Laser Altimetry

Reinald Kallenbach

- Measurement Technique
- Instruments
- Planetary Science
- BepiColombo Laser Altimeter Project at MPS
Measurement Technique

28 October 2010

IMPRS lecture
Measurement Technique

- Power Supplies and Thermal Interface
- Diode-pumped Nd:YAG Laser
- Computer and Data Interface
- Ranging and Waveform Electronics
- Detector Filters

Flow: Laser light → Beam Expander → Diode-pumped Nd:YAG Laser → Computer and Data Interface → Ranging and Waveform Electronics → Detector Filters

Trigger signal for timer:

Backscattered light from target surface
Measurement Technique

extra pulse spread:

$$\Delta T_s = \frac{2}{c} \cdot \tan(\Phi + S) \cdot Z \cdot \Delta \Phi$$

c: speed of light

$$\Phi$$: off-nadir pointing angle

S: surface slope

Z: slant range to the surface

$$\Delta \Phi$$: laser divergence angle or uncertainty in pointing angle
Measurement Technique

Link budget (Example BELA)

Number of photoelectrons on detector:

\[
N_r = \left(\frac{E_t \cdot \eta}{h \cdot v} \right) \cdot \left(\frac{A_r}{Z^2} \right) \cdot t_{sys} \cdot t_{atm}^2 \cdot \left(\frac{r_{tar}}{\Omega_{tar}} \right)
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit laser energy</td>
<td>(E_t)</td>
<td>50 mJ</td>
</tr>
<tr>
<td>APD quantum efficiency</td>
<td>(\eta)</td>
<td>0.36</td>
</tr>
<tr>
<td>Photon energy</td>
<td>(h \cdot v)</td>
<td>1.875 \cdot 10^{-19} J</td>
</tr>
<tr>
<td>Receiver telescope area</td>
<td>(A_r)</td>
<td>0.049 m²</td>
</tr>
<tr>
<td>Range to Mercury</td>
<td>(Z)</td>
<td>400 km</td>
</tr>
<tr>
<td>System transmission</td>
<td>(t_{sys})</td>
<td>0.77</td>
</tr>
<tr>
<td>Atmospheric transmission</td>
<td>(t_{atm})</td>
<td>0.9</td>
</tr>
<tr>
<td>Target scattering angle</td>
<td>(\Omega_{tar})</td>
<td>(\pi)</td>
</tr>
<tr>
<td>Target diffuse reflectivity</td>
<td>(r_{tar})</td>
<td>0.25</td>
</tr>
</tbody>
</table>

\[
N_r = 1460 \text{ at } Z = 400 \text{ km to Mercury}
\]
Instruments
Mercury Laser Altimeter (MLA)
Cavanaugh et al. (2007)
Instruments

MLA orbit (Cavanaugh et al., 2007)

[Diagram showing the MLA orbit with labels for dawn-dusk orbit, perigees at ~300 km altitude and 60-70°N latitude, noon-midnight orbit, and orbit insertion details.]
Instruments

MLA Transmitter (Cavanaugh et al., 2007)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>1.064.5 nm ± 0.2 nm</td>
</tr>
<tr>
<td>Pulse energy</td>
<td>20 mJ ± 2 mJ</td>
</tr>
<tr>
<td>Pulse width</td>
<td>6 ns ± 2 ns</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>8 Hz</td>
</tr>
<tr>
<td>Beam divergence (1/e^2)</td>
<td>less than 80 μrad</td>
</tr>
</tbody>
</table>

Error source

<table>
<thead>
<tr>
<th>Error source</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading edge timing</td>
<td>0.06 m</td>
</tr>
<tr>
<td>Clock frequency error (0.1 parts per million)</td>
<td>0.20 m</td>
</tr>
<tr>
<td>Measurement quantization (2.5 ns)</td>
<td>0.11 m</td>
</tr>
<tr>
<td>Pointing angle uncertainty (0.13 mrad)</td>
<td>0.68 m</td>
</tr>
<tr>
<td>Spacecraft orbit knowledge error</td>
<td>0.75 m</td>
</tr>
<tr>
<td>Total (root sum squared)</td>
<td>1 m</td>
</tr>
</tbody>
</table>

