Why is the Sun’s corona so hot and violent?

Lecture 6: Coronal heating and flares
The hot corona: a brief history

- Eclipse of 1868: spectral line not seen in lab. found in solar spectrum. Norman Lockyer \(\Rightarrow\) belongs to a new element, Helium (after Helios, greek sun god)

- Eclipse of 7 Aug. 1869: discovery of a line at 530.3 nm in corona (green line) also never seen in the lab. Must be another unknown element \(\Rightarrow\) Coronium

- 1930s: Walter Grotrian and Bengt Edlén recognized that the green line belongs to Fe XIV (Fe\(^{+13}\))

\(\Rightarrow\) No element coronium, but corona must be extremely hot \(\approx 10^6\) K!
Coronal temperature

- Repetition (from lecture 4)
- Different temperatures & densities co-exist in the corona
- Temperature range: <1 MK (Coronal hole) to 10 MK (act. region)
- Range of e\(^-\) densities (inner corona):
 - Loop: \(10^{10} \text{ [cm}^{-3}\text{]}\)
 - coronal hole: \(10^7 \text{ [cm}^{-3}\text{]}\)
Coronal heating: required energy fluxes

- Energy flux required to heat corona depends on type of region:
 - Quiet Sun: 3×10^5 erg cm$^{-2}$ s$^{-1}$
 - Active region: $1-2 \times 10^7$ erg cm$^{-2}$ s$^{-1}$
 - Coronal hole: 8×10^5 erg cm$^{-2}$ s$^{-1}$
 - Average corona: 10^6 erg cm$^{-2}$ s$^{-1}$

- Energy flux to heat chromosphere: 10^7 erg cm$^{-2}$ s$^{-1}$
 $\approx 10 \times$ average energy flux for corona ($10^5 \times$ higher density in chromosphere)

- Photosphere radiates 6.3×10^{10} erg cm$^{-2}$ s$^{-1}$

- Units: 10^5 erg cm$^{-2}$ s$^{-1} = 100$ W m$^{-2}$
Solar corona: not heated by radiation

While surface is \(\approx 6,000 \, \text{K} \), temp. in corona reaches \(\approx 2 \times 10^6 \, \text{K} \)

Corona cannot be heated to \(10^6 \, \text{K} \) by Sun’s radiation (violates 2nd law of thermodyn.)

Another mechanism is needed to heat it

Convection produces acoustic waves: do they heat the corona?
Plasma β: solar corona is a magnetosphere

Field dominates $\beta < 1$
Gas dominates $\beta > 1$

Figure 1. Ratio of gas pressure to magnetic pressure (β) as a function of height. (Gary 2000)
Flux tubes, canopies, loops & funnels

Coronal hole: open field lines

X-ray corona: closed field lines

Flux tubes
Coronal loops are closed field lines in the corona. Closed magnetic flux must be *filled with hot plasma* to be called a *coronal loop*.

Loops are the basic building blocks of closed-field corona.

Loop temps range from below 0.1MK to 10MK.

Observations in a given spectral band sample radiation in a narrow range of temperatures. A typical image show only a small fraction of all loops.

Loops at 0.9MK (TRACE Fe IX 171Å)
Loops at 3 temperatures

Fe XIV 211 Å

Fe IX/X 171 Å

Fe XII 193 Å
Yellow lines: First stereoscopic reconstruction of coronal loops observed by the two STEREO spacecraft looking at the Sun from different directions.

Red lines: Magnetic field extrapolations starting from magnetogram on solar surface

Feng et al. 2007
Structure of Cool Magnetic Loops

Magnetic loops deduced from measurements of He I 10830 Å Stokes profiles in an emerging flux region.

Left projection: Field strength

Right projection: Vertical velocity

Andreas Lagg
Stages involved in coronal heating

- Three stages of coronal heating:
 - **Generation** or storage of mechanical and magnetic energy: photosphere
 - **Transport** of mechanical and magnetic energy: from photosphere via chromosphere and TR to corona
 - **Release** of mechanical and magnetic energy: corona

- A fourth stage is:
 - The **reaction of the atmosphere** to the heating
Coronal heating mechanisms

- Heating mechanisms associated with magnetic field are divided into 3 classes

 - **AC mechanisms**: wave heating (energy transported by waves, dissipated in shocks or by ohmic heating)

 - **DC mechanisms**: ohmic dissipation at current sheets due to finite resistivity

 - **Impulsive heating or nanoflare heating**: heating by magnetic reconnection: acceleration of particles to supersonic speeds. Heating at shocks, etc.
Ohmic heating

- Ohmic dissipation of magnetic energy acts where resistivity is finite and electric current is large.

