Tenerife Infrared Polarimeter TIP (+TIP2)

Andreas Lagg

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Deutschland

Übersicht:

- Spezifikationen (TIP, TIP2)
- Funktionsprinzip
- technische Handhabung
- Benutzung der Software
- Datenreduktion

Spezifikationen

TIP

■ Detektorgröße 256x256■ Pixelgröße ~40 µm

Quanteneffizienz

■ Bildfrequenz 8 /s

Modulatoren 2 FLC

Räumliche Auflösung 0.8"

■ Spalthöhe 40"

■ spektrale Auflösung ~60 mÅ

■ Spektralfenster ~7 Å

■ Wellenlänge 1-1.8 µm

Signal/Rausch-Verh. 500

bei 5s Integration

■ Zeit für 40" Scan ~10 min.

TIP 2

Detektorgröße 1024x1024

■ Pixelgröße 18 μm

Quanteneffizienz 55%

■ Bildfrequenz 4 /s

Modulatoren 2 FLC

■ Räumliche Auflösung 0.6" (?)

■ Spalthöhe 60" (?)

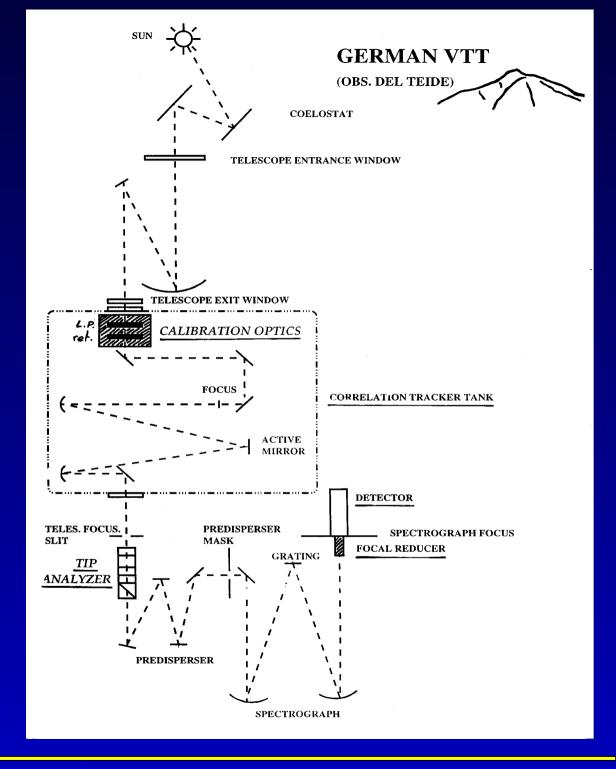
■ spektrale Auflösung ~30 mÅ

■ Spektralfenster ~15 Å

■ Wellenlänge 0.9-2.5 µm

Signal/Rausch-Verh. 500 (?)bei 5s Integration

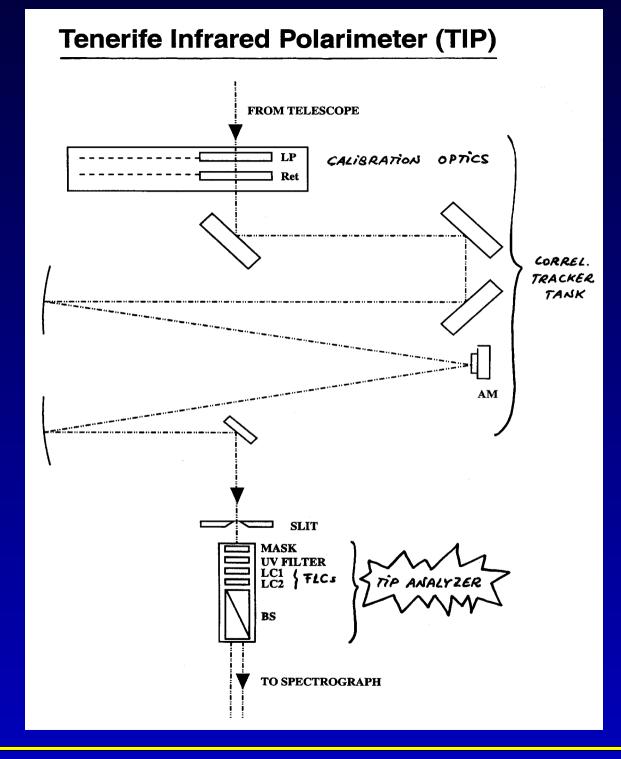
■ Zeit für 40" Scan ~15 min.


