Compression Analysis Preliminary Status Report

Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Göttingen, Germany

ESAC, Jul 7-10 2014

Table of Contents

- "ME-Compression"
- Compression Strategies
- Stokes Vector Compression
 - Example IMaX L2 Stokes V
 - Summary Stokes Vector Compression
 - Future Work
- SOPHISM

5 Helioseismology

- Helioseismic Power Spectra
- Travel-time Maps of Supergranulation
- LCT of Supergranulation
- Summary: Helioseismology

"ME-Compression"

Milne-Eddington "Compression"

ME-inversions: Pros

- Raw-data combined to 24 Stokes images (24 bit)
- on-board inversion: reduced to 1 5 images, 8 – 10 bit
- \rightarrow extremely efficient LOSSY compression: factor 10 - 50
- almost no loss of science (ideal case only)
- $\rightarrow\,$ avoids errors in inversion caused by compression artefacts

ME-inversions: Cons

- very risky:
- → requires perfect on-board data reduction (dark images, flat fielding, fringe removal, polarimetric calibration,
 - cross-talk removal)
- very complex: Sunrise II IMaX experience

Most sophisticated realization ever for on-board data volume reduction!

Milne-Eddington "Compression"

ME-inversions: Pros

- Raw-data combined to 24 Stokes images (24 bit)
- on-board inversion: reduced to 1 5 images, 8 – 10 bit
- \rightarrow extremely efficient LOSSY compression: factor 10 – 50
- almost no loss of science (ideal case only)
- $\rightarrow\,$ avoids errors in inversion caused by compression artefacts

ME-inversions: Cons

- very risky:
- → requires perfect on-board data reduction (dark images, flat fielding, fringe removal, polarimetric calibration, cross-talk removal)
- very complex: Sunrise II IMaX experience

Most sophisticated realization ever for on-board data volume reduction!

Milne-Eddington "Compression"

ME-inversions: Pros

- Raw-data combined to 24 Stokes images (24 bit)
- on-board inversion: reduced to 1 5 images, 8 – 10 bit
- \rightarrow extremely efficient LOSSY compression: factor 10 – 50
- almost no loss of science (ideal case only)
- $\rightarrow\,$ avoids errors in inversion caused by compression artefacts

ME-inversions: Cons

- very risky:
- → requires perfect on-board data reduction (dark images, flat fielding, fringe removal, polarimetric calibration, cross-talk removal)
- very complex: Sunrise II IMaX experience

Most sophisticated realization ever for on-board data volume reduction!

Lossy raw-data / Stokes-Vector Compression

(1) Raw data Compr.

- (2) Stokes Vector Comp.
 - allows to perform more sophisticated data analysis on ground
 - (e.g. coupled inversions, height dependent atmospheres)
 - allows better control on data reduction (fringe removal, PSF deconvolution, polarimetric calibration)
 - Lossy compression noise must be below data noise (goal: 10⁻³)
 - Compression ratios much lower than ME-compression

(3) Lossy compression of ME results

(3) Compression of ME parameter maps

- acceptable compression noise level higher than for Stokes data (0.5%, TBD)
- \rightarrow Higher compression factors possible
 - Influence on helioseismology data: to be investigated
 - Influence on field extrapolations: to be investigated
 - Achievable compression factors: TBD (science driven)
 —> SOPHISM simulations required
 - Azimuth Ambiguity: lossy compression may lead to wrong results (to be investigated)

Stokes Vector Compression

Procedure

- Use IMaX L2, Stokes V image (+40mÅ from line core)
- reduce BPP
- compress image with given ratio
- decompress image
- ightarrow determine file size ratio
- \rightarrow compute difference: map, RMS

Compression Code

- provided by IDA Braunschweig
- several lossy algorithms available
- same code will run on-board (FPGA)
- implemented to SOPHISM (June 2014)

Compressed: 12 BPP, ratio: 8.0 size reduction ×10.67, RMS=3.02E-03

IMaX Stokes V

Original -Compressed 12 BPP, ratio: 8.0 size reduction ×10.67, RMS=3.02E-03

Cut: Original, Compressed 12 BPP, ratio: 8.0 size reduction ×10.67, RMS=3.02E-03

Summary - Stokes Vector Compression

Lossless Compression

Compression factors: $\times 1.4 - \times 1.9$

BPP Compression

noise level for bit truncation always higher than lossy compression at same file size ratio

Lossy Compression

achievable compression ratios for compression noise levels of $\leq 10^{-3}$ (Stokes *QUV*, all raw-data images)

 $\rightarrow \approx \times 4 - \times 5$

for compression noise levels of 0.5% (maybe sufficient for Stokes *I*)

 $\rightarrow \approx \times 10$

Preliminary Results! SOPHISM analysis still to be done!

