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Abstract. Four time series of IRIS data (4 to 6 months) have
been used to obtain improved measurements of the low degree
(` = 1, 2, 3) rotational splitting frequencies. Assuming that the
rotation law is known in the outer layers of the Sun, we investi-
gate the implications of IRIS splittings for the central regions.
Both a one-shell and a two-shell rotation model have been con-
sidered in the solar core. A core rotating slightly faster than the
outer radiative envelope provides the best fit to the data. Some
evidence for the reliability of the observations is shown by the
visibility of differential rotation in the ` = 3 multiplets.
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1. Introduction

Since rotation lifts the azimuthal degeneracy of global modes of
oscillation, helioseismology gives access to the Sun’s internal
angular velocity. Spatially resolved observations of moderate
and high degree modes have already provided estimates of the
angular velocity outwards from R�/3, but the inference of the
rotation in the core itself relies entirely on a knowledge of rota-
tional splitting frequencies of p-modes with very low harmonic
degree `. Thanks to very stable full-disk seismometers, long
observations with high duty-cycles can reveal the fine structure
of the ` = 1, 2, 3 multiplets. However, spectral line fitting is
rendered very delicate by mode mixing, the presence of noise,
and the χ2 distribution of power spectra. A consequence is the
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controversy between the results of the BiSON (Elsworth et al.
1995) and the IRIS (Lazrek et al. 1996) networks, the former
implying a slower and the latter a faster than average rotation
of the core. In order to improve the reliability of the measure-
ments, several groups of observers tend to publish splittings
averaged over several modes (Loudagh et al. 1993; Toutain &
Kosovichev 1994; Lazrek et al. 1996). Here, we present an anal-
ysis of the most recent IRIS splittings, which take into account
early data for the year 1989. This analysis follows the work of
Gizon (1995). We note that Elsworth et al. (1995) used a similar
approach to interpret their data.

2. Theoretical background

We work in an inertial frame, where we introduce the usual polar
coordinates {r, θ, φ}. Let Ω(r, θ) be the angular velocity, inde-
pendant of longitude. If rotation is assumed to be symmetric
about the equatorial plane, Ω(r, θ) may be expanded in the form
Ω0(r) +Ω1(r) cos2θ+Ω2(r) cos4θ. This truncated model should
give a reasonable description of the rotation law over most of
the Sun, especially in the radiative zone where little differential
rotation is observed (Tomczyk et al. 1995). We define the rota-
tional splitting by the scaled difference Sm

`,n = (ν0
`,n − νm`,n)/m,

where νm`,n denotes the frequency of the mode of degree `, radial
order n and azimuthal order m. To the first order of approxima-
tion it is given by an expression of the form:

Sm
`,n =

∫ R�
0

Ω0(r)
2π

K0
`,n(r) dr
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+
2∑
j=1

∫ R�
0

Ωj(r)
2π

Kj
`,n,|m|(r) dr, (1)

where the kernel functions Kj(r) depend on the unperturbed
eigenfunctions and on the equilibrium solar model (e.g. Toutain
& Kosovichev 1994). Note that differential rotation is responsi-
ble for the dependence ofSm

`,n on the azimuthal orderm through
the second term in Eq. (1).

We want to employ full-disk observations to study rotation in
the deep interior of the Sun, say within an arbitrary core limiting
radius rc. Assuming that the core does not rotate differentially,
and splitting the integrals at r = rc into two parts yields

Sm
n,` =

∫ rc

0

Ω0(r)
2π

K0
`,n(r) dr + Σm

`,n(rc). (2)

The quantity Σm
`,n(rc) represents the contribution due to rotation

in the region r > rc; once an outer rotation model is specified,
it is a known quantity.

The problem of inferring the angular velocity within the
core from low-` splitting data is compounded by the fact that the
eigenfunctions for these modes have their maximum amplitudes
near the surface. Therefore, we need to have a reliable model for
the angular velocity in the outer regions. Here, we make use of
a simplified version of the two-shell rotation model produced
by Goode & Dziembowski (1991) using Big Bear data. The
convection zone, r > 0.7R�, is such that Ω0/2π = 462.4 nHz,
Ω1/2π = −60.5 nHz and Ω2/2π = −81.7 nHz. The radiative
interior, r < 0.7R�, is assumed to rotate rigidly at the rate
ΩRAD/2π = 438.7 nHz. Although no reliability is claimed below
0.4R�, it is assumed that this outer model can be extended
downward to rc, so that Σm

`,n(rc) can effectively be computed.

