0 18 131–133 12CO J ¼ 3–2 10 345SIS—USB

5 0 0 19 139–140 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

9 14 �2 20 141–146 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

10 �14 3 21 147–152 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

9 14 �2 22 153–156 12CO J ¼ 2–1 14. 2mm/1.3mm ALMA—LSB

5 0 0 23 164–165 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

9 14 �2 24 166–167 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

11 19 �2 25 168–173 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

12 �14 �19 26 174–176 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

11 19 �2 27 177–182 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

13 �19 3 28 183–188 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

10 �14 3 29 189–194 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

5 0 0 30 195–196 12CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

5 0 0 31 199–202 13CO J ¼ 2–1 14 2mm/1.3mm ALMA—LSB

5 0 0 32 208–217 12CO J ¼ 2–1 15 2mm/1.3mm ALMA—LSB

14 16 �2 33 218–227 12CO J ¼ 2–1 15 2mm/1.3mm ALMA—LSB

15 �16 3 34 228–237 12CO J ¼ 2–1 15 2mm/1.3mm ALMA—LSB

5 0 0 35 244–293 13CO J ¼ 2–1 15 2mm/1.3mm ALMA—LSB

5 0 0 36 295–299 12CO J ¼ 2–1 15 2mm/1.3mm ALMA—LSB

ada and dd, right ascension and declination, are the astronomical coordinates of a point on the celestial sphere when using the equatorial coordinate

system. The earlier coordinate is the celestial equivalent of terrestrial longitude, and the later one, to the latitude, projected onto the celestial sphere.
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The CTS is able to handle the strong continuum
background from Venus due to its higher dynamical range
larger than 30 dB. Because the retrieval of the tempera-
ture and CO distribution require clean spectra, this
spectrometer is well suitable for our goals. Fig. 3 shows
an example of the spectra morphology for 12CO J ¼ 2–1
line for different backends which we have used.

4. Observational results

4.1. Qualitative wind measurements

The only method that provides wind measurements is the
analysis of Doppler shifts of molecular lines. Spectral line
differences with the East and West limb positions yields
measurements of projected doppler velocities relative to the
disk center (gives morning and afternoon zonal winds).
Fig. 4 shows examples of the spectra of CO J ¼ 2–1 lines
(Obs.no. 19, 25, and 28) at three different beam positions
(5, 11, and 13). In this example the derived wind speed does
not exceed 100m s�1. The Venus-HHSMT relative velocity
at the time each scan is not computed here.

4.2. Thermal structure and CO distribution

In order to retrieve the temperature profile and the CO
distribution in the mesosphere, we have applied a retrieval
technique described by Rodgers (1976) as optimal estima-
tion. We used a radiative transfer code (Jarchow and
Hartogh, 1995; Jarchow, 1998; Hartogh and Jarchow,
2004) which describes the physics of the radiative transfer
through the atmosphere, to calculate the synthetic
spectra which best fit the observed spectra. An a priori
profile to be retrieved is required as initial input for the
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Fig. 2. Black points show beam positions where the CO spectra were mapped on the Venus disk (for a 2400 disk diameter). Solid lines indicate the Venus’

equator and central meridian. Dashed circles indicate the approximate FWHM beam diameter. Left upper, right upper, and left lower panels represent the

positions for CO J ¼ 2–1, 12CO J ¼ 3–2, and 13CO J ¼ 2–1 lines.
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optimal estimation technique. Our atmospheric model
consisted of 30 layers spanning the 40–120 km interval
with a resolution of 2 km. Brightness temperatures were
convolved with an assumed Gaussian beam. Below we
present the retrieved temperature and CO vertical profiles
taken in the center of the Venus disk obtained with our
technique. At the other beam positions the results will be
discussed elsewhere.

Examples (corresponding to Obs. nos. 5, 32, and 35 in
Table 1) of fits to the 12CO J ¼ 3–2, CO J ¼ 2–1 and 13CO
J ¼ 2–1 lines in terms of temperature vertical profile are
displayed in Figs. 5–7, respectively. The spectrum of Obs.
no. 35 presents signatures like periodic ripples in the
baseline. Although the reasons of this anomaly is currently
unknown (perhaps they are standing waves or an instru-
mental effect), we retrieved its thermal profile and CO
distribution as a pure exercise. The baseline signatures may
cause large retrieval errors, and we are aware that it
requires further analysis.

Fig. 8 presents a comparison of the Obs. 5 temperature
retrieval to the profiles from the SPICAV onboard
Venus Express (Bertaux et al., 2007), Pioneer Venus (PV)
descent probes (Seiff et al., 1980), to the OIR sounding
measurements (Schofield and Taylor, 1983), and to
the PV night probe (Seiff and Kirk, 1982). The extensive
layer of warm air at altitudes 90–120 km detected
by SPICAV (Bertaux et al., 2007) (interpreted as the
result of adiabatic heating during air subsidence) seems to
be also detected in the HHSMT profile at 90–100 km
altitude, but the HHSMT peak shows a shorter tempera-
ture excess with respect to SPICAV measurements.
The measurements with SPICAV for orbits 102–104 taken
at altitude 4 1S, for orbits 95, 96, and 98 at 39 1N,
and reported here at 0� show the layer of warm air at
altitudes of around 95, 100, and 97 km. In other words, if
the adiabatic heating is a localized phenomena, the
layer seems to move up (in altitude) with the latitude.
Additional data at different latitudes are required.
Furthermore, in other altitudes the HHSMT profile
compares favorably to those returned by the previous
measurements. Similar temperature profiles were also
observed (Lellouch et al., 1994; Clancy et al., 2003).
Furthermore, it was suggested that a 10–15K increasing in
the mesospheric temperatures occur over 1–30 day periods,
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and much large variations (20–40K) over as yet undeter-
mined timescales (Clancy et al., 2003).

5. Conclusion
�
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We have carried out several CO mm-wave line observa-
tions on different beam positions on Venus disk during
June 2007.

�
 From spectra of 12CO J ¼ 2–1 and CO J ¼ 3–2 we

retrieved well-resolved and accurate vertical profile of
temperature and CO mixing ratio for the June 2007
mesosphere of Venus.

�
 The temperature peak detection reported here at

90–100 km seems to support the newly found of the
extensive layer of warm air detected by SPICAV
onboard Venus Express.
Despite the success of the analysis presented here, some
points need further work. More accurate line-of-sight wind
velocities on Venus will be determined, and gravitationally
redshift corrected. A discussion about Venus circulation
for this particular period of time will be given elsewhere
later.
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