
1

VALIDATION OF 3D HELIOSEISMIC INVERSIONS OF TRAVEL-TIMES THROUGH SIMULATIONS OF
ARTIFICIAL DATA WITH THE CORRECT NOISE STATISTICS
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ABSTRACT

In time-distance helioseismology most inversion proce-
dures ignore the correlations in the data errors, which
may be large as shown by Gizon & Birch (2004). Here
we simulate the travel-time perturbations that result from
a known distribution of sound-speed inhomogeneities
(simulating sunspot-like structures) using wave-based
sensitivity kernels. A realistic stochastic noise compo-
nent is added to the data. We then apply a 3D inversion
procedure that takes into account the full covariance ma-
trix of the simulated data. The validation of the inversion
is achieved through comparison of the inferred sound-
speed distribution with the exact solution.
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1. TIME-DISTANCE SEISMOLOGY

Time-Distance Helioseismology (Duvall et al. 1993)
gives us access to local properties of the plasma below
the visible surface of the Sun. It is based on the travel-
time perturbations of wavepackets, due to their interac-
tion with inhomogeneities of the solar plasma. These
travel-time perturbations are obtained through temporal
cross-covariances of Doppler velocities φ(r, t) at differ-
ent locations r = (x, y) on the solar surface. These
cross-covariances are averaged over annuli centered at
r and of mean radius ∆. Here we only work with p
modes and the perturbations δτmn(r, ∆) in their mean
travel-times τmn(r, ∆) relative to travel times averaged
over a quiet Sun region. These τmn are the averages of
“in” and “out” travel-times (for wave propagating from/to
the central point r to/from the annulus of mean radius
∆). These δτmn are in first approximation related to the
sound-speed perturbations through:

δτmn(r, ∆)=

∫∫∫
K∆

mn(r − r
′, z)

δc

c
(r′, z)dr

′dz (1)

Where K∆
mn is a sensitivity kernel for sound-speed per-

turbations, and δc/c is a relative sound-speed difference.

Our goal is to invert the sound speed by fully taking into
account the noise statistics on the δτmn data. This has
never been done before in local helioseismology. We
need to compute the full travel-time noise covariance and
use it in the inversion process.

2. ARTIFICIAL DATACUBES

We use data from the MDI/SoHO experiment (Scher-
rer et al. 1995): those are time series of high-resolution
dopplergrams obtained in May 2001 at a cadence of 1
min and centered on a quiet Sun region. The sixteen
150 × 150 × 128 grid-nodes datacubes were combined
into four consecutive datacubes of time length 512 min.
We computed the four corresponding 3D power spec-
tra P (kx, ky, ω) and averaged them. We then made the
resulting power spectrum isotropic by averaging it over
k = (k2

x + k2
y)

1

2 , to obtain the expectation value of
the solar oscillations power spectrum P (k, ω) (Fig. 1).
To obtain the travel-time noise statistics, we produce
artificial datacubes in the Fourier domain: φ(k, ω) =

P (k, ω)
1

2 N (k, ω). N (k, ω) is a complex Gaussian ran-
dom variable with independent real and imaginary parts,
zero mean, and unit standard deviation. In the space do-
main the spatial sampling of these datacubes φ(r, t) is
1.652 Mm. We generated 300 realizations of such dat-
acubes.

3. TEMPORAL CROSS-COVARIANCES

We want travel-time perturbation maps for eleven dis-
tances ∆. Table 1 lists these distances and the corre-
sponding phase-speed Gaussian filters. These ∆ values
were used by Kosovichev, Duvall, & Scherrer (2000)
to study an active region. Each realization φ(k, ω) is
multiplied by Gaussian phase-speed filters F (k, ω): we
only keep the power corresponding to specific horizon-
tal phase-speeds (Fig. 1). This way we only retain waves
that propagate along a similar ray-path, and we reduce the
noise level on the temporal cross-covariances. We com-
pute these temporal point-to-annulus cross-covariance
functions C̄(r, ∆, t), following Gizon & Birch (2004)
(see Fig. 2):
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Figure 1. Upper panel: power spectrum P (k, ν = ω
2π

)
obtained with MDI high-resolution data. This spectrum
is used as the expectation value of the solar oscillations
power spectrum. Lower panel: example of filtered power
spectrum of a datacube realization. The Gaussian phase-
speed filter applied here keeps waves with a phase speed
ω/k ≈ 35.5 km s−1. We also applied a filter to remove
the f-mode ridge.

