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Outline of talk:

Motivation: Provide some background on scattering and thermal radiation to 
researchers interpreting observations of asteroid and comet surfaces

1. Transversal waves → Polarization must be taken into account! Characterization 
of polarization.

2. Scattering of electromagnetic radiation by an arbitrary, finite particle in the far-
field zone

3. The optical theorem

4. Thermal radiation

5. Diagrammatic representation of scattering processes – scattering by random, 
discrete scatterers

6. Vector radiative transfer equation



Literature:

Mishchenko, M.I., L.D. Travis, A. A. Lacis: “Scattering, absorption and emission of light by small 
particles”, Cambridge Univ. Press, 2002

Bohren, C. F., D. R. Huffman: “Absorption and scattering of light by small particles”, Wiley, 1983

Tsang, L., J. A. Kong, R. T. Shin, “Theory of microwave remote sensing”, Wiley, 1985

Tsang, L., J. A. Kong, K.-H. Ding, “Scattering of electromagnetic waves, Theories and 
applications”, Wiley, 2000

Ishimaru, A., “Wave propagation and scattering in random media”, Academic Press, 1978

Morse, Ph. M., and H. Feshbach, “Methods of theoretical physics”, 2 Vols., McGraw-Hill, 1953-

In my presentation I follow mainly the book of Mishchenko et al.
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The electromagnetic waves are transversal → Polarization must be taken into account!

Superimpose two plane waves, one polarized perpendicular to the other:
same phase:
Ex = a exp(ik·z – iωt) and Ey = a exp(ik·z – iωt), 
The resulting wave has amplitude a√2, polarization angle 45° in the x,y plane
and is in phase with the two constituting waves.

y

x

z = propagation direction of the wave

Polarization plane
of the two
superimposed
waves of same phase

Polarization

Superimpose two plane waves in the same plane, one the negative of the other,
i.e. a phase shift of π:

Ex = a exp(ik·z – iωt) and Ex = a exp(ik·z – iωt + π) :
These two waves will interfere and extinguish each other 
(like longitudinal waves do).

90° phase shift:
Ex = a exp(ik·z – iωt) and Ey = a exp(ik·z - iωt + π/2), 
The resulting wave is circularly polarized.



Superposition of two waves with orthogonal linear polarization and different pase.



Description of the 
polarization state 1:

Coherency (or density) matrix

E0 = [E0θ, E0φ] = [aθ exp(i∆θ), aφ exp(i∆φ)] with a and ∆ real. 

To describe polarization, let us form products of quantities that do not vary as fast 
as the wave itself:



Description of the polarization state 2:

Coherency vector J (from the coherency matrix):

ε permittivity (√ε refractive index)        
µ permeability

The factor √ ε/ µ is frequently omitted.

Other combinations of E0φ and E0θ are possible and are in use. It is, however, 
important, that always pairs with conjugate complex partners are combined.

complex

real



Quasi-monochromatic light 1:
The previous definition of the coherency and Stokes vectors implies that the waves 
are strictly monochromatic, i. e. E0 = [E0θ, E0φ] = [aθ exp(i∆θ), aφ exp(i∆φ)] and the 
real amplitudes aφ and aθ, and phases ∆φ and ∆θ are exactly constant.

But in reality there is no strictly monochromatic wave. Amplitudes and phases vary, 
but much less than the oscillating electric field itself.

We must replace the amplitudes and phases themselves by their time averages.



Quasi-monochromatic light 2:

For strictly monochromatic light we have I2 = Q2 + U2 + V2.

For quasi-monochromatic light we have

≥ 0



Quasi-monochromatic light 3:

Corollary:
Highly monochromatic light like laser light easily produces speckles, caused by 
interference. We expect in such cases the polarization to be high:

I2 = Q2 + U2 + V2 ≈ 1.
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Incident
light

Incident
light

Scattering by an arbitrary, 
finite particle:

The “particle“ can be a single entity or a 
small group of separate entities.

The particle is embedded in a loss-free 
medium (e.g. vacuum). 

The incident light enters the particle and 
induces electrical dipoles in it. 
The dipoles radiate secondary waves 
and in this way generate the scattered 
radiation. In turn, the generated 
radiation influences the strength and 
direction of the dipoles.

