Chromospheric Magnetic Field Measurements Challenges & Recent Developments

Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Göttingen, Germany

ISSI Workshop on Solar Magnetic Fields: From Measurements towards Understanding Jan 12–16 2015

Introduction

The Problem...

Summary: measuring chromospheric field is difficult!

- Processes are very fast (v_A ≈ 100 km/s, flares, reconnection, ...),
- and occur on small scales (e.g. $H\alpha$ -fibrilar structure).
- Densities are low.
- Fields are weak \rightarrow weak signals
- Complex physics
 - \rightarrow loss of simplifying assumptions

Loss of simplifying assumptions

- non-LTE
- 3D radiative transfer
- anisotropy of radiation field
- atomic polarization

- additional ambiguities (Hanle)
- many scale-heights
- highly corrugated layers

Requirements for reliable magnetic field information:

- sophisticated analysis techniques (inversions)
 - ightarrow Jaime de la Cruz Rodriguez

- sophisticated treatment of RTE
- Hanle effect
- high-quality measurments

ightarrow Han Uitenbroek

ightarrow Javier Trujillo Bueno

 \rightarrow this talk

Loss of simplifying assumptions

- non-LTE
- 3D radiative transfer
- anisotropy of radiation field
- atomic polarization

- additional ambiguities (Hanle)
- many scale-heights
- highly corrugated layers

Requirements for reliable magnetic field information:

- sophisticated analysis techniques (inversions)
 - \rightarrow Jaime de la Cruz Rodriguez

- sophisticated treatment of RTE
- Hanle effect
- high-quality measurments

→ Han Uitenbroek Javier Trujillo Bueno

Loss of simplifying assumptions

- non-LTE
- 3D radiative transfer
- anisotropy of radiation field
- atomic polarization

- additional ambiguities (Hanle)
- many scale-heights
- highly corrugated layers

Requirements for reliable magnetic field information:

- sophisticated analysis techniques (inversions)
 - \rightarrow Jaime de la Cruz Rodriguez

- sophisticated treatment of RTE
- Hanle effect
- high-quality measurments

- \rightarrow Han Uitenbroek
- \rightarrow Javier Trujillo Bueno

```
\rightarrow this talk
```


Loss of simplifying assumptions

- non-LTE
- 3D radiative transfer
- anisotropy of radiation field
- atomic polarization

- additional ambiguities (Hanle)
- many scale-heights
- highly corrugated layers

Requirements for reliable magnetic field information:

- sophisticated analysis techniques (inversions)
 - \rightarrow Jaime de la Cruz Rodriguez

- sophisticated treatment of RTE
- Hanle effect
- high-quality measurments

 \rightarrow Han Uitenbroek

 \rightarrow Javier Trujillo Bueno

ightarrow this talk

Loss of simplifying assumptions

- non-LTE
- 3D radiative transfer
- anisotropy of radiation field
- atomic polarization

- additional ambiguities (Hanle)
- many scale-heights
- highly corrugated layers

Requirements for reliable magnetic field information:

• sophisticated analysis techniques (inversions)

 \rightarrow Jaime de la Cruz Rodriguez

- sophisticated treatment of RTE
- Hanle effect
- high-quality measurments

 \rightarrow Han Uitenbroek

ightarrow Javier Trujillo Bueno

 \rightarrow this talk

Introduction Weaker Fields, Lower Densities

Introduction Spatial and Temporal Scales

Photon budget and solar evolution

Tradeoff: solar evolution vs. noise:

• Maximum integration time Δt_e allowed by solar evolution:

$$\Delta t_e = \frac{2\,\Delta x}{v}$$

 Minimum integration time to reach a given required rms noise level σ:

$$\Delta t_{\rm s} = \frac{1}{F\sigma^2 \Delta x^2}$$

 Δx : spatial sampling, v: evolution speed, F: Flux [phot / (s · arcsec²)]

Introduction Spatial and Temporal Scales

Photon budget and solar evolution

Tradeoff: solar evolution vs. noise:

• Maximum integration time Δt_e allowed by solar evolution:

$$\Delta t_e = \frac{2\,\Delta x}{v}$$

 Minimum integration time to reach a given required rms noise level σ:

$$\Delta t_{\rm s} = \frac{1}{F\sigma^2 \Delta x^2}$$

 Δx : spatial sampling, v: evolution speed, F: Flux [phot / (s · arcsec²)]

time scales vs. spatial resolution

- photosphere (blue): 7 km s^{-1}
- chromosphere (red): 35 km s^{-1} (v_A (B=100 G, z=1 Mm) = 100 km s⁻¹)

