Solar Orbiter and stereoscopic magnetometry

Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany

1st SOLARNET meeting, Oslo, Aug 6 2013

Table of Contents

Solar Orbiter

- The mission
- Scientific goals SO/PHI
- Magnetometry SO/PHI instrument
- Technical challenges
- Magnetometry with PHI
- Ground-based magnetometry in 2020

Stereoscopy with SO/PHI & GB

- Full 3D-velocity vectors
- Azimuth ambiguity
- Scattering polarization
- Height information
- Magnetic coupling

Summary & Conclusion

Orbit

January 2017 mission profile

- Launch: Jan 2017
- First science perihel: Jul 2020 (0.28 AU)
- max. latitude: Jul 2025 (34°)

Remote sensing instruments

EUI Extreme Ultraviolet Imager images of solar atmospheric layers above the photosphere

SoloHI Heliospheric Imager quasi-steady flow and transient disturbances in the solar wind

SPICE Spectr. Imag. of the Cor. Env. EUV spectroscopy to characterize ondisk coronal plasma

METIS Coronagraph VIS, UV, E-UV emission (1.4 to 4.1 R_S)

STIX x-ray Spectrometer thermal and non-thermal X-ray emission to characterize acc. electrons and high temp. thermal plasmas (flares)

PHI Polarimetric and Helioseismic Im. . . . this talk

In-situ instruments

EPD Energetic Particle Detector composition, timing and distribution functions of suprathermal and energetic particles

SWA Solar Wind Plasma Analyzer ion and electron bulk properties (including, density, velocity, and temperature) of the solar wind

RPW Radio and Plasma Waves magnetic and electric fields to determine the characteristics of electromagnetic and electrostatic waves in the solar wind

MAG Magnetometer linkage of solar magnetic field into space

Polarimetric and Helioseismic Imager (SO/PHI)

SO/PHI science

Goal

SO/PHI is central to reach 3 of the 4 top level science goals. Main question: How does the solar dynamo work and drive connections between the Sun and the heliosphere?

Scope

SO/PHI probes the solar interior and provides the magnetic field at the solar surface that drives transient and energetic phenomena in the solar atmosphere and the heliosphere.

Tools

Polarimetry and local helioseismology in Fe I 6173 Å

Polarimetric and Helioseismic Imager (SO/PHI)

SO/PHI science

Goal

SO/PHI is central to reach 3 of the 4 top level science goals. Main question: How does the solar dynamo work and drive connections between the Sun and the heliosphere?

Scope

SO/PHI probes the solar interior and provides the magnetic field at the solar surface that drives transient and energetic phenomena in the solar atmosphere and the heliosphere.

Tools

Polarimetry and local helioseismology in Fe I 6173 Å

Polarimetric and Helioseismic Imager (SO/PHI)

SO/PHI science

Goal

SO/PHI is central to reach 3 of the 4 top level science goals. Main question: How does the solar dynamo work and drive connections between the Sun and the heliosphere?

Scope

SO/PHI probes the solar interior and provides the magnetic field at the solar surface that drives transient and energetic phenomena in the solar atmosphere and the heliosphere.

Tools

Polarimetry and local helioseismology in Fe I 6173 Å

- Provide B to EUV imager and spectrometer, all observing at high spatial resolution (up to 180 km): linkage science
- First decent view of magnetic and velocity field at poles
- Follow surface and subsurface evolution of solar features (e.g. active regions) without changing viewing angle
- Stereoscopic helioseismology to better probe the interior
- Stereoscopy of the photosphere

- Provide B to EUV imager and spectrometer, all observing at high spatial resolution (up to 180 km): linkage science
- First decent view of magnetic and velocity field at poles
- Follow surface and subsurface evolution of solar features (e.g. active regions) without changing viewing angle
- Stereoscopic helioseismology to better probe the interior
- Stereoscopy of the photosphere

- Provide B to EUV imager and spectrometer, all observing at high spatial resolution (up to 180 km): linkage science
- First decent view of magnetic and velocity field at poles
- Follow surface and subsurface evolution of solar features (e.g. active regions) without changing viewing angle
- Stereoscopic helioseismology to better probe the interior
- Stereoscopy of the photosphere

SO/PHI will provide unique science

- Provide B to EUV imager and spectrometer, all observing at high spatial resolution (up to 180 km): linkage science
- First decent view of magnetic and velocity field at poles
- Follow surface and subsurface evolution of solar features (e.g. active regions) without changing viewing angle
- Stereoscopic helioseismology to better probe the interior

Stereoscopy of the photosphere

- Provide B to EUV imager and spectrometer, all observing at high spatial resolution (up to 180 km): linkage science
- First decent view of magnetic and velocity field at poles
- Follow surface and subsurface evolution of solar features (e.g. active regions) without changing viewing angle
- Stereoscopic helioseismology to better probe the interior
- Stereoscopy of the photosphere

