IMPRS Lectures on SPACE INSTRUMENTATION
25-29 October 2010
MPS, Katlenburg-Lindau:

Space Instrument Development
(based on lecture by Hermann Hartwig, Dec. 2006)

Reinhard Meller, MPS
After winning the proposal selection, it usually takes about 8 years for a major instrument up to launch.

Examples:

SOHO (ESA solar cornerstone mission)

ROSETTA (ESA planetary cornerstone mission)
instrument selection: 1995 → launch: Mar 2004

WHY?
Commercial off-the-shelf (COTS) instruments usually will not work for space because they

- are too heavy
- will not survive the launch loads
- will stop functioning under space conditions:

space is a very hostile environment!
A closer look at:

- **mass:** why it is important

<table>
<thead>
<tr>
<th></th>
<th>SOHO</th>
<th>ROSETTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>scientific instruments accumulated</td>
<td>scientific instruments accumulated</td>
</tr>
<tr>
<td>mass</td>
<td>= 610 kg</td>
<td>= 186 kg</td>
</tr>
<tr>
<td>mass at launch</td>
<td>= 1850 kg</td>
<td>= 2900 kg</td>
</tr>
<tr>
<td>launcher mass</td>
<td>= 237 500 kg</td>
<td>= 760 000 kg</td>
</tr>
<tr>
<td>launch cost ATLAS II AS</td>
<td>= 72 000 000 €</td>
<td>= 100 000 000 €</td>
</tr>
<tr>
<td>specific launch cost for instrument</td>
<td>118 000 €/kg</td>
<td>537 634 €/kg</td>
</tr>
</tbody>
</table>

[for comparison: price of gold (Au): 17 500 €/kg]
A closer look at:

- total launch support mass / scientific payload mass ratio:

 SOHO: \[(237,500 + 1,850 - 610) \text{ kg} / 610 \text{ kg} = 391\]

 ROSETTA: \[(760,000 + 2,900 - 186) \text{ kg} / 186 \text{ kg} = 4101\]

 ratio depends on space mission trajectory

=> Scientific instrument mass saving is an important issue!
A closer look at:

- **launch loads**: why they are important
 - for smaller instruments the Design Loads can be as high as **60 x gravity** (60g)
 - for larger instruments (> 50 kg) still **25 x gravity**

 => Design must have: low mass; high strength!

- **hostile space environment**
 - high vacuum
 - zero-g
 - radiation (electromagnetic & energetic particles)
 - very low temperatures to dark space background
 - extremely high thermal loads on sun illuminated side (e.g. Solar Orbiter)
examples for unusual effects, occurring in space environment:

- high vacuum cleans metallic surfaces ⇒ cold welding of moving part
design shall avoid metal-to-metal contacts!

- usual liquid lubricants evaporate in vacuum ⇒ bearings seize
use vacuum-compatible dry lubrication films!

- energetic particles passing through semiconductor devices create charge clouds ⇒ bit flips in memory cells (SEU single event upsets)
 implement hardware error correction function into design!
 or –worse– create conductive channels in insulating layers between power conductors ⇒ self-sustaining short circuit (latch-up effect)
 implement latch-up protection circuits into design!

- high vacuum: no convective cooling for electronics ⇒ electronics overheat

- zero gravity: gravity assisted heatpipes don’t work ⇒
 careful design of conductive/radiative heat transfer!

- high vacuum: outgassing of organic materials; EUV “cracking“ of molecular deposits on cold surfaces (detectors, optics) ⇒ carbon black blinding
 careful material selection; cleanliness control program!
For all these reasons

- **space instruments are custom-designed one-of-a-kind items**

- **building these unique instruments follows a universal pattern:**
 - staged development with milestone peer reviews
 - succession of models with increasing complexity and level of detail
Instrument Development Cycle: overview

- **Preliminary Design (Phase A)**, ends with:
 - Preliminary Design Review (PDR)
 - Hardware delivery: STM Structural / Thermal Model

