

## GRIS+ - Why GREGOR Needs New Eyes

ANDREAS LAGG, H.-P. DOERR, F. IGLESIAS, M. VAN NOORT AND THE GRIS + TEAM MPI FOR SOlAR SYSTEM RESEARCH, GÖTtingen

## MOTIVATION FOR GRIS+

* GRIS is scientifically successful
* GREGOR performs well in the IR
* IR highest magnetic sensitivity
* Interesting lines for photosphere \& chromosphere:
* He 10830 (incl. Si 10827, Ca 10834, Ca 10838)
* Fe 15650 ( $\mathrm{g}=3,50-100 \mathrm{~km}$ deeper than 630 nm ), (Fe $15550 \rightarrow$ Smitha)
* Spatial resolution not at diffraction limit
* Photon efficiency too low


History - Diffraction Limited Spectro-Polarimetry






| 5647.5 | 15648.0 | 15648.5 | 15649.0 | 15649 |
| :--- | :--- | :--- | :--- | :--- | :--- |




A. Lagg

GRIS+
GREGOR Science Meeting @ AIP
Nov. 2017

THE PROBLEM: UNKNOWN PSF INFLUENCES INTERPRETATION



## THE SOLUTION: KNOW YOUR PSF



## MPS Instrument Development Followed... <MPS

1. Fast Solar Polarimeter (FSP + FSP2, Alex Feller)
2. Microlens Hyper Imager (MiHI, Michiel van Noort)
3. Reconstruction of slit spectra (with TRIPPEL@SST, Michiel van Noort)
4. GRIS + (Hans-Peter Doerr, Francisco Iglesias)


Max-Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany
Draft: 4:12pm November 23, 2017 (CVS version 1.2, checked in by noort on 2015-01-14, 09:29:41 UT)
ABSTRACT
Context. When recording spectra from the ground, atmospheric turbulence causes degradation of the spatial resolution.
Aims. We present a data reduction method that restores the spatial resolution of the spectra to their undegraded state.
Methods. By assuming that the point spread function (PSF) estimated from a strictly synchronized, broadband slit-jaw camera is the same as the PSF that spatially degraded the spectra, we can quantify what linear combination of undegraded spectra is present in each degraded data point.
Results. The set of equations obtained in this way is found to be generally well-conditioned and sufficiently diagonal to be solved using an iterative linear solver. The resulting solution has regained a spatial resolution comparable to that of the restored slit-jaw images.
Conclusions. We have developed a new image restoration method for the restoration of ground-based spectral data over a large field of view. The method builds on the PSF information recovered by the MOMFBD code and typically reaches a spatial resolution comparable to that of the broadband slit-jaw images used to recover the PSF.

Key words. Techniques: imaging spectroscopy, methods: data analysis, numerical

## Spectral reconstruction: The Method

Image data (SJC):

- based on Multi-Frame Blind Deconvolution (MFBD, Löfdahl, 2002; van Noort, 2005)
- assumption of spatially independent transfer function over 5"x5" (1-m class telescope)
- image recording must be significantly faster than timescales of wavefront changes (seeingfreezing, typically 10 ms for 1 m )
$\rightarrow$ obtain SJC PSF

Spectroscopic data:

- required: low readout noise, high duty-cycle, fast detectors
- slit transmits only 1 spatial dimension, low photon flux
- seeing / jitter + scanning adds 2nd spatial dimension (note: discrete scanning is disadvantageous!!)
- apply SJC PSF
- typically $10^{7}$ variables, solved in segments of $10^{4}$

Original idea: C. Keller et al., 1995

- Diffraction limit can be reached even for spectropolarimetric data
- Constant quality during whole scan (seeing fluctuations enter mainly into the noise level)
- Reconstruction
- increases noise level
- increases signal



## SCAN WITH TRIPPEL @ SST: STOKES I \& V



SCAN WITH TRIPPEL @ SST: RESTORED SPECTRA CMPS



- spectrograph camera: mounted October 2017
- slit-jaw camera: mounted November 2017
- temporary setup
- only single-beam (dual beam 2018)
- no large scans possible
- spectrograph (grating) jitter



## GRIS+ - FUTURE PLANS

## 1st half 2018

- solidify setup
- improve AO scanner
- improve SJ-unit
- new slit (avoid 4 mirrors) + dust prevention / cleaning plan
- cabling, location,...
- software development
- operation GUI
- data reduction software \& quick look tools
- communication with GREGOR
- scientific test campaigns


## 2nd half 2018

- scientific campaigns: with MPS participation only!
- continuation of software development
- completely new setup in 5 th floor?


## User instrument not before it's good! (2019?)