based on Rockwell CMOS TCM 8600, HgCdTe/Al₂O₃

Messprinzip

TIP:

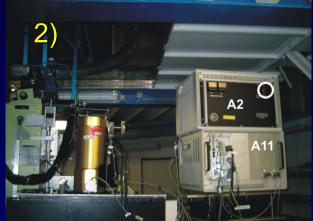
- 2 ferro-elektrische Liquid-Crystals als Retarder:
 - "half wave" und "quarter wave" (fix), 45° Änderung der Achsen durch ext. Spannung
 - → zeitliche Modulation
- Strahlteiler
 - → räumliche Modulation
- IR-Gitter
- Kamera-Filter
- Kamera

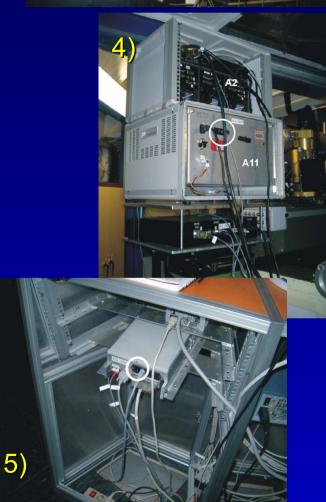

Messprinzip

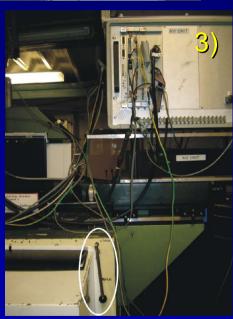
verfügbare Kamera-Filter:

■ aux: 1.03 – 1.10 µm

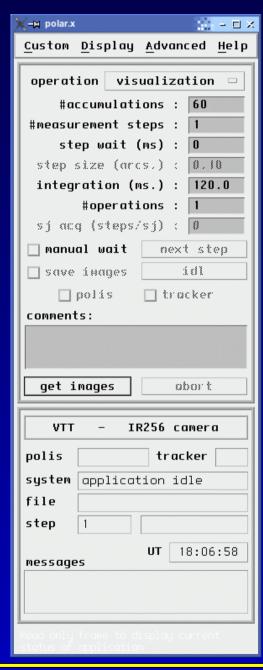
J: 1.13 – 1.30 μm


H: 1.53 – 1.75 μm

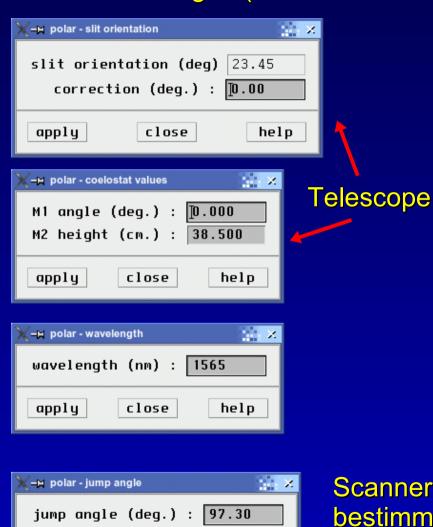


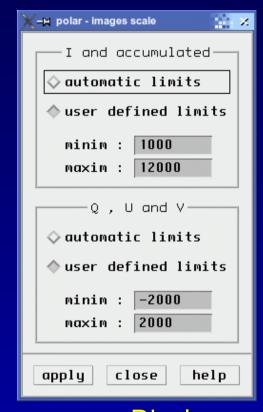

Inbetriebnahme

- 1) Flüssiger Stickstoff: Stand prüfen! (TIP2: 1 x wöchentlich???)
- 2) Einschalten der Temperatur-Kontrolleinheit A2
- 3) Teleskop-Cover und Kamera-Ausgang öffnen
- 4) Einschalten: A11 Einheit
- 5) innerhalb 5 Sekunden: im BKRA13 einschalten→ LEDs blinken
- 6) Software auf NESTOR starten:
 unix-Kommando:
 polar
 Datenaufnahme erfolgt im
 aktuellen Verzeichnis!
 → vorher entsprechendes
 Verzeichnis anlegen