- **Detailed Design (Phase B)**, ends with:
 - Critical Design Review (CDR)
 - Hardware delivery: EM Electrical or Engineering Model

- **Flight Hardware Manufacturing (Phase C)**

- **Assembly/Integration/Verification - AIV (Phase D)**, optional with mid-term Test Readiness Review (TRR); ends with:
 - Flight Acceptance or Pre-Shipment Review (FAR / PSR)
 - Hardware delivery: FM Flight Model(s) + FS Flight Spare Model
A : Preliminary Design Phase :

- **establish requirement flowdown**: from mission requirements to payload requirements to instrument functional requirements to instrument specification
- allocate mass and power budgets to subsystems
- define mechanical and electrical interfaces between subsystems (e.g. form factors for PCBs, connector types and arrangement etc)
- determine dimensions, volumes, shapes
- write specifications for subsystems, that will be subcontracted to industry
- assemble STM (form, fit, no functions) = mass and thermal “dummy“

⇒ Preliminary Design Review ; STM delivery
example:

requirement flowdown diagram for DAWN Framing Camera
A: ROSETTA / OSIRIS STM examples:

- Electronics Unit & CRB Unit assembly
cont. A : ROSETTA / OSIRIS STM examples:

- Electronics Unit prepared for thermal balance test
cont. A : ROSETTA / OSIRIS STM examples:

- Electronics Unit sine vibration and static load test
cont. A : ROSETTA / OSIRIS STM examples:

- NAC & WAC STM delivery preparation
cont. A : ROSETTA / OSIRIS STM examples:

- NAC STM delivery to ESA and integration onto ROSETTA STM S/C
cont. A : ROSETTA / OSIRIS STM examples:

- OSIRIS STM integrated on ROSETTA for thermal verification test
cont. A : ROSETTA / OSIRIS STM examples:

- ROSETTA STM S/C incl. STM payload instr. prepared for vibration testing
cont. A: ROSETTA / OSIRIS STM examples:

- ROSETTA STM incl. STM payload instruments acoustic noise test setup
B : Detailed Design Phase :

- define / select materials and processes
- design parts, select components
- write basic operational code / software
- generate mathematical models for:
 - structural analysis (Finite Element Model)
 - thermal analysis

validate models and pass on to S/C contractor (to be included into their global model)

- perform Failure Modes, Effects and Criticality Analysis (FMECA)
- assemble EM (form & fit as good as possible, all functions; components not space rated);
 verify functionality and interfaces (power / command & telemetry)

⇒ Critical Design Review ; EM delivery
Example:

Design reviews:

Agenda for the Critical Design Review:

Framing Camera DAWN mission

Tuesday May 18, 2004

00:00 Welcome and Introduction – K. U. Keller
00:10 Goal of the Meeting – D. Noffs
00:20 DAWN Project Status – C. Rummell
08:30 Overview FC – Science Objectives and Requirements – R. U. Keil
09:50 FC Team Organizations and Top Level Workpackages – H. Sehrs
10:00 Instrument Concept and Implementation – H. Hartwig
10:15 Coffee Break

Camera Read

10:30 Optical Design – H. Meischke-K T
10:45 Lens System, Fitter, Riffle, and Related Analysis – H. Meischke-K T
11:00 CCD and Front End Electronics – S. Meischke
11:20 Front End Mechanism and Pail Safe Mechanism – H. Hartwig
11:30 Filter Wheel Mechanism – H. Hartwig
11:45 Discussion

12:00 Lunch Break

Electronics Box

13:10 Electrical Interfaces Block Diagram & Grounding Concept – I. Hooge
13:15 Data Processing Unit and Mass Density – K. Michalik/IDA
13:30 Power Converter Unit – P. Boeg
13:45 Mechanism Controller Unit – W. Kreher
14:00 Housekeeping Data Acquisition – I. Hooge

14:15 FC Radio Concepts – H. Sehrs

14:30 Probes Breakdown – H. Sehrs
14:45 Mass Breakdown – H. Hartwig
14:50 MICD & Accommodation – H. Hartwig
15:00 Coffee Break