The Discrete Dipole Approximation 
calculates the scattering by directly 
determining the dipoles, but I will use 
the approach of macroscopic 
electromagnetics, i.e. describe the 
particle by its index of refraction.

Vint, everything else is Vext



Assumptions:
1. Time-harmonic, quasi-monochromatic light ~ e-iωt.
2. No frequency redistribution, scattered and incident light have the same frequency. 

If radiation energy is transferred to a different frequency this is considered as 
absorption. 

3. Only finite particles are considered.
4. Only scattering in far-field zone, i.e. distance of observer » wavelength and extent 

of particle.
5. Bound host medium surrounding the scatterer is homogeneous, linear, isotropic, 

and nonabsorbing.
6. In the following we assume host medium and scattering object as nonmagnetic: 

µ2(r) ≡ µ1 = µ0, where µ0 is the permeability of vacuum.
(Vint ← index 1, Vext ← index 2.)

At the surface of particles the well-known boundary conditions must be observed:
Etangential and (in the absence of surface charges) Dnormal = Enormal/ε must be continuous.



Equation to be solved:

In brackets: tensor, i.e. linear vector function. Einc(r): incident plane wave.

Result equation:

The result equation can be solved, e.g. by iteration, entering E = Eint as a start on the 
right side. It must be solved for all possible polarization states of Einc(r).

k: wave number, m: refractive index, r position vector



note:
In electrostatics we have for the electric potential Φ:

Φ = ∫ d3 r ρ(r’) / Ir - r’I (ρ charge density),

a similar Green function as in the previous projection.
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Lens and stop define the acceptance angle. Plane 
optics in front of the detector (not shown) allows to 
measure all Stokes parameters. The lens images the 
stop into infinity. Intensity is area x acceptance cone.
Detector 1 looks into direction of the incoming light 
and observes the extinction.
Detector 2 observes the scattered radiation.

Optical theorem 1:
Detector: ∆S is the detector area. 
Size of particle « ∆S « r (distance to scattering object)



Optical theorem 2:

W∆S: Total electromagnetic power received by detector 2
S(r) is energy flow (Poynting vector) in any direction away from direction of incident 
wave.
dS element on detector surface. ∆S detector area. 
Esca

1 electric field in embedding medium in the far field (depends on direction).

W∆S (ninc): Total electromagnetic power received by detector 1.
First term like scattered radiation, 
second term is an attenuation term independent of ∆S.



Optical theorem 3:

Energy conservation in the scattering process:

Energy is removed from the incoming beam, partly absorbed in the particle 
(i.e. transferred to another frequency), partly scattered.

Extinction: The light in the incoming beam, after it has passed the particle 
(forward scattering):

Scattering (except forward scattering)

Optical theorem: The energy in the scattered light (except forward scattering) 
equals the energy removed by interference between incoming and forward 
scattered light.

Wext = Wscat + Wabs
Divide by ½ √ε1/µ0 IEincI2 to get the cross-sections Cext, Cscat, and Cabs.
The scattering cross-sections are always larger than the geometrical ones.



Phase matrix and extinction matrix

Stokes vector of 
scattered radiation
Z Phase matrix

Stokes vector received by Detector 1
“Extinguished” radiation
K extinction matrix



Digression:

Extinction is possible without absorption:
Examples: Interstellar dust and Schott® shortcut filter glasses
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The thermal radiation emitted by the particle is characterized by a four-component column 
Stokes vector                    pointing radially away from the particle in the far field. 
In this thought experiment the particle is embedded in a cavity. In the cavity
the radiation is a collection of quasi-monochromatic, unpolarized, incoherent 
beams propagating in all directions with the Planck blackbody energy distribution

The detector is in the far field of the 
particle.
The cavity size is much larger than the 
distance of the detector from the 
particle.

The acceptance angle of the detector 
is selected to cover the particle in its 
full field.



In the absence of the particle the polarized signal per unit frequency interval
measured by the detector is

In the presence of the particle the polarized signal measured by the detector is

Planck cavity
radiation

Radiation
to be “extinguished”

Radiation to 
be scattered

Radiation emitted
by particle

Radiation 
“extinguished”
by particle

Radiation scattered 
by particle



But the cavity is in equilibrium with the particle, i.e. the particle should not add or take 
away radiation from the cavity

0 =

or

This is the result. 
This equation must be considered for all directions ȓ and for all frequencies ω.