Summary - Stokes Vector Compression

Lossless Compression

Compression factors: $\times 1.4 - \times 1.9$

BPP Compression

noise level for bit truncation always higher than lossy compression at same file size ratio

Lossy Compression

achievable compression ratios for compression noise levels of $\leq 10^{-3}$ (Stokes *QUV*, all raw-data images)

 $\rightarrow \approx \times 4 - \times 5$

for compression noise levels of 0.5% (maybe sufficient for Stokes *I*)

 $\rightarrow \approx \times 10$

Preliminary Results! SOPHISM analysis still to be done!

Further Compression Tests

Critical Issues:

- helioseismology / extrapolation aspect of compression
- bad pixel treatment
- vector magnetic field maps: Compression without disambiguation possible?

New Test Setup:

- use SOPHISM
- test full pipeline
- $\rightarrow\,$ only then results have the necessary level of realism

Test Matrix

- raw data, Stokes vectors, ME-maps
- FDT, HRT
- Iossless, ×2,4,8,12
- bit depth variation: 16,14,12,10
- compression algorithms
- data with 2 different noise levels

Total: \approx 800 tests

Time Table:

- computations: end of September
- results: end of October

SolO PHI Instrument Simulator (SOPHISM)

000	X SOPHISM Main
Modules Parameters	Temperature (C): 20.
- = Jittering - =] ISS	Modulation Type: ideal Temodulation Type: basic
- Transmittances E General Optics	Dewodulated Iwage Buffers: 1
- m Prefilter - m Etalon	Basic Modulation Stokes Paran: V Cross-corr, clip: 0.0
- Pupil Apodisation Polenization	Hueller satrix: Identity -
Recumulation	LCVR1 orientation (deg): 0. LCVR2 orientation (deg): 46.
]]	Retardances LCVR1 (deg): 315.,315.,225.,225.
	Retardances LCVR2 (deg): 05.,55.,125.,235.
	LCVR Errors: II Amp Ratio II Phase II Angle
	Time Beath 1 (ms): 0 Time Beath 2 (ms): 5
	Time Boath 3 (ms): E Time Boath 4 (ms): 30
	Cycle Repetitions: 1
☐ Compress files	
Start Exit	

(Julian Blanco, Univ. Valencia)

- Software IDL-coded SO/PHI simulator
- Main effects simulated in quasi-independent modules:
 - Jittering+ISS
 - Polarization modulation
 - Spectral profile
 - Optical aberrations
 - Pupil apodization
 - FPA, Accumulation
 - Modulation scheme
 - Solar evolution
 - Compression

....

Modules generate result files

Helioseismology Helioseismic Power Spectra

Helioseismic Power Spectra

Source: v_{LOS} maps

- Compression barely affects waves
- Quantization: almost constant background noise
- JPEG and Braunschweig code:
 - Artifacts in power spectrum
 - Granulation reduced (important for LCT)

MPS

Travel-time Maps of Supergranulation

Source: v_{LOS} maps

- Divergence of supergranulation flows
- F-mode (near-surface) Negative: outflows
 Positive: inflows
- Maps from compressed data almost indistinguishable from uncompressed data No apparent correlation between noise and travel-times

Helioseismology LCT of Supergranulation

LCT of Supergranulation

Source: I_C maps

- v_x on supergranulation scale
- Strong influence of JPEG compression and Braunschweig code

Summary Helioseismology (PRELIMINARY!)

- Only one simple measurement tested so far (f-mode helioseismology of supergranulation)
- Results probably not valid for helioseismology in general
- Tolerable compression efficiency depends on measurement method and science goal
- Time-distance: JPEG best method that we tested so far
- LCT: Quantization best method that we tested so far

Next steps:

- Test on near-surface latitudinal differential rotation (ongoing work)
- Test on HMI raw data (center-to-limb effects, e.g., foreshortening)