15:00 Instrument Modelling

15:15 Structural Design – H. Hartwig
15:30 Thermal Design – H. Hartwig with K. P. Schmidt/DLR

Software

16:00 Low Level Software – K. Michalik/IDA
16:20 Operating Software – K. Michalik/IDA
16:30 EGS – Configuration and Software – K. Michalik/IDA
16:45 EM demonstration run in room 51-49

Wednesday May 19, 2004

09:00 Model Philosophy and Schedule – H. Sehrs
09:20 Qualification Approach and Environmental Test Matrix – H. Sehrs
09:30 QA Approach and Design – M. Richards
09:45 Operations Plans – P. Gnesin
10:00 Calibration Plans – K. Schneider
10:15 Coffee Break

10:30 FC Data Processing Approach – R. Isajev
10:50 Risk Mitigation Plan – H. Sehrs
11:00 Review of FC RFAs – H. Sehrs
11:30 Discussion

12:00 Lunch Break

12:30 Board Summary, Action Items, and Wrap-up

Board Members:

Dave Norris (Chairman)
Fred Vaccaro
John Scalco
P. Boeg
K. Michalik

Attendance List:

UCLA:
Chao Russell
Steve Jay

JPL:
Scott Clark
Betha Price
Shelana Allen
Paul House
Steve Potocki
Jerry DeWitt
Chad Mavis
Example:

Structural Mathematical Model

Finite Element Analysis

Framing Camera on the DAWN Mission

Finite Element Analysis : Modelling

- Model analyzed with:
 - MSC NASTRAN
- Pre-/post-processing with:
 - MSC PATRAN
- Element type used:
 - TET10(3D)
- Element size:
 - 4 mm global edge length,
 - smaller in critical areas
- Model size:
 - 153,715 elements
 - 288,605 nodes
 - 78 spring elements
 - 22 multi-point constraints
Example:

Finite Element Analysis cont’d:

Finite Element Analysis : Dynamics : 3rd Eigenmode

<table>
<thead>
<tr>
<th>Mode Nr.</th>
<th>Frequency in [Hz]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>353.48</td>
<td>bending of mainly the radiator but also the baffle around y-axis</td>
</tr>
<tr>
<td>2</td>
<td>377.18</td>
<td>swinging of tubus/baffle in y-direction (and bending around x-axis)</td>
</tr>
<tr>
<td>3</td>
<td>414.42</td>
<td>swinging of tubus/baffle in x-direction (and bending around y-axis)</td>
</tr>
<tr>
<td>4</td>
<td>447.40</td>
<td>bending of the radiator around z-axis</td>
</tr>
<tr>
<td>5</td>
<td>670.00</td>
<td>longitudinal vibration of the structure in z-direction</td>
</tr>
<tr>
<td>6</td>
<td>737.16</td>
<td>bending of the baffle around y-axis</td>
</tr>
<tr>
<td>7</td>
<td>813.82</td>
<td>local vibrations</td>
</tr>
<tr>
<td>8</td>
<td>937.80</td>
<td>2nd mode for swinging of tubus/baffle in y-direction</td>
</tr>
<tr>
<td>9</td>
<td>990.14</td>
<td>longitudinal vibrations in z-direction</td>
</tr>
<tr>
<td>10</td>
<td>1049.16</td>
<td>bending of radiator around y-axis</td>
</tr>
</tbody>
</table>
Example:

- thermal mathematical model

Finite Difference Analysis

(ESATAN/ESARAD)

Framing Camera on the DAWN mission

Steady State Analysis - Operations (continued)

- Results: cold case heat fluxes from CCD and adjacent nodes to space
Example:

Delivery reviews:

Documentation to be ready before instrument H/W delivery

• Preliminary Design Review (STM)

• Critical Design Review (EM)

• Flight Acceptance Review (FM, FS)