The thermal emission can be anisotropic and polarized.

Because of its thermal radiation a force 
(analogous to the radiation force acting in case of scattering) 
is exerted on the particle.

Tell me your scattering properties and I will tell you the thermal radiation you emit.



More on thermal emission can be found in the book:
Tsang, L., J. A. Kong, K.-H. Ding, “Scattering of electromagnetic waves, Theories and 
applications”, Wiley, 2000, Chapter 3.5, “Fundamentals of random scattering”, 
“Passive remote sensing”, in particular about the fluctuation dissipation theorem.

Also in the older book:
Tsang, L., J. A. Kong, R. T. Shin, “Theory of microwave remote sensing”, Wiley, 1985, 
there is a lot about thermal emission, as microwaves are mostly emitted via thermal 
emission.
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Up to now we have treated only the scattering in the far field.
The methods to be shown very briefly now, can in principle be applied to 
dense media as well.

In the past I have collaborated with Viktor Tishkovets, Charkiv, Ukraina. 
There has been some progress concerning compact random media.



Scattering by many, not necessarily equal particles.
Particles may be densely packed. 
Scattered light illuminates other particles and is scattered by them.

We consider the scattering in such a cloud as a sequence of scattering events on 
individual particles. Consequently we consider scattering orders, single scattering, 
double scattering, … , multiple scattering.

α is the phase angle, i.e. the angle light source – particle – observer. 



Illuminating source
observer

Single scattering

Electric field = E1

1

2

3

+ E2 + E3

α



Illuminating source
observer

Double scattering

Electric field = E12 + E21

1

2

3

+ E23 + E32 + ...
Note: For small phase 
angles α waves E12 and E21
will always be coherent, no 
matter if the distance 
between particles 1 and 2 is 
comparable with or larger 
than the wavelength. This 
causes the coherent 
backscattering effect. 

If and only if the distance 
between particles 1 and 2 
is comparable to λ waves 
E1 and E2 are coherent with 
waves E12 and E21. 

Triple scattering ...

α



For the electric field of our 3-particle cluster we have:

E = E1 + E2 + E3 + E12 + E21 + E13 + E31 + E23 + E32 +                   (eq. 1)
+ E123 + E231 + E312 + E132 + E321 + E213 +
+ E121 + E131 + E212 + E232 + E313 + E323

For a larger cluster we must take into account the higher scattering orders.

To calculate the Stokes parameters we must form the expressions

I = <Epar E*par> + <Eperp E*perp>
Q = <Epar E*par> - <Eperp E*perp>
U = <Epar E*perp> + <Eperp E*par>
V = <Epar E*perp> - <Eperp E*par>

From the linear sum of the electric fields we get bilinear sums for the Stokes 
parameters in which each term of eq. (1) is combined with all other terms.



Consider pairs of paths through the cloud of particles and let them interfere.

Most of the paths be can considered uncorrelated, i.e. they will not interfere.



2 waves interact (full and dotted lines).
n, p and µ, ν can have the values ±1, i.e. there are 4 components for the 4 Stokes 

parameters for each wave.
(a) Single scattering 
(b) Ladder diagrams: incoherent (diffuse) scattering
(c) Cyclical diagram (coherent opposition effect)
(d) and (e): Generalization of (b) for the interference between different scattering 

orders (possible only in a dense medium with particles of size comparable to or 
less than the wavelength). 

(f): Generalization of (c) for the interference of waves scattered by neighboring 
particles.

Diagrammatic representation of scattering scenarios
important for dense media



Diagrammatic representation of scattering scenarios
(continued)

Cases a-f: The later the letter in the ABC the denser the medium must be to 
cause an observable effect.

Sparse medium: 
Only single scattering is important: Terms <EiE*k> = 0 for i≠k.

“Less sparse” medium: 
Multiple scattering becomes important, but only ladder-type diagrams, and in 
the opposition range, the cyclical diagrams.

Dense medium: 
If distance between scatterers ≤ λ, diagrams a – f are important.
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Mishchenko, M. I.: “ Vector 
radiative transfer equation for 
arbitrarily shaped and 
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microphysical derivation from 
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Applied Optics 41 7114-7134, 
2002.

This is the end, thank you for your attention!