Solar Orbiter Scientific goals - SO/PHI

SO/PHI - high latitude science

SO/PHI - basics

SO/PHI - basics

SO/PHI specs

- mass: 34 kg
- power: \approx 31 W
- data rate: 20 kbps

SO/PHI - basics

SO/PHI specs

- mass: 34 kg
- power: \approx 31 W
- data rate: 20 kbps

SO/PHI measurement

- Doppler and Zeeman effects in Fe I 6173 Å
- 2D intensity maps at
 - 6 λ points within the line
 - IQUV at each λ point
- similar to Sunrise IMaX

Polarimetric and Helioseismic Imager

SO/PHI instrument

- HRT: 14 cm reflector, 16.8 arcmin FOV
- FDT: 1.75 cm refractor, 2° FOV
- feed selection mech.
- Fabry-Pérot NB filter with LiNbO₃ etalon
- Polarisation modulation with LC variable retarders
- Single $2k \times 2k$ APS

Polarimetric and Helioseismic Imager

SO/PHI instrument

- HRT: 14 cm reflector, 16.8 arcmin FOV
- FDT: 1.75 cm refractor, 2° FOV
- feed selection mech.
- Fabry-Pérot NB filter with LiNbO₃ etalon
- Polarisation modulation with LC variable retarders
- Single $2k \times 2k$ APS

SO/PHI - technical challenges

SO/PHI challenges

- orbit (change of heat load):
 45 W (0.7 AU) 290 W (0.28 AU) on entrance window
- heat (entrance window): radial temperature gradient

 —> optical performance
- image stabilization: single beam configuration (0.03" rms)
- data rate:
 - $2k \times 2k$, 12 bit, 6 WL-points, 4 Stokes, 1 min⁻¹, >200 GByte/day
 - available (20 kbps average): 216 Mbyte/day
 - $\rightarrow\,$ efficient data compression required: on-board data reduction & Milne-Eddington inversions (×30–35)
 - ightarrow data selection (closest approach windows, ME parameter map selection)
 - $ightarrow\,$ lossy compression

• power, radiation, ...

SO/PHI - Magnetometry

On-board inversions

- near real-time inversions on VIRTEX-4 FPGA
- 9 free parameters per pixel:
 B, *γ*, *φ*, *ν*_{LOS}, *ν*_{dopp},
 *a*_{damp}, *η*₀, *S*₀, *S*₁

- transmit only subset to ground (typical: *I_C*, *B*, γ, φ, ν_{LOS})
- 4-5 bit per parameter
- compression ratio: ×30–35

Ground-based magnetometry in 2020

Morning session

Thomas Rimmele, Dirk Soltau, Siraj Hasan

Future Magnetometry

 \longrightarrow vector magnetic fields <0."05

Advanced instrumentation

Instrumentation

- multi-slit instruments
- 2D spectropolarimeters (fiber optics, microlense arrays)

telescope focal surface production productin production production producti

MPS

- advances in data reduction (e.g. MOMFBD)
- spatially coupled inversions (van Noort 2012): (good knowledge of PSF required!)
- non-LTE inversions (de la Cruz Rodríguez et al. 2012)
- MHD-based inversions

MPS

- advances in data reduction (e.g. MOMFBD)
- spatially coupled inversions (van Noort 2012): (good knowledge of PSF required!)
- non-LTE inversions (de la Cruz Rodríguez et al. 2012)
- MHD-based inversions

MPS

- advances in data reduction (e.g. MOMFBD)
- spatially coupled inversions (van Noort 2012): (good knowledge of PSF required!)
- non-LTE inversions (de la Cruz Rodríguez et al. 2012)
- MHD-based inversions

701

- advances in data reduction (e.g. MOMFBD)
- spatially coupled inversions (van Noort 2012): (good knowledge of PSF required!)
- non-LTE inversions (de la Cruz Rodríguez et al. 2012)
- MHD-based inversions

Stereoscopy with SO/PHI

- Stereoscopic helioseismology Jesper Schou (16:00)
- 3D-velocity vectors
- Azimuth ambiguity

- Height information
- Scattering polarization
- Magnetic coupling

Full 3D-velocity vectors

LOS-velocities

Obtaining 3D-velocities

Combining Doppler maps (LOS-comp.) with feature tracking (horiz. comp.) Danger: gas motions \neq motion of features \rightarrow 3D vector determination

with SO/PHI + GB: stereoscopic feature tracking & stereoscopic Doppler measurements

usually impossible

Horizontal velocities

Jafarzadeh et al. (2013)

Full 3D-velocity vectors

LOS-velocities

Convective motions

- determination of horizontal component possible
- granules, LBs, umbral dots, . . .

