Venus and Mars
Observing Induced Magnetospheres

Markus Fränz
February 2009

MPS Planetary Plasma Group
Outline

- Why Earth, Mars, Venus so different?
- Atmospheric evolution and escape
- Observing Exospheres
- Escape processes – predictions
- Observing Induced Magnetospheres
- ASPERA experiment at Mars and Venus
- Problems related to escape processes
Why Earth, Mars, Venus so different?

<table>
<thead>
<tr>
<th>Property</th>
<th>Venus</th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass [10^{12}Gt]</td>
<td>4.9</td>
<td>6.0</td>
<td>0.64</td>
</tr>
<tr>
<td>Radius [km]</td>
<td>6049</td>
<td>6371</td>
<td>3390</td>
</tr>
<tr>
<td>SolarDistance [AU]</td>
<td>0.72</td>
<td>1.0</td>
<td>1.52</td>
</tr>
<tr>
<td>SolarConstant [W/m²]</td>
<td>2613</td>
<td>1367</td>
<td>589</td>
</tr>
<tr>
<td>Atmosphere Mass [10^6Gt]</td>
<td>500</td>
<td>5.1</td>
<td>0.31</td>
</tr>
<tr>
<td>N_2 [%]</td>
<td><2</td>
<td>78</td>
<td><3</td>
</tr>
<tr>
<td>O_2 [%]</td>
<td><10^{-4}</td>
<td>21</td>
<td><0.25</td>
</tr>
<tr>
<td>CO_2 [%]</td>
<td>98</td>
<td>0.035</td>
<td>>96</td>
</tr>
<tr>
<td>H_2O [%]</td>
<td><0.3</td>
<td><4</td>
<td><0.001</td>
</tr>
<tr>
<td>D/H ratio [10^{-4}]</td>
<td>240</td>
<td>1.5</td>
<td>9</td>
</tr>
<tr>
<td>EscapeVelocity** [km/s]</td>
<td>10.3</td>
<td>10.8</td>
<td>4.8</td>
</tr>
<tr>
<td>EscapeEnergy [eV]</td>
<td>H:0.54</td>
<td>O:8.64</td>
<td>H:0.61</td>
</tr>
<tr>
<td>ExobaseTemp* [K]</td>
<td>275</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>ExobaseAltitude* [km]</td>
<td>200</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>IonosphereAltitude*** [km]</td>
<td>120</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>ThermalEscape H [t/a]</td>
<td>0.0013</td>
<td>2800</td>
<td>7800</td>
</tr>
</tbody>
</table>

*Upper limit of collisional domain **at exobase ***electron peak density
Escape Problem

- At Venus thermal escape is negligible but D/H ratio and lack of hydrogen suggests a significant mass dependent escape of hydrogen.

- At Earth thermal and other escape mechanisms seem to have small influence on atmospheric composition.

- At Mars thermal escape of hydrogen seems very significant, but because hydrogen is coupled to water in atmosphere, oxygen must be lost as well.

- → Non-thermal escape must be important for Mars and probably Venus.
How can you observe a planet's exosphere?
Venus and Mars have comparable temperatures of the upper ionosphere (300K at 300km altitude).
The much larger gravity of Venus causes a much thinner exosphere.
Because the hydrogen thermal escape rate is a function of

\[\frac{GMm}{kTr} \]

gravitation potential/thermal energy
Mars Hydrogen Corona

- X-ray halo (charge-exchange with solar wind heavy ions)
- Lyman-α excitation of neutral hydrogen

Halo emission is caused by charge-exchange

Fluorescent radiation from CO₂

X-ray picture of Mars (XMM, Dennerl 2006)

Lyman-α picture of Mars (HST, John Clarke)
Venus Hydrogen Corona by Pick-Up Ion Observations

Proton Cyclotron waves at Venus

The ionization rate of hydrogen can be determined by the wave power of proton cyclotron waves resulting in a hydrogen density profile with density < 10/cc above 3000km distance.
From PickUp:
Thermal escape: $\sim 5 \times 10^{26}/s$
Mariner6 (1971): $1.5 \times 10^{26}/s$

Slightly higher than exobase density inferred from energetic neutral measurements by ASPERA-3 (Galli et al. 2007)
Influence of Solar EUV flux on Exosphere

The increase of exobase should also move up the ionopause, but effects of increased solar magnetic flux on ionosphere is probably even more important. On geological time scales both effects can explain complete loss of water from induced magnetospheres.
How else can particles escape from an atmosphere into space?
Non-thermal escape processes at Mars and Venus

Planetary Plasma Group
SOLAR WIND INDUCED ESCAPE
Estimates for Mars and Venus

Escape Rate Estimates

Recent Estimates

Planetary Plasma Group
How can we measure the escaping flux?
Measuring Atmospheric Escape

1. remote sensing exospheric UV glow and X-ray excitation
2. remote sensing production of energetic neutral atoms produced by solar wind charge exchange with exosphere
3. in-situ measurement of escaping ions
4. in-situ measurement of solar wind moment transfer into ionosphere
The ASPERA Experiments on Mars and Venus Express