TIP Software


Menüpunkt: Custom


apply

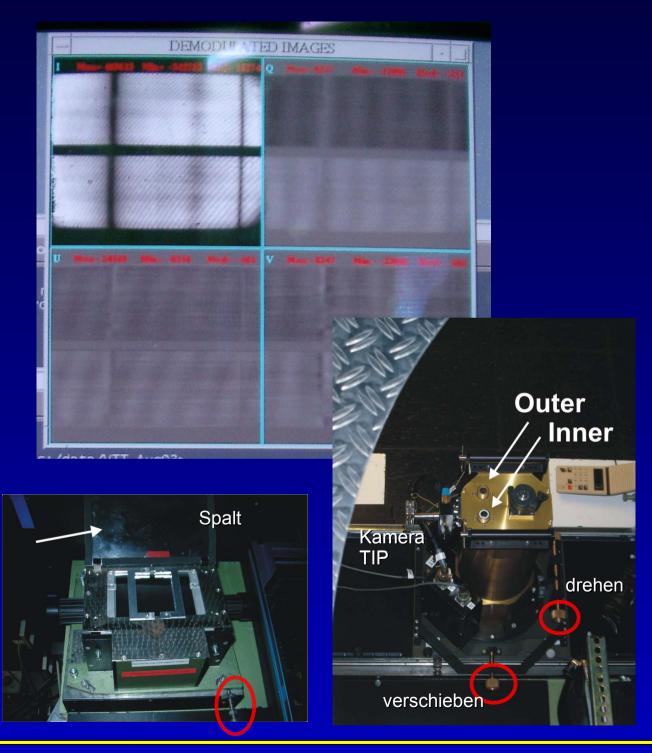
close

help

→ Werte eintragen (für korrekte HK-Werte)

Display Img. scale

Scanner (AO): bestimmt Richtung des Scans bezüglich Spalt


Alignment (1)

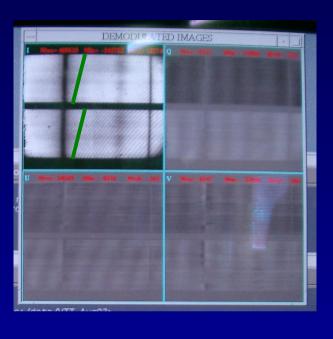
Ausrichten notwendig wenn:

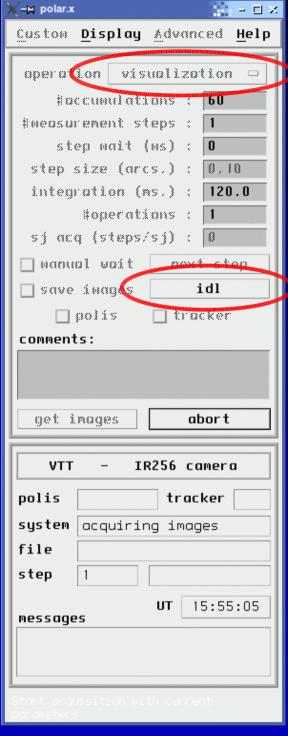
- IQUV-Bild nicht waagrecht
 → Kamera drehen
 ("align_camera.pro")
- Spektrallinien schief
 → Spalt drehen
 ("align_slit.pro")
- IQUV-Bild versetzt (obere und untere Hälfte)
 → Polarimeter (LCs) drehen ("align_pol.pro", kein Bild)
- IQUV-Bild nicht zentriert
 → Kamera verschieben
 (keine Hilfsroutine)
 → Hairlines aus dem Bild
 rausverschieben

Ausgangspunkt:

- TIP-Kamera läuft
- Teleskopsteuerung läuft

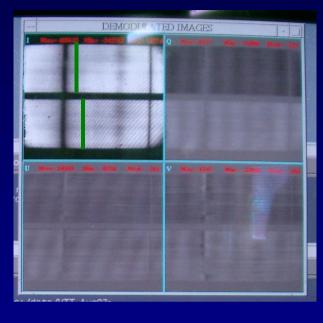
Alignment (2)

