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Outline of talk:

Motivation: Provide some background on scattering and thermal radiation to
researchers interpreting observations of asteroid and comet surfaces

. Transversal waves — Polarization must be taken into account! Characterization
of polarization.

. Scattering of electromagnetic radiation by an arbitrary, finite particle in the far-
field zone

. The optical theorem
. Thermal radiation

Diagrammatic representation of scattering processes — scattering by random,
discrete scatterers

. Vector radiative transfer equation
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Outline of talk:

1. Transversal waves — Polarization must be taken into account! Characterization
of polarization.




Polarization

The electromagnetic waves are transversal — Polarization must be taken into account!

1X

Polarization plane
of the two
superimposed
waves of same phase > z = propagation direction of the wave

y

Superimpose two plane waves, one polarized perpendicular to the other:
same phase:
E, = aexp(ik-z —iwt) and E, = a exp(ik-z — iwt),

The resulting wave has amplltude a\2, polarization angle 45° in the x,y plane
and is in phase with the two constituting waves.

90° phase shift:
E, = a exp(ik'z —iwt) and E, = a exp(ik-z - iwt + 1m/2),
The resulting wave is circularly polarized.

Superimpose two plane waves in the same plane, one the negative of the other,
l.e. a phase shift of

E, =aexp(kz—iwt) and E, = a exp(ik-z —iwt + m) :
These two waves will interfere and extinguish each other
(like longitudinal waves do).




Superposition of two waves with orthogonal linear polarization and different pase.




Description of the
polarization state 1.

Coherency (or density) matrix

X

Figure 1.2. Coordinate system used to describe the direction of propagation and the
polarization state of a plane electromagnetic wave.

R I S i1 I S Il £, = [Eo, Eq ] = [a5 exp(i4g), a, exp(i4,)] with a and A real.

To describe polarization, let us form products of quantities that do not vary as fast
as the wave itself:
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Description of the polarization state 2:

Coherency vector J (from the coherency matrix):
complex

¢ permittivity (Ve refractive index)
L permeability

The factor V ¢/ u is frequently omitted.

The Stokes parameters I, O, U, and V are then defined as the elements of a 4 x 1
column vector I, otherwise known as the Stokes vector, as follows:

i EOﬁEE!;{} + EO(pquo ]
EOt‘}‘ 38 T EO(pEg(p
_—E{)‘ﬁ g(a __EO(pEgz?
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Other combinations of E,, and Eqg are possible and are in use. It is, however,
Important, that always pairs with conjugate complex partners are combined.




Quasi-monochromatic light 1:

The previous definition of the coherency and Stokes vectors implies that the waves
are strictly monochromatic, i. e. Ey = [Eqq, Eqy] = [ag €XP(i4y), @, €XP(i4,)] and the
real amplitudes a, and ag, and phases A, and A8 are exactly constant.

But in reality there is no strictly monochromatic wave. Amplitudes and phases vary,
but much less than the oscillating electric field itself.

We must replace the amplitudes and phases themselves by their time averages.
I = EysESs) + {Ey Ef,) = lazy + <afo>a
Q = CEgEGy) — <E0¢E§qo> = <a§> — <aq2g>,
U= —(EqsE8,> — (EooEfs> = —2aa,cos 4),
V=1 Ey,Efs) — 1K(EysES,) = 2{aga,sin 4),

where we have omitted the common factor 1, /e/u and

=] e

I




Quasi-monochromatic light 2:

For strictly monochromatic light we have 12 = Q2 + U? + V2,
For quasi-monochromatic light we have

12 _ QZ L U2 L V2

= 4[<azy<a;y — {aya,cos 4y — (aa,sin 4)*]

4

t+T t+ T
= .T_ZJ dr’ J dt"{[ay(t)]*[a(t")]?