InOrbit 28 Jan 2004
Operation 2x680 days

Orbit Insertion 11 April 2006
Operation 2x500 days

PERICENTER ~260 km
86°N

7.5h orbit

APOCENTER 4.5R\textsubscript{M}

24h orbit

APOCENTER 11R\nu
ASPERA Sensors

Neutral Particle Detector, 6 sectors
0.1-60keV with energy

Electron Spectrometer, 16 sectors
1-20keV

Neutral Particle Imager, 32 sectors

Ion Spectrometer, 16x16 sectors
10-40keV, 32 mass channels
First direct O+ Escape Determination for Mars by ASPERA-3

Total escape rate of O+ ions has been determined for the first time by ASPERA-3 on Mars Express to be $1.6 \times 10^{23}/s$ (Barabash et al. Science, 2007)

Much lower than estimate by Phobos: $3 \times 10^{25}/s$ (Lundin et al., 1990)
Mars Ion Escape - new estimates

Previous estimate was based on ions with $E > 200\text{eV}$ (left).
New estimate includes ions with $E < 200\text{eV}$:
Total loss in heavy ions: 3.3×10^{24} ions/s (Lundin et al., GRL 2008)
What we know from Pioneer Venus Orbiter (1979-1992)

Extension of ionosphere strongly dependent on solar UV flux, large region of solar wind interaction leads to severe ionospheric erosion, extent of this transition region could not be studied by PVO

Bow shock position very stable
First determination of tail boundary indicates very broad transition zone from solar wind to planetary ions

Venus escaping plasma composition

Energy depends on mass: ion-pick up
Energy does not depend on mass: polarization electric field
We observe mixture of both

Main escape channel is the tailward plasma sheet formed parallel to the convection electric field $-V_{SW} \times B$.

Within the plasma sheet escape intensity is highest in $E+$ hemisphere.

Barabash et al. Nature, 2007
Atmosphere oxidation. Mars vs. Venus

Current escape ratio observations are:
Mars: H (thermal)/ O (non-thermal) = 20
Venus: H/O (non thermal) = 2.2

But atmospheric chemistry tells us that all hydrogen must come from water. Where does the oxygen go?

Hydrogen originates from H$_2$O break-up. The balance between hydrogen and oxygen escape defines the atmospheric oxidation state.

This would mean that the atmosphere of Venus does not change its oxidation state while Mars atmosphere oxidizes the soil.
Loss calculation by momentum transfer for Venus (Lundin 2008)

Venus Express (ASPERA-4) results agrees with the PVO "ionosphere extension" into the tail, but the extension is really an escape of low energy ionospheric O\(^+\), H\(^+\), and He\(^+\).

- H\(^+\)/O\(^+\) flux ratio \(\approx 1.9\)!
- Preliminary escape rate:
 - \(O^+ \rightarrow 1.4 \cdot 10^{26} \text{ ions/s}\)
 - \(H^+ \rightarrow 2.6 \cdot 10^{26} \text{ ions/s}\)

R. Lundin (pers.comm.)
How can you measure bulk plasma parameters?
Which parameters are important to understand global structure?

- External pressure: $n v^2$
- Ionospheric pressure: $n k T$
- Magnetic pressure: B^2
Pioneer Venus Orbiter was dedicated plasma satellite

At the Venus ionopause, PVO could prove balance between exterior magnetic (B^2) and interior thermal (nkT) pressure. Interestingly, the ionosphere at Venus shows different states of magnetization.

Russell and Vaisberg, 1983

Planetary Plasma Group
Situation at Mars

Previous Mars missions were limited by instrumental and orbital constraints in determining pressure balance.

Mars Express has good orbital coverage but no magnetometer and no cold plasma sensor.

How can you determine pressure balance?
Combining MARSIS radar and ASPERA data
Combined MEX MARSIS&ASPERA3 observations show that solar wind dynamic pressure is balanced by magnetosheath thermal and MB magnetic pressure. The induced field penetrates ionopause.

Dubinin et al., GRL 2008
How do induced magnetospheres change with solar activity?
Variations in Venus bowshock location

Main effect on bow shock position is by solar wind magnetosonic Mach number: $V_{SW}/\sqrt{V_A^2 + V_S^2}$

Because position is determined by wave propagation backwards from the obstacle (magnetopause).

Secondary effect is by increase of exosphere by higher solar EUV flux.

Planetary Plasma Group
The interest in the induced magnetospheres of Venus and Mars is based on the large differences in atmospheric evolution of the terrestrial planets.

Measurements of the thermal escape indicate that only at Mars hydrogen can escape in significant amounts via the exosphere. This indicates that magnetospheric escape must be important.

The ASPERA experiments on Mars and Venus Express deliver for the first time synchronous measurements of planetary ion escape at low energies.

First estimates of the total ion escape show values of
for Venus: 10^{25} ions/s (7.6 t/day)
for Mars: 3×10^{24} ions/s (6.6 t/day)
Current escape ratios H/O are 2.2 for Venus and 20 for Mars, indicating a steady oxidation state for Venus and ongoing soil-oxidation for Mars.

To understand the physical processes relevant in induced magnetospheres determining plasma bulk parameters is essential:
kinetic, thermal, magnetic pressure
local magnetic structure, induction processes
dependence on solar activity
Topics not covered in this talk

- Role of plasma sheet (global magnetic configuration)
- Kelvin-Helmholtz instabilities at the magnetopause
- Effects associated with crustal magnetization at Mars
- Magnetic flux tubes entering the ionosphere
- Reconnection of field lines
- How far does the magnetspheric tail reach?
-