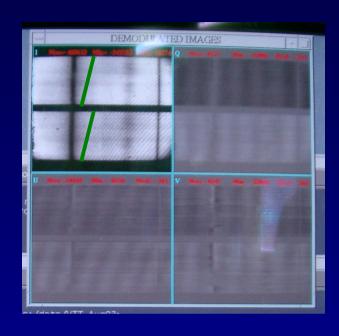

Beispiel: Ausrichten des Spaltes

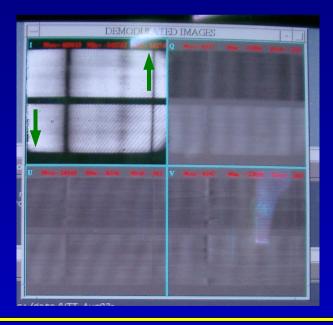

Auswirkung: Spektrallinien sind schief

Lösung: Drehen des Spaltes

Hilfsroutine: align_slit.pro


- 1) TIP im Visualisierungsmodus
- 2) auf 'idl' klicken
 - → IDL-Terminal öffnet sich
- 3) @align_slit starten
 - → Differenz zwischen Originalbild und gespiegeltem Bild wird angezeigt
- 4) Spalt drehen
- 5) IDL-Terminal verlassen ('exit' eintippen)
- 6) Punkte 2-5 wiederholen bis Differenzbild grau

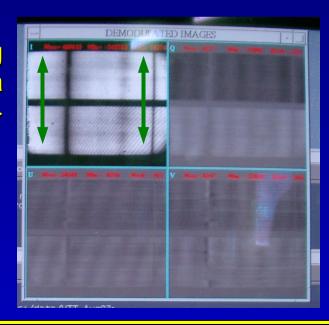

Alignment (3)



Linien versetzt

→ Polarimeter drehen

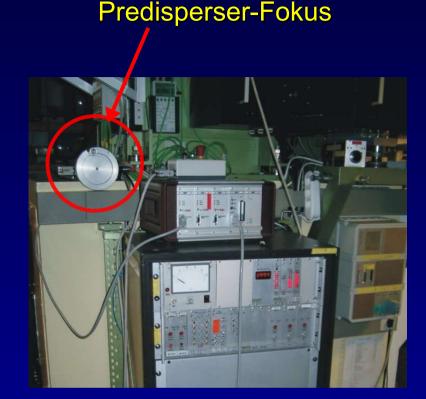
Linien schräg Spalt drehen →



Teilbilder nicht mittig Kamera verschieben →

Teilbilder schief

→ Kamera drehen


Fokussierung

- Teleskop fokussieren (Spaltbild, Haarlinie)
- Predisperser fokussieren
- Spektrograph fokussieren

Hilfsroutine: focus.pro (IDL-Aufruf aus TIP-GUI, siehe 'Alignment (2)')

- 1) TIP im Visualisierungsmodus
- 2) auf 'idl' klicken
 - → IDL-Terminal öffnet sich
- 3) @focus starten
 - → Zeilen / Spalten eines I-Bildes werden aufsummiert und als Linienplot dargestellt. (editiere focus.pro für Zeilen- / Spaltenauswahl)
- 4) Fokus verändern (predisperser, telescope)
- 5) IDL-Terminal verlassen ('exit' eintippen)
- 6) Punkte 2-5 wiederholen bis Linien optimal (möglichst tief & schmal)

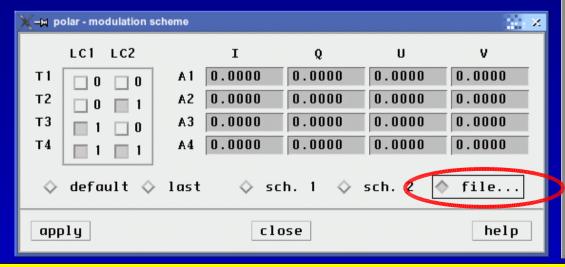
nur Predisperser fokussieren: Haarlinie ins Bild schieben

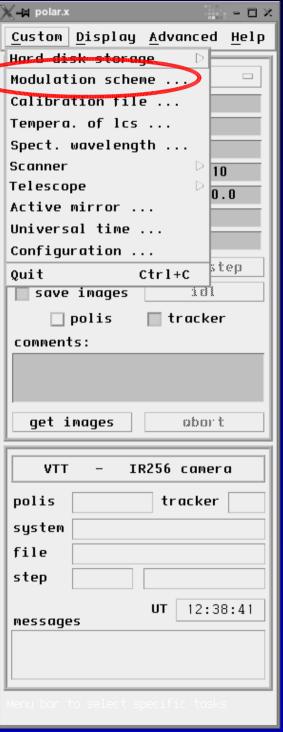
Visualisierung: Demodulationsmatrix

- nach Wellenlängenänderung / Spektrographdrehung
- verbessert Darstellung während der Beobachtung (kein Einfluss auf Datenaufnahme!)