C̄(r, ∆, t) =

∑
r1

ℵ(|r1 − r| − ∆) C(r, r1, t)∑
r′ ℵ(|r′ − r| − ∆)

(2)

Where the temporal point-to-point cross-covariance func-
tion is defined as:

C(r, r1, t) =
ht

T − |tj |
∑

i

φ(r, ti)φ(r1, ti + tj) (3)

ℵ(x) is a window function (ℵ(x) = 1 if |x| <width(∆)),
T = 512 min, and ht is the time sampling (1 min). Our
datacubes contain 150 × 150 grid nodes in the (x, y)-
plane. We compute C̄(r, ∆, t) for the eleven ∆ val-
ues and for the nodes for which the largest annulus

Table 1. Distances ∆ used to derive the travel-
time perturbation (δτmn) maps, and corresponding pa-
rameters for the Gaussian phase-speed filters: mean
phase speed and dispersion (courtesy of T. L. Du-
vall). The Gaussian filters are written as F (k, ω) =

exp (−(ω
k
− v0)

2/ 2δv2
0). We multiply φ(k, ω) by

√
F .

Annulus # ∆ (Mm) v0 (km s−1) δv0 (km s−1)
1 4.13-8.26 12.77 4.37
2 6.61-10.74 14.87 4.37
3 9.21-14.04 17.49 4.37
4 14.87-19.00 25.82 6.43
5 19.82-28.91 35.46 8.74
6 26.43-34.69 39.71 5.07
7 32.21-41.30 43.29 5.25
8 38.82-47.08 47.67 5.95
9 44.61-53.69 52.26 7.43
10 51.21-59.47 57.16 6.30
11 57.00-65.26 61.13 5.68

fits entirely within the (x, y)-grid. By averaging the
C̄(r, ∆, t) over all these nodes, we produce a reference
cross-covariance function C̄ref (∆, t).

4. TRAVEL-TIMES COMPUTATION

Once we have the temporal cross-covariances for the ap-
propriate (x, y) pairs of a datacube realization, we de-
rive the travel-time perturbations δτmn(r, ∆) related to
the reference cross-covariance. We apply Eqs. (3) and
(4) of Gizon & Birch (2004). Fig. 3 shows an average of
the power spectra of the resulting travel-time maps over
the 300 artificial datacube realizations. We use these 300
realizations of eleven travel-time maps to compute the
travel-time noise covariance matrices.

5. FORWARD & INVERSE PROBLEMS

To examine the effects of noise statistics on the sound-
speed inversions, we compare inversions of artificial
travel-time perturbation maps done with and without ac-
counting for this noise statistics. The artificial travel-time
datamaps are obtained through the forward problem using
Born kernels (Birch, Kosovichev, & Duvall 2004). These
kernels take into account the sensitivity of wavepackets to
δc/c perturbations off the ray-paths. We apply these ker-
nels on a δc/c slab simulating sunspot-like structures (see
Couvidat et al. 2004). We then add a travel-time noise
realization to the resulting δτmn(r, ∆) maps, and invert
them using the same Born kernels. The noise standard
deviation on the different travel-time maps ranges from
σ = 8 to σ = 18 s. The inversion is done with a regular-
ized least-squares method through the multi-channel de-
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Figure 2. Example of temporal cross-covariance func-
tions. Upper panel: obtained for 31 distances ∆, no
phase-speed filter, and f modes removed. Lower panel:
obtained for the eleven distances ∆ listed in Table 1. This
is the actual reference cross-covariance C̄ref (∆, t) used
in this paper for the travel-time computations. A specific
phase-speed filter was applied for each ∆ value, on top
of the f-mode filter. We show only the first-bounce ridge.
In both panels the covariances were normalized.