3. New IRIS splitting frequencies

Lazrek et al. (1996) analysed three different IRIS time series
obtained in 1990, 1991 and 1992. They showed how reliabil-
ity could be achieved by measuring averages of the rotational
splittings of the ` = 1, ` = 2 and ` = 3 multiplets over selected
ranges of n values.

Here we report improved data, using a fourth time series (6
months) for the year 1989. As in Lazrek et al. (1996) we use four
different collective methods. First, peaks with a given degree are
added together after renormalisation, and the fit is performed on
this synthetic spectrum. The second method consists of fitting
iteratively and simultaneously all the peaks of a given degree.
In the third method we calculate the cross-correlation of two
peaks of a given radial order from two power spectra for differ-
ent years; then we fit the mean of all cross-correlation spectra
of a given degree. For the last method, we compute the auto-
correlation of each peak of a given degree, and we obtain the
mean auto-correlation spectrum to be fitted. All sidereal split-
tings are obtained by adding 31 nHz.

The sidereal splittings S` for ` = 1, 2, 3 are given in Table
1, with their statistical uncertainties σ`. In the case ` = 3, only

Table 1. IRIS sidereal rotational frequency splittings

` n S` σ`

1 9–23 456 nHz 10 nHz
2 11–22 434 nHz 15 nHz
3 12–21 466 nHz 18 nHz

the first two methods have been used in order to make the inter-
pretation of the splitting easier as explained in the next section.

4. Statement of the problem

In order to make use of the measurements S` we have to un-
derstand what theoretical averages they refer to. So as to make
things clear, S̄` will denote these theoretical averaged splittings.

It is important to remember that, without any spatial reso-
lution, the IRIS observational technique does not give access
to the modes for which ` + m is odd. In the case ` = 1, the
observation S1 refers to the quantity S̄1 obviously defined as
the arithmetic mean of S1

1,n over n. Similarly, for ` = 2, S̄2 is
the arithmetic mean of S2

2,n over n.
The case ` = 3 deserves special attention. In effect, S1

3,n and
S3

3,n are theoretically slightly different because of differential
rotation in the convection zone. The measured splitting S3 is not
only an average over n, but also over m. When simultaneously
fitting four equally spaced Lorentz profiles to the ` = 3 syn-
thetic spectrum, one has to be aware of the fact that the fitting
procedure does not attribute equal weights to S1

3,n and S3
3,n. If

ρ denotes the relative power in peaks m = ±3 with respect to
peaks m = ±1, then a simple least squares analysis shows that
the azimuthal average is given by 1

1+9ρS
1
3,n + 9ρ

1+9ρS
3
3,n. The fit

provides the value ρ ∼ 1.2. Finally, S̄3 is obtained by taking
the arithmetic mean over n. Thus, S3 is an estimate of this well
defined quantity.

We shall cite the above averages as the IRIS-averages, f̄`,
applicable to any function of the form f = fm`,n(r). Taking IRIS-
averages of Eq. (2) yields

S̄` =
∫ rc

0

Ω0(r)
2π

K̄0
` (r) dr + Σ̄`(rc). (3)

We see that each rotational splitting is related to an IRIS-
averaged kernel K̄0

` (r) which can easily be computed. For a
given `, the constraint applied to Ω0(r) is given by {S̄` ∈
[S` − σ`,S` + σ`]} at a one sigma confidence level.

In the next section, we shall search for classes of functions
Ω0(r), such that, for a given core radius rc, all constraints have
been met. Of course, we can extend this notion to averages which
would include modes with various harmonic degrees ` as well.
However, we have to keep in mind that different modes do not
probe exactly the same part of the Sun: there is no reason why
all low-` modes should have exactly the same splittings.
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Fig. 1. IRIS-averaged kernels K̄0
` (r) as a function of fractional radius

r/R�, for ` = 1 (solid line), ` = 2 (dashed line) and ` = 3 (dot-dashed
line).

Fig. 2. Regions in which the angular velocity Ωc of a core of radius rc
agrees with IRIS splittings S` within 1.5-σ`. The regions defined by
` = 1, ` = 2 and ` = 3 are enclosed by the solid, dashed and dot-dashed
lines respectively. The vertical axis is graduated in units of ΩRAD.

5. Interpretation of the data

The IRIS-averaged kernels are plotted in Fig. 1 for r < 0.4R�.
We first notice that they are negligible for r < 0.1R�, so
that the angular velocity in this region cannot be determined
by these observations. The first maxima of K̄0

1 (r), K̄0
2 (r) and

K̄0
3 (r) are respectively found at ∼ 0.15R�, ∼ 0.20R� and

∼ 0.24R�. Because of the averaging procedure, the kernels
are not markedly different from each other. Hence, it will be
difficult to resolve the radial variations of Ω0(r), and we choose
to investigate a rigid-body rotation law for the core.