IDL-Routine:

WL in Å


IDL> calib2file,'06nov04.000','dmod_10830_93.mod',10830.,eps


Kalibration

Ausgabe-Datei

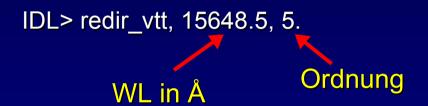
Effizienz (Ausgabe)

Die Ausgabe-Datei mit der TIP Software laden:

Qualität der Messung

"optimale" (berechnete) Effizienz von TIP:

 $\xi_{max} = (1.000, 0.617, 0.473, 0.525)$


bestimmen der Effizienz aus Kalibration:

```
IDL> calib2file, 'data/data oct04/VTT-Nov04/06Nov04/tip/06nov04.000', 'test.mod', 10830, eps
MERGING BEAMS
     10
            254
                    30
                           122
                                    10
                                          254
                                                  137
                                                          229
                7.06112
   177.616 +/-
                                                         beam limits
0.3065 0.2182 0.3246 0.1454
-0.1155 -0.5368  0.6847 -0.0347
                                average demodulation matrix
0.3568 -0.8869 -0.2153 0.7432
-0.6371 -0.3951 0.1358 0.8875
 0.0015 0.0034 0.0009 0.0029
 0.0019 0.0044 0.0013 0.0038
 0.0035 0.0080 0.0023 0.0068
                                errors
 0.0038 0.0086 0.0025 0.0073
                                  average efficiencies
 0.966 0.569 0.407 0.428 0.820
 0.003 0.011 0.017 0.005 0.004
                                  errors
```


Auswahl der Wellenlänge

Beispiel: Spektrograph steht auf λ =15648.5 Å (Fe-Linien), 5. Ordnung gewünscht: He-Linie bei λ =10830 Å, 6. Ordnung.

IDL> redir_vtt, 10830., 6

```
IDL> redir_vtt,10830.,6.
orden lambda blaze dispersion(mm/A)
6.00000 13302.5 2.86023
orden lambda beta dispersion(mm/A)
6.00000 10830.0 38.5564 2.30180

longitudes de onda ordenes anterior y posterior
12996.0 9282.86
```

→ neue Grating-Position
= Offset + 3855.64

```
IDL> redir_vtt,15648.,5.
orden lambda blaze dispersion(mm/A)
5.00000 15963.0 2.38352
orden lambda beta dispersion(mm/A)
5.00000 15648.0 49.5247 2.31082
longitudes de onda ordenes ar terior y posterior
19560.0 13040.0
```

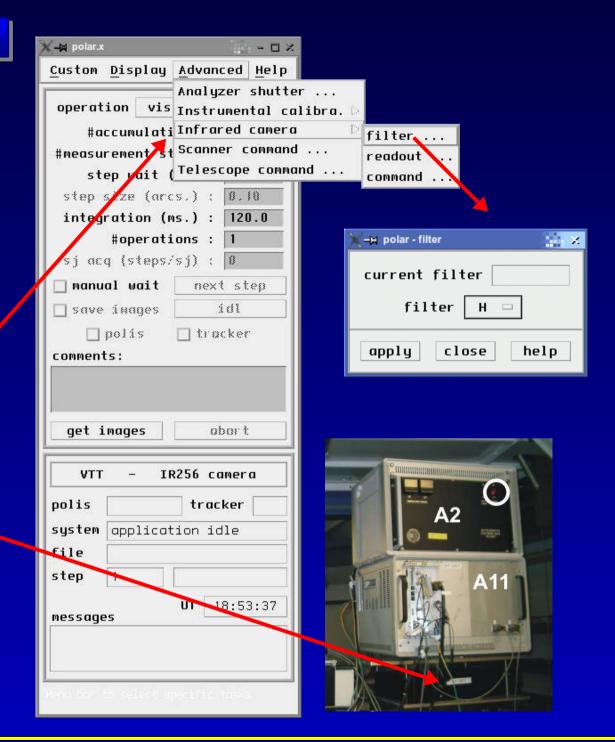
x100 und vergleichen mit WL-Anzeige

→ Offset = LED-Anzeige - 4952.47

Auswahl der Wellenlänge

Wichtig:

Filterwechsel nicht vergessen!