OSIRIS Camera System on ROSETTA

Table of contents

1 Certificate of Conformance
2 Build Standard
3 History Record
4 Connector Matching Cycle Record
5 Operating Time / Cycle Record
6 Requirements Document
7 Functional Description
8 Software / Firmware
8.1 Functional Description
8.2 Program Flowsheets / Schematics
8.3 Program Lists / Source Code
9 Schematics
9.1 Circuit Diagrams
9.2 FPGA Diagrams
10 PCB Layout
10.1 Placement Plan
10.2 PCB Routing
11 Connectors
11.1 Connector Pin Allocations
11.2 Connector Layout Drawings
11.3 Connector Data Sheets
12 Software / Firmware
12.1 Functional Description
12.2 Program Flowsheets / Schematics
12.3 Program Lists / Source Code
13 Mechanical Drawings
13.1 Mechanics Interface Drawings
13.2 Detailed Mechanics Drawings
14 Declared Components List
15 Declared Materials List
16 Declared Process List
17 Manufacturing
17.1 Manufacturing Flow Record
17.2 Manufacturing Procedures
18 Environmental Tests
18.1 Test Procedures
18.2 Test Protocols
19 Electrical Specification
19.1 Characterization
19.2 Timing Diagrams

List of Figures

Figure 1: Sample figure (caption below figure, use "insert picture" to create figure)

List of Tables

Table 1: Sample table (caption above table, use "insert caption - label table")
C / D : Assembly / Integration / Verification:

- Controlled and documented flight parts production & procurement; population of Printed Circuit Boards; in Clean Room; ESD protected etc

- Testing at subsystem and system level:
 - Functional tests, including S/C interface verification (with S/C simulator)
 - Performance Tests / Calibration
 - Environmental tests:
 - Vibration
 - Pyro-Shock
 - Thermal-Vacuum / Thermal-Balance
 - Mechanism Lifetime
 - Electro-Magnetic Compatibility (EMC)

- Physical properties
 - Interface Metrology
 - Mass
 - Center of Gravity
 - Moments of Inertia
Example: OSIRIS E-Box Module Test Philosophy and Test Matrix

<table>
<thead>
<tr>
<th>Test item</th>
<th>QM</th>
<th>STM</th>
<th>EEM</th>
<th>FM</th>
<th>FS</th>
<th>responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Properties</td>
<td>M / X</td>
<td>X</td>
<td>M / X</td>
<td>M / X</td>
<td>M / X</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>(COG, Mass, Dimensions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>Q</td>
<td>Q</td>
<td>---</td>
<td>A</td>
<td>A</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Shock</td>
<td>Q</td>
<td>(Q)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Acoustic Noise</td>
<td>(X)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Thermal Balance</td>
<td>M / X</td>
<td>X</td>
<td>X</td>
<td>---</td>
<td>---</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Thermal Vacuum</td>
<td>Q</td>
<td>---</td>
<td>---</td>
<td>A</td>
<td>A</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Mechanical Functional</td>
<td>M / X</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Electrical Functional</td>
<td>M / X</td>
<td>---</td>
<td>M / X</td>
<td>M / X</td>
<td>M / X</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Optical Functional</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Electrical Test</td>
<td>M / X</td>
<td>---</td>
<td>M / X</td>
<td>M / X</td>
<td>M / X</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>(Grounding, Bonding, isolation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC (Conducted and Radiated</td>
<td>(M) / X</td>
<td>---</td>
<td>X</td>
<td>X conduc</td>
<td>X conduc</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Interference)</td>
<td></td>
<td></td>
<td></td>
<td>only</td>
<td>only</td>
<td></td>
</tr>
<tr>
<td>DC Magnetic Properties</td>
<td>(M) / X</td>
<td>---</td>
<td>---</td>
<td>X</td>
<td>X</td>
<td>All / MPAE</td>
</tr>
<tr>
<td>Alignment</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>M / X</td>
<td>---</td>
<td>(M) / X</td>
<td>M / X</td>
<td>M / X</td>
<td>All / MPAE</td>
</tr>
</tbody>
</table>