— ag(t)a,t)cos[ A(t')] as(t”)a,(t")cos[A(t")]

— a,(t)a,()sin[A(¢)] a,(")a, (¢ sin[A(")]} =0




Quasi-monochromatic light 3:

Corollary:

Highly monochromatic light like laser light easily produces speckles, caused by
Interference. We expect in such cases the polarization to be high:

12=0Q%+U?+V2=1.
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Outline of talk:

2. Scattering of electromagnetic radiation by an arbitrary, finite particle in the far-
field zone




Scattering by an arbitrary,
finite particle:

The “particle” can be a single entity or a
small group of separate entities.

The particle is embedded in a loss-free
medium (e.g. vacuum).

The incident light enters the particle and
induces electrical dipoles in it.

The dipoles radiate secondary waves
and in this way generate the scattered
radiation. In turn, the generated
radiation influences the strength and
direction of the dipoles.

The Discrete Dipole Approximation
calculates the scattering by directly
determining the dipoles, but | will use
the approach of macroscopic
electromagnetics, i.e. describe the
particle by its index of refraction.

Incident
light
—_—

SCATTERED LIGHT




Assumptions:

1. Time-harmonic, quasi-monochromatic light ~ e-iwt,

2. No frequency redistribution, scattered and incident light have the same frequency.
If radiation energy is transferred to a different frequency this is considered as
absorption.

. Only finite particles are considered.

. Only scattering in far-field zone, i.e. distance of observer » wavelength and extent
of particle.
Bound host medium surrounding the scatterer is homogeneous, linear, isotropic,
and nonabsorbing.
In the following we assume host medium and scattering object as nhonmagnetic:
() = Wy = Yy, Where |, Is the permeability of vacuum.
(Vi < Index 1, V,, < Index 2.)

nt

At the surface of particles the well-known boundary conditions must be observed:
Eangentias @Nd (in the absence of surface charges) D = E, ormal/€ MUSt be continuous.

normal —




Equation to be solved:
V x V x E(r) — k7E(r) = j(r), reVexrY Vine (2.5)

k: wave number, m: refractive index, r position vector
j(r) = k3[m*(r) — 1]E(r), (2.6a)

. 1, re Vexr
i) = {m(r) = k() = myE)my, 1€ Vi, (2.60)

and m(r) is the refractive index of the interior relative to that of the exterior; the
forcing function j(r) obviously vanishes everywhere outside the interior region.

Result equation:

E(r) = E™(r) + kff d3r'G (r, 1) E(r)[m*(r) — 1]

VINT

eik; Ir—r’)

= E"™(r) + k2 (f + EIEV ® V)J d’r'[m?(r') — 1]E(r)
1 Vine

l J

drjr — r'|

In brackets: tenisor, i.e. linear vector function. EM¢(r): incident plane wave.

The result equation can be solved, e.g. by iteration, entering E = EM as a start on the
right side. It must be solved for all possible polarization states of E"(r).




note:
In electrostatics we have for the electric potential @:

@=[d3rp()/Ir-rl (pcharge density),

a similar Green function as in the previous projection.




Outline of talk:

3. The optical theorem




Optical theorem 1.:

Detector: AS is the detector area.

Size of particle « AS « r (distance to scattering object)
Lens and stop define the acceptance angle. Plane

optics in front of the detector (not shown) allows to
measure all Stokes parameters. The lens images the
stop into infinity. Intensity is area x acceptance cone.
Detector 1 looks into direction of the incoming light
and observes the extinction.

Detector 2 observes the scattered radiation.

M

DETECTOR 1

INCIDENT PLANE WAVE
v

SCATTERED SPHERICAL WAVE

Figure 2.3. The response of the collimated detector depends on the line of sight.



Optical theorem 2:

~ X ’ I fey AS _ ..o 5
W, (1) :J dSt-<{S(r')) ~ ¢ —1—2|E“-1 (t)°
AS 2N\ o 7

W, s: Total electromagnetic power received by detector 2

S(r) is energy flow (Poynting vector) in any direction away from direction of incident
wave.

dS element on detector surface. AS detector area.
Esca, electric field in embedding medium in the far field (depends on direction).

~ NG ~inc ’ 1 1 ) 2 ~ i 3 —
W, (R ):J dSA™- (S(r)> ==AS [LBing2 — =T[5 ppEsding - Birer] 4 0(-2),
AS 2 Ho kl Ho

W, (ni"€): Total electromagnetic power received by detector 1.
First term like scattered radiation,

second term is an attenuation term independent of AS.