Penumbral fine structure

- direct measurement of the inclination of the Evershed flow
- understand mass balance & convective nature of filaments

Horizontal velocities

Jafarzadeh et al. (2013)

Zeeman-polarimetry intrinsic problem: $2\chi \propto \tan Q/U$

Tools (Metcalf et al. 2006)		
Method Quantity minimized	Minimization scheme	
Acute angle $ \theta_0 - \theta_e $	Local	
Large scale potential $ \Theta_{\rm b} - \Theta_{\rm e} $	Scale variation	
USM $ \theta_0 - \theta_e - \theta_{mp} $	Local	
Magnetic pressure gradient $\partial B^2/\partial z$	Local	
Minimum structure $\omega_s \partial B/\partial z + \omega_p J_{2z} $	Local+smoothing	
NPFC $ J_z $	Iterative	
Pseudo-current $d^2 a J_z^2$	Conjugate gradient	
UH iterative $d^2 a J_z^2$	Iterative	
Minimum energy $d^2 a \left(J + \nabla \cdot B \right)^2$	Simulated annealing	
AZAM Angle between neighboring pixels	Interactive	

Tools (Metcalf et al. 2006)		
Method	Ouantity minimized	Minimization scheme
Acute angle	$ \theta_{0} - \theta_{0} $	Local
Large scale potential	$ \Theta_{0} - \Theta_{0} $	Scale variation
USM	$ \theta_{\rm o} - \theta_{\rm e} - \theta_{\rm mp} $	Local
Magnetic pressure gradient	$\partial B^2 / \partial z$	Local
Minimum structure	$\omega_{s}\partial B/\partial z + \omega_{p} J_{2_{z}} $	Local+smoothing
NPFC	$ J_z $	Iterative
Pseudo-current	$d^2 a J_z^2$	Conjugate gradient
UH iterative	$d^2a J_z^2$	Iterative
Minimum energy	$d^2 a \left(J + \nabla \cdot B \right)^2$	Simulated annealing
AZAM	Angle between neighboring pixels	Interactive

Leka et al. (2009); Crouch (2013)

"No method ever produced a perfect solution to any of the cases tested when noise was present; no method ever perfectly resolved the ambiguity in areas which were not spatially resolved."

Unique solution: observation under different viewing angle

Scattering polarization

Hanle effect

e.g. Sr I 4607 Å

- strongest scattering polarization signals close to limb, where Zeeman signals are weakest
- SO/PHI offers independent "disk-center" measurements
- help to disentangle
 - collisional vs. Hanle depolarization
 - turbulent / non turbulent fields

1.0

MPS

Height information - Wilson depression

Stereoscopy with SO/PHI & GB Height information

Height information - Light bridge "mountains"

Lites et al. (2004): "triangulation" 300±50 km

"Regular" stereoscopy

STEREO

- proven concept for CMEs, loops, prominences
- e.g. Wiegelmann et al. (2009); Mierla et al. (2013); de Patoul et al. (2013); Feng et al. (2013)

Requirements for applications to photosphere

- extremely accurate co-alignment with ground-based imaging instruments
- co-temporal measurements

Vertical temperature cut through MURaM-sunspot (Rempel et al. 2009)

GB measurement

- highest spatial resolution (\approx 50 km)
- many spectral lines
- good $\log \tau$ coverage

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- Fe I 6173 Å line
- ME averaged parameters

Vertical temperature cut through MURaM-sunspot (Rempel et al. 2009)

GB measurement

- highest spatial resolution (\approx 50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- Fe I 6173 Å line
- ME averaged parameters

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- Fe I 6173 Å line
- ME averaged parameters

-] solve RTE for GB data in 2D (log au)
- 2) convert log $au\, o\,z$ using, e.g., force balance
- tilt this cube to SO/PHI viewing angle
- simulate ME measurement from this cube
- iteratively adjust height for every pixel until best match with SO/PHI ME measurements

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- ≈180 km resolution
- Fe I 6173 Å line
- ME averaged parameters

- solve RTE for GB data in 2D (log τ)
- @ convert log $au \, o \, z$ using, e.g., force balance
- tilt this cube to SO/PHI viewing angle
- simulate ME measurement from this cube
- iteratively adjust height for every pixel until best match with SO/PHI ME measurements

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- Fe I 6173 Å line
- ME averaged parameters

- solve RTE for GB data in 2D (log τ)
- 2 convert log $\tau \rightarrow z$ using, e.g., force balance
- Itilt this cube to SO/PHI viewing angle
- simulate ME measurement from this cube
- iteratively adjust height for every pixel until best match with SO/PHI ME measurements

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- ≈180 km resolution
- Fe I 6173 Å line
- ME averaged parameters

- solve RTE for GB data in 2D (log τ)
- 2 convert log $\tau \rightarrow z$ using, e.g., force balance
- tilt this cube to SO/PHI viewing angle
 - simulate ME measurement from this cube
- iteratively adjust height for every pixel until best match with SO/PHI ME measurements