Models:

- **QM:** Qualification Model
- **STM:** Structural Thermal Model
- **EEM:** Electrical Engineering Model
- **FM:** Flight Model
- **FS:** Flight Spare Model

Module Tests: To be performed at the responsible institute or manufacturer prior to E-Box integration:

- **M:** Required, no specific test level
- **():** Desirable

Instrument Tests: (Modules integrated in E-Box), to be done at MPAE or test house, supported by the responsible institutes:

- **Q:** Qualification Level
- **A:** Acceptance Level
- **X:** No specific test level
- **():** Desirable
- **---:** Not Required
Vibration testing:
simulates launch loads (structural and acoustic)

Power of ARIANE-5 at launch = 30 million h-p; acoustic pressure level ~145 dB!

Test:
on electrodynamic shaker systems: giant "loudspeaker" coil drive, w/o membrane

Sine test: swept single frequency; control = peak acceleration
Random test: wide-band random "noise" spectrum; control = power spectral density profile

SIR-2 Sine qualification levels (TBC by ISRO)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>In-plane (X and Y)</th>
<th>Frequency</th>
<th>Out-of-plane (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Hz to 20 Hz</td>
<td>9.3 mm(0-p)</td>
<td>5 Hz to 18 Hz</td>
<td>11.5 mm(0-p)</td>
</tr>
<tr>
<td>20 Hz to 70 Hz</td>
<td>15 g const.</td>
<td>18 Hz to 50 Hz</td>
<td>30 g const.</td>
</tr>
<tr>
<td>70 Hz to 100 Hz</td>
<td>8 g const.</td>
<td>50 Hz to 70 Hz</td>
<td>20 g const.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 Hz to 100 Hz</td>
<td>15 g const.</td>
</tr>
<tr>
<td>Sweep rate</td>
<td>2 oct/min</td>
<td></td>
<td>2 oct/min</td>
</tr>
</tbody>
</table>

SIR-2 Random qualification levels (TBC by ISRO)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>In-plane p.s.d. (X and Y axis)</th>
<th>Out-of-plane p.s.d. (Z axis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Hz to 100 Hz</td>
<td>+ 3 dB/octave</td>
<td>+ 3 dB/octave</td>
</tr>
<tr>
<td>100 Hz to 700 Hz</td>
<td>0.1 g²/Hz</td>
<td>0.3 g²/Hz</td>
</tr>
<tr>
<td>700 Hz to 2000 Hz</td>
<td>- 3 dB/octave</td>
<td>- 6 dB/octave</td>
</tr>
<tr>
<td>RMS level</td>
<td>11.8 g</td>
<td>18.2 g</td>
</tr>
</tbody>
</table>
Example: ROSETTA Lander STM on shaker at IABG, Munich

measurement accelerometer wiring
Thermal Vacuum / Thermal Balance Test:

tests thermal behaviour in special test chambers under space conditions
(high vacuum; cold space; solar illumination / planetary thermal emission)

passive protective systems:

- Multi-Layer Insulation (MLI);
- thermal radiators / absorbers
- second-surface mirrors (reject heat against solar irradiation)

active protective systems:

- heaters (electrical or radioactive)
- coolers (Stirling)
- capillary heat pipes (zero-g)
Thermal-Vacuum / Thermal-Balance Test of ROSETTA Lander
at IABG, Munich
ROSETTA flight spacecraft inside Large Space Simulator test chamber at ESTEC, NL
EMC testing of ROSETTA Lander at IABG, Munich:
radiated & conducted emission,
radiated & conducted susceptibility
SUMMARY & General Recommendations:

- Keep track of requirement flowdown!
- Assemble (and maintain!) a good technical team!
- Start design with resource margins (25% min.)!
- Take design reviews serious – they help you!
- Nurse back-up solutions along with the main development!
- Keep documentation up-to-date!!! - you need it after launch!
- Test – test – test!!! (but don’t over-stress the Flight Unit!)
- Hold post-delivery “Lessons Learned“ review with your team!