Optical theorem 3:

Energy conservation in the scattering process:

Energy is removed from the incoming beam, partly absorbed in the particle
(i.e. transferred to another frequency), partly scattered.

Extinction: The light in the incoming beam, after it has passed the particle
(forward scattering):

Scattering (except forward scattering)

Optical theorem: The energy in the scattered light (except forward scattering)
equals the energy removed by interference between incoming and forward
scattered light.

\N_e>§t = Wscat + Wabs _ _
Divide by %2 Ve, Iy, IE™I? to get the cross-sections C,,,, C...;, and C,, ..
The scattering cross-sections are always larger than the geometrical ones.




Phase matrix and extinction matrix

I"s'l...cl(] nSCd) — iZ( sCca "‘ln(.‘)llﬂL

et b ilall] Stokes vector of
scattered radiation
Z Phase matrix

|(]ﬁmc)AS — IincAS L K(ﬁinc)linc 4 O(l" _,2)’

I(r 1aad) Stokes vector received by Detector 1
B “Extinguished” radiation
K extinction matrix
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Digression:

Extinction is possible without absorption:
Examples: Interstellar dust and Schott® shortcut filter glasses
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4. Thermal radiation




The thermal radiation emitted by the particle is characterized by a four-component column

Stokes vectorm pointing radially away from the particle in the far field.
In this thought experiment the particle is embedded in a cavity. In the cavity

the radiation is a collection of quasi-monochromatic, unpolarized, incoherent
beams propagating in all directions with the Planck blackbody energy distribution

7/// 1T, 0)ASAQ =

AS The detector is in the far field of the
: K);{ particle.

e The cavity size is much larger than the

distance of the detector from the

particle.

W)

(a)

The acceptance angle of the detector
IS selected to cover the particle in its
full field.

PARTICLE (b)

Figure 2.4. (a) Cavity, particle, and electromagnetic radiation field in thermal equilibrium.
(b) Illumination geometry.




In the absence of the particle the polarized signal per unit frequency interval
measured by the detector is EXEIRANATE)

be cattered

\ ETECTO

Radlatlon
he “extingdished”
0777, /

In the presence of the particle the polarized signal measured by the detector is

1L(T, 0)AS AQ — K(t, o)l (T, w)AQ + K (T, T, w)ALQL + AQ[ dr'Z(t, ', o)l (7, w)
4r
Planck cavity =~ Radiation Radiation emitted Radiation scattered
radiation “extinguished” by particle by particle
by particle




But the cavity is in equilibrium with the particle, i.e. the particle should not add or take
away radiation from the cavity

0= — K(E, o)l (T,0)AQ + K F, T, 0)AQ + AQ f dt'Z(E, ¢, o) (T, o)

4

Kei.(fa T'.' G)] = Ib( Ta G))Kil(fa (!J) T Ib(Ta CU) j df,zil(f: iya C!))_,

47

This is the result.
This equation must be considered for all directions ¢ and for all frequencies w.

Tell me your scattering properties and | will tell you the thermal radiation you emit.

The thermal emission can be anisotropic and polarized.

Because of its thermal radiation a force
(analogous to the radiation force acting in case of scattering)
IS exerted on the particle.

. | . |
F(T) = — - f dcz)j ditK_,(F, T, w).
" JO 4




More on thermal emission can be found in the book:

Tsang, L., J. A. Kong, K.-H. Ding, “Scattering of electromagnetic waves, Theories and
applications”, Wiley, 2000, Chapter 3.5, “Fundamentals of random scattering”,
“Passive remote sensing”, in particular about the fluctuation dissipation theorem.

Also in the older book:

Tsang, L., J. A. Kong, R. T. Shin, “Theory of microwave remote sensing”, Wiley, 1985,
there is a lot about thermal emission, as microwaves are mostly emitted via thermal
emission.
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5. Diagrammatic representation of scattering processes — scattering by random,
discrete scatterers




Up to now we have treated only the scattering in the far field.
The methods to be shown very briefly now, can in principle be applied to
dense media as well.