28 October 2010

IMPRS lecture
Instruments

Detector: Avalanche Photodiode (APD)

\[
\frac{S}{N} = \frac{I_L^2 \cdot M^2}{2q \cdot (I_L + I_{DG}) \cdot B \cdot M^2 \cdot F(M) + 2q \cdot I_{DS} \cdot B + \frac{4 \cdot k_B \cdot T \cdot B}{R_L}}
\]

where

- \(q \): Charge of the electron
- \(I_L \): Photocurrent at \(M=1 \)
- \(I_{DG} \): Dark current component to be multiplied
- \(I_{DS} \): Dark current component not to be multiplied
- \(B \): Bandwidth
- \(M \): Multiplication ratio (gain)
- \(F \): Excess noise factor
- \(T \): Temperature
- \(k_B \): Boltzmann constant
- \(R_L \): Load resistance
Instruments

MOLA: Mars Orbiter Laser Altimeter

NASA – Mars Global Surveyor MGS
Planetary Science

MOLA: Mars Orbiter Laser Altimeter

NASA – Mars Global Surveyor MGS
Planetary Science
Seasonal variations of Mars polar ice caps

MGS/MOLA

Hubble

Viking I

28 October 2010

IMPRS lecture

12
Laplace resonance Io, Europa, and Ganymed in Jupiter system: Europa diurnal tides

- Love number h_2: vertical displacement of surface relative to height of tidally perturbed potential surface

 \[\text{depends on presence of subsurface ocean} \]

<table>
<thead>
<tr>
<th></th>
<th>no ocean</th>
<th>ocean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europa</td>
<td>0.1</td>
<td>30 m</td>
</tr>
<tr>
<td>Ganymede</td>
<td>0.5</td>
<td>7 m</td>
</tr>
<tr>
<td>Callisto</td>
<td>0.3</td>
<td>5 m</td>
</tr>
</tbody>
</table>

\[\text{Moore & Schubert (2000, 2003); Tobie 2003} \]

- Love number k_2: additional gravitational potential due to displaced mass, relative to tide generating potential

 \[\text{depends on (Wu et al., 2001) thickness of ice shell, rigidity of mantle, density of ocean (not depth), presence outer/liquid core} \]
• X-band Doppler tracking
 0.09 mm/s range rate error
 Goldstone & Madrid stations
 (degree > 20)
 - static and tidal gravity
 - Jupiter attraction
 - Europa Albedo
 - IR thermal radiation
 - 3.55 day forced libration

• Simulations laser altimetry:
 Koch et al. (2009)

Wu et al. (2001): Error of 0.002 in h_2/k_2
corresponds to 1 km thickness of ice shell
Planetary Science

Time-dependent variation of Mercury’s topography due to solar gravitation

3:2 Spin-Orbit Resonance of Mercury

Forced libration

\[
\frac{C_m}{C} = \frac{C_m}{B - A} \times \frac{B - A}{M a^2} \times \frac{M a^2}{C}
\]

Solar tides

\[
\delta r_{\text{tide}} = h_2 F_{\text{nd}}(\psi, R) = h_2 \frac{M_{\text{sun}}}{M_{\text{merc}}} \frac{a^4}{R^3} \left(\frac{3}{2} \cos^2[\psi - \delta] - \frac{1}{2} \right)
\]
Planetary Science

Forced libration of Mercury

![Graph showing the relationship between libration amplitude (arcsec) and core radius (m) with different sulfur concentrations.](image)
Planetary Science
Forced libration of Mercury

![Graph showing the relationship between relative mantle moment of inertia and outer core radius (m) for different sulfur concentrations.](image)
Planetary Science

Tidal amplitude

Love number h

outer core radius (m)

0.1 wt% S

14 wt% S

28 October 2010

IMPRS lecture
BELA at MPS
Thesis by C. Koch – Simulations on Instrument performance
• Simulate observations for different, nominal elliptical orbit of MPO (continuous and/or with data gaps):
 resonant: 910.000 MPO orbits within 1 Mercury year
 non-resonant: 909.234 MPO orbits within 1 Mercury year

• Add tidal elevation.

• Add noise (including small-scale topography, orbital and measurement errors).

• Add offset in longitude due to libration.
BELA at MPS
Assumptions on
Mercury Topography

Martian (Aharonson et al., 2001) & lunar topographic spectral density as reference
Take „topographic measurements“ T_k at a constant frequency:

$$T_k = T(\theta_k, \lambda_k + \Delta \lambda_{\text{libr}}) + \delta r_{tide}(\psi_k) + N_k$$