convolution (MCD) algorithm (see Jensen, Jacobsen, &
Christensen-Dalsgaard 1998). The MCD is based on the
translational invariance of the sensitivity kernels. Thus
Eq. 1 amounts to a convolution product in the (x, y)-
plane. In the Fourier domain, this convolution product
is a basic multiplication. Therefore we invert the travel-
time perturbation maps in the (kx, ky)-plane. Instead of
inverting a huge 3D problem, we invert lots of 1D prob-
lems (in the z direction): one for each (kx, ky) pair. We
regularize the solution by its norm weighted by the in-
verse of the sound speed at each z layer.

Using our 300 realizations of artificial maps of travel-
time noise, we can compute the noise covariance ma-
trices Cov(k, ∆, ∆′). Actually we expect these covari-
ance matrices to depend only on k. Also we aver-
age the different matrices over k and obtain 11 × 11
matrices Cov(k, ∆, ∆′) that give the covariance at a
given horizontal wavenumber of the travel-time noise
δτmn(k, ∆) obtained for different annulus radii. To use
them in the inversion process, we write each matrix as

Figure 3. Power spectra of the travel-time perturba-
tion δτmn(r, ∆) maps (azimuthal average). These power
spectra are close to those shown in Jensen, Duvall, & Ja-
cobsen (2003), and Gizon & Birch (2004).

Cov(k, ∆, ∆′) = LLT , where L is a lower triangular
matrix (Cholesky decomposition), and scale the kernel
and data matrices by L−1 (Hansen 1997).

6. PRELIMINARY RESULTS

For information we show the travel-time noise correla-
tion matrix Corr(r − r

′ = 0, ∆, ∆′) (Fig. 4) obtained by
horizontal averaging. Corr(0, ∆, ∆′) is a 11× 11 matrix
that gives the different correlation values for travel times
δτmn(r, ∆) derived with annuli of mean radii ∆ and ∆′.
Corr(0, ∆, ∆′) is not actually used in the inversion pro-
cess since we work in the Fourier domain. As expected
the noise correlation is larger for travel-times obtained for
two annuli that overlap.

We invert two sets of artificial travel-time datamaps. Figs.
5 & 6 show vertical cuts in the inversion results. These
preliminary results are only based on a single inversion
(i.e. inversion of artificial data “polluted” by a single
noise realization). Therefore it is difficult to draw any
firm conclusion, which would require inversions of a
large number of datamaps with the same data but a dif-
ferent travel-time noise realization. However, it seems
that taking into account the noise statistics in the inver-
sion process slightly reduces the noise level on the re-
sults, especially for small-scale structures (like the ones
on Fig. 6): the signal-to-noise ratio seems improved. If
so, this should help us in better inverting fine physical de-
tails. Here the correlations on the travel times are not very
large due to our specific choice of ∆ distances and phase-
speed filters. Therefore we do not expect a dramatic im-
pact on the inversion results. Taking into account these
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correlations is not computationally expensive and does
not reduce the performance of the inversion process, even
though the computation of the correlations themselves is
a slow process.

Figure 4. Correlation matrix Corr(0, ∆, ∆′) obtained for
the 11 distances ∆ listed in Table 1. Each pixel gives the
correlation between travel times computed for an annulus
of radius ∆ and one of radius ∆′. Correlation is low off
the diagonal for two reasons: (1) annuli do not strongly
overlap (2) phase-speed filters are different. Therefore
the wavepackets used to compute the cross-covariance at
different ∆ values are not the same.
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Figure 5. Vertical cuts in the inversion results for the
first artificial dataset (a large-scale structure). The upper
panel shows the exact solution. Noise is added with a
dispersion equal to the one obtained after 8 hours and
a half of observation. Middle panel: inversion without
taking into account the noise covariance matrices. Lower
panel: inversion with the noise covariance matrices.

Figure 6. Same as Fig. 5 but for the second artificial
dataset (simulating four small-scale structures).