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- ≈180 km resolution
- Fe I 6173 Å line
- ME averaged parameters

- solve RTE for GB data in 2D (log τ)
- 2 convert log $\tau \rightarrow z$ using, e.g., force balance
- tilt this cube to SO/PHI viewing angle
- simulate ME measurement from this cube
- iteratively adjust height for every pixel until best match with SO/PHI ME measurements

GB measurement

- highest spatial resolution (≈50 km)
- many spectral lines
- good $\log \tau$ coverage

SO/PHI measurement

- Fe I 6173 Å line
- ME averaged parameters

- solve RTE for GB data in 2D (log τ)
- 2 convert log $\tau \rightarrow z$ using, e.g., force balance
- Itilt this cube to SO/PHI viewing angle
- simulate ME measurement from this cube
- iteratively adjust height for every pixel until best match with SO/PHI ME measurements

Height information - application

Mass balance in penumbral filaments

discrepancies in literature:

- 2–3× excess in downward flux (e.g. Westendorp Plaza et al. 1997; Tiwari et al. 2013)
- 5× excess in upflow (Puschmann et al. 2010)

using height info & 3D-velocities:

- avoid corrugation of iso- τ layers
- full characterization of Evershed flow
- true mass balance can be determined

Magnetic coupling

Valuable input for extrapolations

- + stereoscopic observations of coronal loops (SDO & SolO)
- + stereoscopic observations of photospheric field (GB & SO/PHI)

- + 180° ambiguity free
- \rightarrow perfect prerequisites for extrapolations

De Rosa et al. (2009)

Summary & Conclusion

Summary

- Solar Orbiter's strength is the simultaneous, multi-instrument measurements of solar phenomena
- Magnetometry with SO/PHI: limitations due to size, power, data rate
- Hi-res ground-based observations can ideally compensate these limitations
- enhances scienctific output for both, Solar Orbiter and ground-based observatories

Summary & Conclusion

Summary

- Solar Orbiter's strength is the simultaneous, multi-instrument measurements of solar phenomena
- Magnetometry with SO/PHI: limitations due to size, power, data rate
- Hi-res ground-based observations can ideally compensate these limitations
- enhances scienctific output for both, Solar Orbiter and ground-based observatories

Requirement:

Good coordination between GB facilities, earth orbiting observatories and SolO science operation group, especially during CA and times of special orbital configuration.

Bilbiography

- Crouch, A. D. 2013, Sol. Phys., 282, 107
- de la Cruz Rodríguez, J., Socas-Navarro, H., Carlsson, M., & Leenaarts, J. 2012, A&A, 543, A34
- de Patoul, J., Inhester, B., Feng, L., & Wiegelmann, T. 2013, Sol. Phys., 283, 207
- De Rosa, M. L., Schrijver, C. J., Barnes, G., et al. 2009, ApJ, 696, 1780

Feng, L., Wiegelmann, T., Su, Y., et al. 2013, ApJ, 765, 37

- Jafarzadeh, S., Solanki, S. K., Feller, A., et al. 2013, A&A, 549, A116
- Leka, K. D., Barnes, G., Crouch, A. D., et al. 2009, Sol. Phys., 260, 83
- Lites, B. W., Scharmer, G. B., Berger, T. E., & Title, A. M. 2004, Sol. Phys., 221, 65
- Mathew, S. K., Solanki, S. K., Lagg, A., et al. 2004, A&A, 422, 693
- Metcalf, T. R., Leka, K. D., Barnes, G., et al. 2006, Sol. Phys., 237, 267
- Mierla, M., Seaton, D. B., Berghmans, D., et al. 2013, Sol. Phys., 286, 241

- Puschmann, K. G., Ruiz Cobo, B., & Martínez Pillet, V. 2010, ApJ, 720, 1417
- Rempel, M., Schüssler, M., Cameron, R. H., & Knölker, M. 2009, Science, 325, 171
- Shchukina, N. G. & Trujillo Bueno, J. 2013, in IAU Symposium, Vol. 294, IAU Symposium, ed. A. G. Kosovichev, E. de Gouveia Dal Pino, & Y. Yan, 107–118
- Tiwari, S. K., van Noort, M., Lagg, A., & Solanki, S. K. 2013, ArXiv e-prints
- Trujillo Bueno, J., Shchukina, N., & Asensio Ramos, A. 2004, Nature, 430, 326

van Noort, M. 2012, A&A, 548, A5

- Westendorp Plaza, C., del Toro Iniesta, J. C., Ruiz Cobo, B., et al. 1997, Nature, 389, 47
- Wiegelmann, T., Inhester, B., & Feng, L. 2009, Annales Geophysicae, 27, 2925