Deterministic topog. Tidal elevation Noise

$$\Delta \lambda_{\text{libr}} = \phi_0 (\sin M + a_2 \sin 2M + \ldots) = \phi_0 f(M)$$

$$\sum w_k \left[T_k - h_2 F_{tide}(\psi_k) - \sum_{\ell=0}^{\ell_{\text{max}}} \sum_{m=0}^{l_{\ell,m}} p_{\ell,m}^m (\cos \theta_k) \{C_{\ell,m} \cos (m \dot{\lambda}_k) + S_{\ell,m} \sin (m \dot{\lambda}_k)\} \right]^2 \rightarrow \text{Min}$$

$$\sum w_k \left[T_k - h_2 F_{tide}(\Psi_k) - \sum_{l,m=0}^{l_{\text{max}},l_{\text{max}}} P_{l,m}^l (\cos \theta_k) \{C_{l,m} \cos m \dot{\lambda} + S_{l,m} \sin m \dot{\lambda}\} \right]^2 \rightarrow \text{Min}$$

$$w_k \Delta \Phi_{\text{lib}} f_{\text{lib}} (M) \sum_{l,m=0}^{l_{\text{max}},l_{\text{max}}} P_{l,m}^l (\cos \theta_k) \{\hat{C}_{l,m} \cos m \dot{\lambda} + \hat{S}_{l,m} \sin m \dot{\lambda}\}^2 \rightarrow \text{Min}$$
BELA at MPS
Simulation results C. Koch

\[\Delta h_2 \propto l_{\text{inv}}^{-2/3} \]

\[\Delta \Phi_{\text{lib}} \propto l_{\text{inv}}^{-2/3} \]
BELA at MPS
Crossing point analysis

- Large number of crossing points close to the Poles due to MPO’s orbit.
- Amplitude of the tidal Love number approximately 30 cm at the Poles.
- 455/910 tracks are crossing each other within 2/4 Mercury years.
BELA at MPS
Crossing point analysis
BELA at MPS
GALA – Ganymede Laser Altimeter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value JEO</th>
<th>Value JGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi major axis</td>
<td>a</td>
<td>1769 km</td>
<td>2834 km</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>e</td>
<td>0.00001</td>
<td></td>
</tr>
<tr>
<td>Relative orbital period</td>
<td>$T_{\text{JEO/JGO}}$</td>
<td>3819.216 s</td>
<td>7744.294 s</td>
</tr>
<tr>
<td>Inclination</td>
<td>i</td>
<td>89.9 deg</td>
<td></td>
</tr>
</tbody>
</table>

Near-polar orbit of JEO/JGO, 10 Hz repetition rate, 8 km ground track spacing in longitude 1536 x 3072 grid, decomposition spatial and time-dependent topography
Ganymede: dynamo?

- Magnetoconvection
- Remanent magnetization due to Jupiter’s magnetic field
- Internal active dynamo
- Remanent magnetization due to an internal dynamo which is no longer active

„Micro“ Laser I

- Several devices jointly developed by NASA/GSFC and MIT/Lincoln Lab (SLR2000)
- Power:
 - >1 Watt @1064 nm
 - Repetition Rate: up to 16 kHz
- Energy: up to 250 µJ/pulse
- Pulsewidths: 300 to 2200 psec
- Pumped by single GaAs diode laser array at 808 nm (< 20W)
- Passively Q-switched
- Monolithic Structure
 - Thermally bonded Nd³⁺:YAG, Cr⁴⁺:YAG and undoped YAG
 - Coatings applied to crystals
 - Laser resonator < 11 mm in length
 - Can’t misalign
„Micro“ Laser II

BELA heritage

28 October 2010

IMPRS lecture
BELA MPS Zeiss Laser
BELA MPS Laser ZeO Subcons

Contact INO
2740, Einstein Street
Quebec, QC
Canada G1P 4S4
Canada
Phone: 418-657-7006

Products & Services
- Imaging/Image processing (Aerospace)
- Instrument / Measuring systems (Aerospace)
- Laser Technique / Power beams (Aerospace)
- Optronics and Surveillance (Defence)
- Sighting Systems (Defence)
- Research and Development (Defence)
- Research and Development (Space)
- Research and Development (Aerospace)
- Vision / Optical systems (Aerospace)

Signatrans Gesellschaft für Ultraschall-Elektronik mbH
Einsteinstr. 8
89179 Beierstetten
Baden-Württemberg
Bundesrepublik Deutschland

NewTec GmbH
System-Entwicklung und Beratung
Buchenweg 3
D-89284 Pfaffenhofen a. d. Roth
willkommen@newtec.de

Active Space Technologies GmbH i.G.
Rudower Chaussee 29, 12489 Berlin
Ansprechpartner: Herr R. Nadalini

Schwerpunkte:
Beratung und EDV-gestützte Dienstleistungen im Bereich des thermischen und strukturmechanischen Engineering für die Luft- und Raumfahrt und für andere hochtechnologische Sektoren.
BELA MPS Laser SCD test activities
GENERAL BF

BEFORE CYCLING

AFTER CYCLING