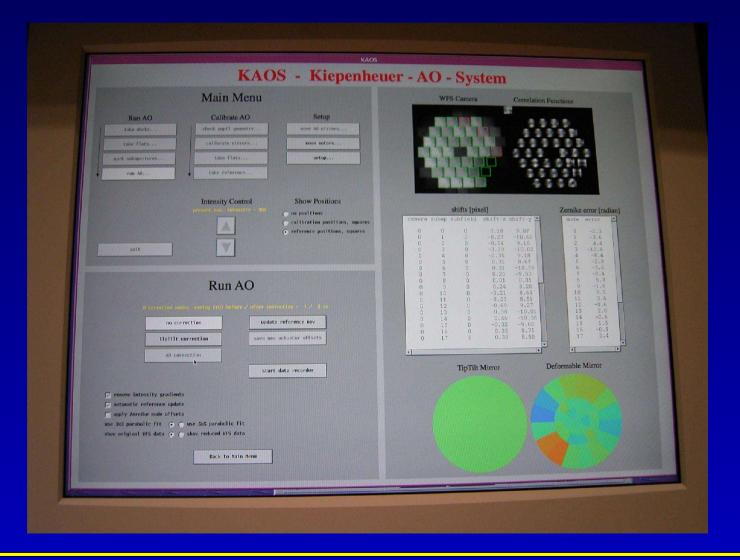

verfügbare Filter:

aux: 1.03 – 1.10 μm

J: 1.13 – 1.30 μm

H: 1.53 – 1.75 μm

- Filtermotor einschalten
- Filter mit GUI wechseln
- Filtermotor ausschalten (erzeugt Rauschen im Kamerasignal)!

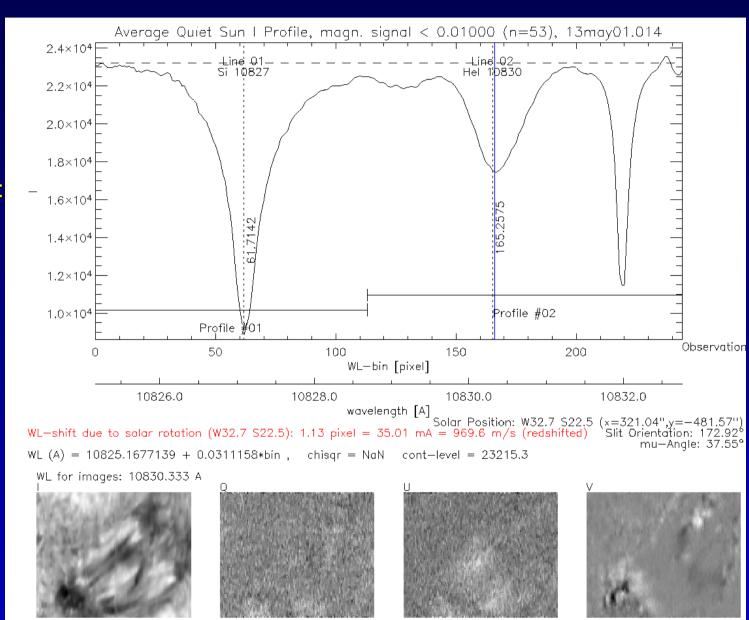


TIP & KAOS

TIP steuert den AO-Scanner KAOS Bedienung läuft problemlos

wünschenswert: akustisches Signal wenn AO aussteigt

Problem: Keine Korrektur der Vibrationen zwischen Teleskop und Spektrograph



Datenaufnahme

TIP-Messung besteht aus:

- Kalibration
- Flatfield
- Beobachtung
- 2. Flatfield (optional)

Kalibration

Einstellungen (typische Werte):

- #acc = 10
- integration time = 100 ms
- #operations = 1

wichtig!

Was geschieht?

- Interne Kalibrationseinheit (ICU) wird reingefahren
- Aufnahme von 8 Dunkelbildern
- interner Kalibrator fährt in 5° Schritten von 0°-180°
- ICU wird wieder entfernt

Zu beachten:

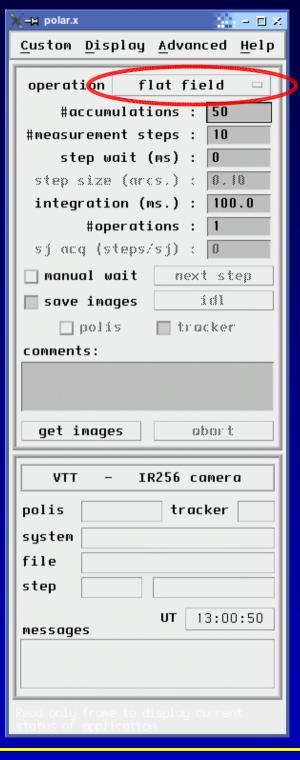
- keine Wolken während Kalibration!
- Teleskop auf ruhigem Sonnengebiet, möglichst Sonnenzentrum

TIP1: Datei mit ~75 Mbyte, TIP2: ~1.2 Gbyte

Flatfield

Einstellungen (typische Werte):

- #acc = 10
- measurement steps = 50
- integration time = 100 ms
- #operations = 1


Was geschieht?