Solutions

- stay away from diffraction limit
 → collect photons
- very fast measurements
 → "feature averaging"

(Note: solar evolution intrduces crosstalk in polarimetry \rightarrow modulation much faster \rightarrow FSP)

time scales vs. spatial resolution

- photosphere (blue): 7 km s^{-1}
- chromosphere (red): 35 km s^{-1} (v_A (B=100 G, z=1 Mm) = 100 km s⁻¹)

Solutions

- stay away from diffraction limit
 → collect photons
- very fast measurements
 → "feature averaging"

(Note: solar evolution intrduces crosstalk in polarimetry \rightarrow modulation much faster \rightarrow FSP)

time scales vs. spatial resolution

- photosphere (blue): 7 km s^{-1}
- chromosphere (red): 35 km s^{-1} (v_A (B=100 G, z=1 Mm) = 100 km s⁻¹)

Solutions

- stay away from diffraction limit
 → collect photons
- very fast measurements
 → "feature averaging"

(Note: solar evolution intrduces crosstalk in polarimetry \rightarrow modulation much faster \rightarrow FSP)

time scales vs. spatial resolution

- photosphere (blue): 7 km s^{-1}
- chromosphere (red): 35 km s^{-1} (v_A (B=100 G, z=1 Mm) = 100 km s⁻¹)

Solutions

- stay away from diffraction limit
 → collect photons
- very fast measurements
 → "feature averaging"

(Note: solar evolution intrduces crosstalk in polarimetry \rightarrow modulation much faster \rightarrow FSP)

time scales vs. spatial resolution

- photosphere (blue): 7 km s^{-1}
- chromosphere (red): 35 km s^{-1} (v_A (B=100 G, z=1 Mm) = 100 km s⁻¹)

Solutions

- stay away from diffraction limit
 → collect photons
- very fast measurements
 → "feature averaging"

(Note: solar evolution intrduces crosstalk in polarimetry \rightarrow modulation much faster \rightarrow FSP)

Alternative	s
-------------	---

Alternatives to spectropolarimetry in chromospheric lines in near-UV, visible and near-infrared?

Alternative	es
-------------	----

Alternatives to spectropolarimetry in chromospheric lines in near-UV, visible and near-infrared?

Extrapolations

- based on phostospheric magnetograms
- including chromospheric proxies
- \rightarrow Thomas Wiegelmann (Tuesday afternoon)

AI	lte	rn	ati	ves
----	-----	----	-----	-----

Alternatives to spectropolarimetry in chromospheric lines in near-UV, visible and near-infrared?

Extrapolations

 based on phostospheric magnetograms

including chromospheric proxies

 \rightarrow Thomas Wiegelmann (Tuesday afternoon)

Lyman- α

- Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)
 - 1211–1221 Å
 - Stokes IQU
 - 550"×550"
 - 2."2 resolution
 - Iaunch: Aug 2015

AI	lte	rn	ati	ves
----	-----	----	-----	-----

Alternatives to spectropolarimetry in chromospheric lines in near-UV, visible and near-infrared?

Extrapolations

 based on phostospheric magnetograms

including chromospheric proxies

 \rightarrow Thomas Wiegelmann (Tuesday afternoon)

Lyman- α

Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)

- 1211–1221 Å
- Stokes IQU
- 550"×550"
- 2."2 resolution
- Iaunch: Aug 2015

mm and sub-mm regime

Radio measurements with the Atacama Large Millimeter/Submillimeter Array ALMA

ALMA - Atacama Large Millimeter/Submillimeter Array

ALMA basics

- \approx 50 operational antennas, moveable to \approx 185 different pads
- spatial res.: \leq 0."01 @850 μ m

Bastian (2002); Loukitcheva et al. (2008); Shibasaki et al. (2011); Loukitcheva et al. (2014)

Alternatives Radio Measurements

ALMA - Atacama Large Millimeter/Submillimeter Array

MPS

ALMA measurement

- bremsstrahlung from e⁻ interacting with ions / H (thermal free-free / H⁻ opacity)
- e^- in LTE \rightarrow Planck source function
- Rayleigh-Jeans approx. highly accurate
- \rightarrow "thermometer" to probe the solar atmosphere

Alternatives Radio Measurements

ALMA - Atacama Large Millimeter/Submillimeter Array

ALMA for chromospheric B?

- B influences T distrib. by suppressing power of prop. waves
- Zeeman polarimetry:
 - high-n recombination lines of H
 - molecules (CH, CN, CO, NaH)

Alternatives Radio Measurements

(2007)

Wedemeyer-Böhm et al.

ALMA - Atacama Large Millimeter/Submillimeter Array

ALMA for chromospheric B?