In the past | have collaborated with Viktor Tishkovets, Charkiv, Ukraina.
There has been some progress concerning compact random media.




Scattering by many, not necessarily equal particles.
Particles may be densely packed.
Scattered light illuminates other particles and is scattered by them.

We consider the scattering in such a cloud as a sequence of scattering events on
individual particles. Consequently we consider scattering orders, single scattering,
double scattering, ... , multiple scattering.

a is the phase angle, i.e. the angle light source — particle — observer.




Single scattering

Electric field =E;, + E, +Ej

observer __
llluminating source




Double scattering

Note: For small phase
Electric field = E;, + Ey;  + Ep+ Egp + ... angles a waves E,, and E,,;
will always be coherent, no
matter if the distance
between particles 1 and 2 is
comparable with or larger
than the wavelength. This
causes the coherent
backscattering effect.

a

observer

luminating source 1 FIple scattering ...




For the electric field of our 3-particle cluster we have:

E=FE, +E,+E3+E,+E;; +Ej3+Ey +Ep+Egy + (eq. 1)
+ Ejos+ Epgp t Egpp t Eygp + By + Epyp t
+ B + Bt Eppp + By + Egpp + By

For a larger cluster we must take into account the higher scattering orders.

To calculate the Stokes parameters we must form the expressions

| = <Epar E*par> i <Eperp E*perp>
Q = <Epar E*par> - <Eperp E*perp>
L= <Epar E*perp> i <Eperp E*par>
V= <Epar E*perp> - <Eperp E*par>

From the linear sum of the electric fields we get bilinear sums for the Stokes
parameters in which each term of eq. (1) is combined with all other terms.




Consider pairs of paths through the cloud of particles and let them interfere.

Most of the paths be can considered uncorrelated, i.e. they will not interfere.




Diagrammatic representation of scattering scenarios

2 waves interact (full and dotted lines).

n, p and y, v can have the values 1, i.e. there are 4 components for the 4 Stokes
parameters for each wave.

(a) Single scattering

(b) Ladder diagrams: incoherent (diffuse) scattering

(c) Cyclical diagram (coherent opposition effect)

(d) and (e): Generalization of (b) for the interference between different scattering
orders (possible only in a dense medium with particles of size comparable to or
less than the wavelength).

(f): Generalization of (c) for the interference of waves scattered by neighboring
particles.




Diagrammatic representation of scattering scenarios
(continued)

Cases a-f: The later the letter in the ABC the denser the medium must be to
cause an observable effect.

Sparse medium:
Only single scattering is important: Terms <gE,E* > = O for i#k.

“Less sparse” medium:
Multiple scattering becomes important, but only ladder-type diagrams, and in
the opposition range, the cyclical diagrams.

Dense medium:
If distance between scatterers < A, diagrams a — f are important.
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6. Vector radiative transfer equation




Mishchenko, M. I.: “Vector
radiative transfer equation for
arbitrarily shaped and
arbitrarily oriented particles: a
microphysical derivation from
statistical electro-magnetics”,
Applied Optics 41 7114-7134,
2002.

To derive the VRTE, I had to make the following

approximations.

¢ Assume that each particle 1s located in the far-
field zones of all other particles and that the obser-
vation point is also located in the far-field zones of all
the particles that form the scattering medium.

¢ Neglect all scattering paths that go through a
particle two and more times (the Twersky approxi-
mation).

* Assume that the position and state of each par-
ticle are statistically independent of each other and of
those of all other particles and that the spatial dis-
tribution of the particles throughout the medium is
random and statistically uniform.

¢ Assume that the scattering medium is convex,
which assured that a wave exiting the medium can-
not reenter it.

e Assume that the number of particles N that
form the scattering medium is large and replace all
factors of the type (N — n)!/(N — n — k)! by N*.

¢ Ignore all the diagrams with crossing connec-
tors in the diagrammatic expansion of the dyadic
correlation function (the ladder approximation).

This Is the end, thank you for your attention!