- Aufnahme von 8 Dunkelbildern
- 50 Bilder werden aufgenommen

Zu beachten:

- CT oder AO ausschalten
- FF-Bewegung starten
- Belichtungszeit länger als Flatfield-Bewegung
- Teleskop auf ruhigem Sonnengebiet, möglichst Sonnenzentrum

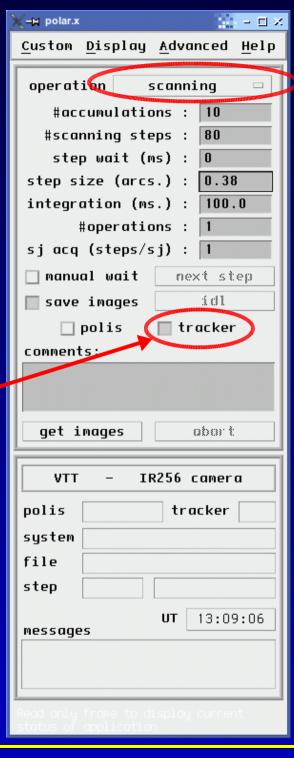
TIP1: Datei mit ~52 Mbyte, TIP2: ~832 Mbyte

Beobachtung (Scanning)

Einstellungen (typische Werte):

- \blacksquare #acc = 10 (\rightarrow exp. time)
- measurement steps: je nach Größe der Region
- step size = 0.38" (→ quadratische Pixel für TIP1)
- integration time = 100 ms (→ exp. time)
- #operations = 1 (mehrfaches Scannen der Region)
- sj acq = 1 (speichern der slit jaws bei jedem Scan-Schritt)

damit CT / AO scannt


Was geschieht?

- Aufnahme von 8 Dunkelbildern
- 50 Bilder werden aufgenommen
- slit-jaw Bilder werden gespeichert (hobbit)

Zu beachten:

CT oder AO einschalten

TIP1: pro scan-step ~1 Mbyte, TIP2: ~16 Mbyte

Belichtungszeit

integration time [msec]
$$t_{exp}[sec] = \#acc \frac{(t_{int} + 62) \cdot 4}{1000} + 0.5$$
of accumulations speichern / scannen

Beispiel von letzter Seite:

#acc=10, int. time=100ms

- \rightarrow 6.98 s pro Step,
- → ~10 min für 80 Steps (+ 8 darks)

Wahl von t_{int} und #acc:

- kurzes t_{int}
 - wenig Polarisation durch temporäre Schwankungen (Seeing)
 - weniger effektive Belichtungszeit
 - höherer Dunkelstrom
- langes t_{int}
 - → aufpassen, dass Detektor nicht sättigt

Datenvolumen

mit TIP2 riesig!

typische Beobachtung: 1xCal + 2xFF + 1xScan ~ 4-5 Gbyte

MPS: tragbare Festplattenspeicher (USB-Disks)

Datenreduktion

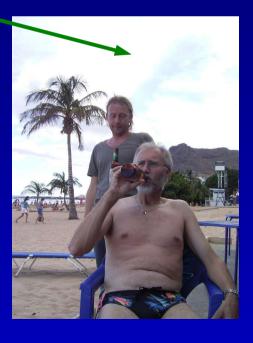
Datenreduktionsroutinen von Manolo Collados (neueste Version zu finden auf nestor im Verzeichnis mcv)

Achtung: viele Dinge automatisch erledigt (Kontinuumskorrektur, Crosstalk-Entfernung, ...)

Detaillierte Reduktion erfordert Handarbeit!

Was braucht man noch...

- gutes Seeing
- gutes Seeing
- gutes Seeing


Alternativprogramm für schlechtes Seeing:

- Teleskopkalibrierung
- Fokussierung
- Spektrale Flatfields
- ...

Wolken