- B influences T distrib. by suppressing power of prop. waves
- Zeeman polarimetry:
 - high-n recombination lines of H
 - molecules (CH, CN, CO, NaH)

Spectropolarimetry Formation height of chromospheric lines

Chromospheric Lines

Mats Carlsson, Oslo

He I 10830 Å

He I – What can be observed?

He I 10830 Å

He I – Formation Height

He I 10830 Å

He I – Formation Height

He I 10830 Å Formation of He I 10830 Å

The He I atom (Centeno et al., 2008)

He I 10830 Å Formation of He I 10830 Å

Coronal Illumination - Ionization - Recombination (Centeno et al., 2008)

Recent He I 10830 Å Hi-Res Spectropolarimeters

SPINOR @ DST (Sac Peak) Socas-Navarro et al. (2006)

- full Stokes simultaneous obs. of several VIS + IR regions
- virtually any combination of spectral lines possible

FIRS @ DST (Sac Peak) Jaeggli et al. (2010); Schad (2013)

- 4-slit, dual-beam spectropol.
- Fei 6302 & Hei 10830
- simultaneous with IBIS

NIRIS @ 1.6m NST (Big Bear) Cao et al. (2012)

- attached to 1.6 m NST at Big Bear
- dual Fabry-Pérot Interferometers
- imaging polarimetry @ 0."25

GRIS @ 1.5m GREGOR (Tenerife) Collados et al. (2012)

- attached to 1.5 m GREGOR telescope (Tenerife)
- standard Czerny-Turner config.
- spectro-polarimetry @ 0."25

The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10830 Å triplet (Orozco Suárez et al., 2014)

HAZEL inversions (Asensio Ramos et al., 2008)

Ambiguities (unresolved, plausibility argument: use quasi-horizontal solution):

- Zeeman effect: 180° ambiguity
- Hanle effect: 90° and 180° ambiguity

70 s/slit pos

The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10830 Å triplet (Orozco Suárez et al., 2014)

Magnetic field strength

- quiescent prominence, on average 7 G
- up to 30 G at prominence feet (coinciding with high opacity)

quasi-horizontal solution

The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10830 Å triplet (Orozco Suárez et al., 2014)

guasi-vertical solution

130 8 30 120 [arcsec] 20 100월 90 Field inclin 10 80 70 0 20 60 20 60 40 [arcsec] [arcsec]

Magnetic field inclination

• inclined ${\approx}77^{\circ}$ to solar vertical;

in between previous results: 60° (e.g., Bommier et al., 1994) and horizontal (Casini et al., 2003)

The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10830 Å triplet (Orozco Suárez et al., 2014)

Magnetic field orientation wrt. prominence axis

• inclined $\approx 58^{\circ}$ / $\approx 156^{\circ}$ to prominence long axis (unresolved ambiguity), both solutions: inverse polarity prominence

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

IBIS & FIRS Observations, NOAA AR 11408, Jan 29 2012, $\mu = 0.8$

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

Photospheric field from Si I ME-inversions (HELIX⁺ Lagg et al., 2009)

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

Fibril tracing (CRISPEX, Vissers & Rouppe van der Voort, 2012), careful disambiguation (Hanle & Zeeman), assumption on fibril height (1.75 Mm)

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

B-strength: rise in strength towards inner endpoints

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

B-inclination: change at inner endpoint towards sunspot

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

B-inclination: remain horizontal until outer endpoint few fibrils: turn over again, connect in regions of opposite polarity photosphere

He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013)

B-azimuth: aligned $\pm 10^\circ$ with fibrils fibrils carry inverse Evershed flow

Comparison: High-res until 2013 (PhD thesis: Joshi, 2014)

- fine structure mainly He I intensity almost absent in Stokes QUV images / B-vector o continuous decrease of fine structure in B with height: • Cal (deep photosphere): 0."40 • Si I (mid/upper photosphere): 0.70 • He I (chromosphere): 1."00
- → Is the sensitivity of the measurement too low to detect the fine structure?

- fine structure mainly He I intensity almost absent in Stokes QUV images / B-vector o continuous decrease of fine structure in B with height: • Cal (deep photosphere): 0."40 • Si I (mid/upper photosphere): 0.770 • He I (chromosphere): 1."00 Does the magnetic field loose the fine structure? \rightarrow
- → Is the sensitivity of the measurement too low to detect the fine structure?

- fine structure mainly He I intensity almost absent in Stokes QUV images / B-vector o continuous decrease of fine structure in B with height: • Cal (deep photosphere): 0."40 • Si I (mid/upper photosphere): 0.770 • He I (chromosphere): 1."00 Does the magnetic field loose the fine structure? \rightarrow Does the Stokes I fine structure only outline velocity and density/temp. fluctuations?
- → Is the sensitivity of the measurement too low to detect the fine structure?