Assuming a constant angular velocity Ω0(r) = Ωc for r ≤
rc, Eq. (3) contains two free parameters rc and Ωc. In the plane
(rc,Ωc), we find no overlap between the solution regions defined
by ` = 1, 2 and 3, at a 1-σ confidence level. In Fig. 2, we show
this overlap for 1.5-σ error bars. The core does not rotate much
faster than the radiative zone: a 0.3R� solar core would be most
likely rotating in the range 1.1 < Ωc/ΩRAD < 1.3. However,

Fig. 3. Axes are the same as in Fig. 2. The angular velocity Ωc is
constrained by the mean frequency splitting STOT. The thin and thick
boundaries respectively refer to the 1-σ and 2-σ confidence levels.

note that faster (or slower) rotation in the very centre cannot be
excluded.

Alternatively, if we assume that the three splittings are
measuring a similar quantity, we can work out a mean split-
ting value by weighting each S` by 1/σ2

` . This global aver-
age STOT = 452 ± 8 nHz leads to the solution shown in Fig.
3. Here again, the core is found to be rotating at a rate rela-
tively close to ΩRAD. For instance, for rc = 0.3R� we have
0.9 < Ωc/ΩRAD < 1.6 with a probability of 95%.

6. Attempt for better localised kernels

We shall now investigate the possibility of detecting some varia-
tions of the core angular velocity as a function of radius. For this
purpose, we divide the core into two shells bounded by radii rIN

and rOUT = rc, assumed to be rotating rigidly at unknown rates
ΩIN and ΩOUT. Figure 1 suggests the choices rIN = 0.2R� and
rOUT = 0.3R�, so as to be able to probe both shells equally well.

As in Sect. 5, we could perform an analysis in the plane
(ΩIN, ΩOUT) by drawing the domains in which S̄` and S` are in
agreement. It turns out that such a way of proceeding does not
provide any clear nor convincing answer. As a consequence, we
recommend measuring two specific averages (over ` and n) of
the splittings, in order to probe separately the inner and the outer
parts of the core. We select two sets of modes as follows.

The first set contains all the available modes such that∫ 0.2R�
0

K0
`,n(r) dr >

∫ 0.3R�
0.2R�

K0
`,n(r) dr, (4)

i.e. the modes {` = 1, 12≤n≤23} and {` = 2, 17≤n≤23}. The
` = 1 subset gives a splitting of 453 nHz, and the ` = 2 subset
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Fig. 4. The kernel functions K̄0
IN(r) (solid line) and K̄0

OUT(r) (dashed
line) as a function of fractional radius r/R�.

gives 457 nHz. The weighted average is equal to SIN = 454 nHz
with an uncertainty σIN = 9 nHz.

Conversely, the second set contains all the modes such that
inequality (4) is false: {` = 1, 10≤n≤11}, {` = 2, 10≤n≤16}
and {` = 3, 11≤n≤21}. These three subsets correspond respec-
tively to the splitting values 453 nHz, 446 nHz and 465 nHz. The
averaged splitting is found to be SOUT = 457 nHz with σOUT = 12
nHz.

As expected, the corresponding IRIS-averaged kernels
K̄0

IN(r) and K̄0
OUT(r) have maxima in the inner and outer core

respectively (Fig. 4). By construction, the kernels are as orthog-
onal as possible in the two shells. Figure 5 shows the plane (ΩIN,
ΩOUT) where the two-shell rotation law has been constrained by
the measurements SIN and SOUT. It is found that the solution with
the highest probability is ΩIN ∼ 1.1ΩRAD and ΩOUT ∼ 1.5ΩRAD.
Error bars are still too large to give any definite answer, but IRIS
data point to a core rotating somewhat faster than the envelope,
and this increase can already be noted at a radius r ∼ 0.25R�.

7. Conclusion

In Sect. 4 we noted that the peaks in a ` = 3 quadruplet are
not equally spaced. The model we took for differential rotation
in the convection zone predicts a difference S3

3,n − S1
3,n ∼ 28

nHz. This is actually confirmed by measuring this difference on
the ` = 3 averaged power spectrum; we find 34± 20 nHz. This
consistency for such a difficult measurement makes us confident
about the general validity of all our error bars, and thus about
the main conclusion: a core rotating slightly faster than the outer
radiative zone.
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