- fine structure mainly He I intensity almost absent in Stokes QUV images / B-vector o continuous decrease of fine structure in B with height: • Cal (deep photosphere): 0."40 • Si I (mid/upper photosphere): 0.770 • He I (chromosphere): 1."00 Does the magnetic field loose the fine structure? Does the Stokes I fine structure only outline velocity and density/temp. fluctuations?
- $\rightarrow\,$ Is the sensitivity of the measurement too low to detect the fine structure?

GREGOR/GRIS: Higher quality He I observation soon...

21/28

Ground-based: DKIST

DL-NIRSP @ DKIST

The Diffraction Limited Near-Infrared Spectropolarimeter; Haosheng Lin

Spectral Range: Spectral resolution: Spatial resolution: Target polarimetric accuracy: $\begin{array}{l} 5000\ \text{\AA} - 18000\ \text{AA} \\ \text{up to } 250000 \\ 0.07^{\prime\prime}\ \text{@}10830\text{\AA} \\ > 5\cdot 10^{-4}\ \text{Ic} \end{array}$

Future He I 10830 Å observatory

Solar-C / EPIC

1.4 m solar telescope in GSO

- spectropolarimetry in He I 10830, Ca II IR, Mg II h&k, Fe I 525
- IQUV @ 0.07"-0.14"
- target: 10⁻⁴
- EPIC (ESA): Jan 15 2015
- Solar-C (JAXA): Feb 2015
- launch 2022–2025

Scientific future of He I 10830

To-Do list for He I 10830 Science

- obtain measurements at highest possible spatial resolution, S/N in the low 10⁻⁴ range (ideal: 2D FOV)
- reliable disambiguation methods (Van Vleck ambiguity, 180° Hanle & Zeeman ambiguity):
 → combination with other chromospheric line?
- reliable anisotropy determination (take into account coronal illumination, symmetry breaking due to, e.g., sunspots):
 - \rightarrow determine population imbalances
- reliable height determination: \rightarrow high S/N, stereoscopy

Very quiet sun region (2014-Sep-08)

Very quiet sun region (2014-Sep-08)

Very quiet sun region (2014-Sep-08)

remove all pixels with tot. pol $\leq 3\sigma$ Survival of IG lanes or granules?

Very quiet sun region (2014-Sep-08)

Mainly granules! ... and some IG lanes

Distribution: Inclination

Distribution: B & Inclination

Bibliography

- Asensio Ramos, A., Trujillo Bueno, J., & Landi Degl'Innocenti, E. 2008, ApJ, 683, 542
- Avrett, E. H., Fontenla, J. M., & Loeser, R. 1994, in IAU Symp. 154: Infrared Solar Physics, ed. Rabin, D. M. (Kluwer Academic Publishers, Dordrecht, 1994), 35–47
- Bastian, T. S. 2002, Astronomische Nachrichten, 323, 271
- Bommier, V., et al. 1994, Sol. Phys., 154, 231
- Cao, W., et al. 2012, in Astronomical Society of the Pacific Conference Series, Vol. 463, Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona., ed. Rimmele, T. R., et al., 291
- Casini, R., et al. 2003, ApJL, 598, L67
- Centeno, R., et al. 2008, ApJ, 677, 742
- Collados, M., et al. 2012, Astronomische Nachrichten, 333, 872
- de la Cruz Rodriguez, J. 2010, PhD thesis, Stockholm University
- Jaeggli, S. A., et al. 2010, Memorie della Societa Astronomica Italiana, 81, 763
- Joshi, J. 2014, PhD thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig

Lagg, A., et al. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 415, The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding, ed. Lites, B., et al., 327

Loukitcheva, M., Solanki, S. K., & White, S. M. 2014, A&A, 561, A133

Loukitcheva, M. A., Solanki, S. K., & White, S. 2008, 313, 197

Orozco Suárez, D., Asensio Ramos, A., & Trujillo Bueno, J. 2014, A&A, 566, A46

Schad, T. A. 2013, PhD thesis, The University of Arizona

Schad, T. A., Penn, M. J., & Lin, H. 2013, ApJ, 768, 111

Shibasaki, K., Alissandrakis, C. E., & Pohjolainen, S. 2011, Sol. Phys., 273, 309

Socas-Navarro, H., et al. 2006, Sol. Phys., 235, 55

- Vissers, G. & Rouppe van der Voort, L. 2012, ApJ, 750, 22
- Wedemeyer-Böhm, S., et al. 2007, A&A, 471, 977