- Heating rate: \(H \sim \eta j^2 \)

- \(\eta \sim \sigma^{-1} \) = resistivity (magnetic diffusivity)

- \(j = (c/4\pi) \nabla \times B \) = electric current density

- Heating is large where currents are large, i.e. where the field changes on small length scales, so-called tangential discontinuities, or electric current sheets

- Ohmic heating: important for AC & DC mechanisms
AC mechanism: Flux tube waves

Compressible Restoring force: Magnetic and thermal pressure (magneto-acoustic)

\[c_T^2 = \frac{c_S^2 c_A^2}{c_S^2 + c_A^2} \]

\[c_K^2 = \frac{\rho_i c_A^2}{\rho_i + \rho_e} \]

\[c_A = \frac{B}{\sqrt{4\pi\rho}} \]

(Mainly) Incompressible

Restoring force: Magnetic curvature force (tension)

Longitudinal (Sausage) Transverse (Kink) Torsional (Alfvén)
Evidence of waves in solar atmosphere

Kink-mode wave in spicules

Propagating Alfven (or possibly kink) waves in Corona
How are flux tube waves excited?

Interaction of convective flow with magnetic field

Compression Shear Vortex flow

Longitudinal Transverse Torsional
Wave dissipation mechanisms

- Dissipation means that the ordered motions of waves are converted into disordered motions of particles (heat). It occurs at small scales!

- **Longitudinal** (magnetoacoustic): Dissipation in shocks (very high densities, very large gradients)

- **Alfvenic** (incompressible) waves: Dissipation in presence of magnetic field gradient. Leads to current sheets \Rightarrow ohmic dissipation
 - Phase mixing: wave oscillates perpendicular to ν_A gradient
 - Resonant absorption: wave oscillates parallel to ν_A gradient
Wave dissipation mechanisms

Ulmschneider 1998

Phase mixing:
formation of small scales as waves in neighbouring pixels get out of phase ($v_A \sim B$)

Resonant absorption: Formation of small scales due to wave front tilting

Wave oscillates in y direction

Wave oscillates in x direction
Coronal heating: DC mechanisms

- Slow build up of magnetic energy and its non-catastrophic release

- Energy release (dissipation) possible at current sheets = tangential discontinuities of magnetic field = sharp boundaries between magnetic field lines pointing in different directions

- Ohmic dissipation: gradual energy release; efficient at very small scales
Example of magnetic energy build-up

Example of braiding for predefined footpoint motions of a loop: oppositely directed twists at the two footpoints

Potential field: lowest energy density

Increasing twist

Force-free field: high energy density

Sakurai 1979
Braided fields

- Parker (1972): Flows in photosphere move footpoints of coronal field lines around
- Random flows \rightarrow small-scale braiding of field
- The braided fields carry large currents: $j \sim \nabla \times B$
- Ohmic dissipation is effective at locations of large j: $H \sim \eta j^2$
MHD simulations of footpoint motions

Evolution of granulation moves magnetic field: random walk

Intensity \(\langle B \rangle = 200 \text{G} \) B
Simulation of DC coronal heating

Coronal loops maintained at MK temperatures by current dissipation at current sheets

\[\uparrow \]

Braiding of coronal magnetic field lines \rightarrow current sheets

\[\uparrow \]

Interaction of magnetic flux with convection: Magnetic footpoint motions

Gudiksen & Nordlund (2002)
Parker (1972)
Electric current sheet near base of corona

First observed electric current sheet (tangential discontinuity of magnetic vector) at base of corona in emerging flux region

Figure:
Surface: magnetic field strength (note the valley)
Colour: current density

Observed using He I 10830 Å polarimetry

Solanki et al. 2003, Nature
Coronal heating: nanoflare heating

- Build-up of magnetic energy through
 - footpoint motions (random or ordered, e.g. shearing)
 - emergence of fresh magnetic flux

- Catastrophic release of excess magnetic energy through magnetic reconnection

- Energy release is visible as brightening: flare or microflare

Flare: artist's impression
Conditions for magnetic reconnection

- Magnetic tangential discontinuities (e.g. X-type configuration)
- Opposite polarity field lines are pushed towards each other
- Magnetic energy: after reconnection < before reconnection.

→ Magnetic energy converted mainly to kinetic energy of gas
Evidence for reconnection: Explosive events

SUMER Si IV

Reconnection

Observer
The missing energy problem

- There is an insufficient number of flares or even microflares to heat the corona

 Hypothetical nanoflares needed in large numbers

- Extrapolate to lower energies:

 - Sufficient energy to heat if power law exponent $\alpha > 2$
 - Most obs. give $\alpha < 2$

Aschwanden et al. 2000
Coronal brightness fluctuations: microflares

a SUMER time series of quiet Sun. All variations interpreted as nanoflares (proposed by Parker 1983 to heat the corona)

b synthetic light curve produced under the assumption that all emission is due to nanoflares (very simple model)
Coronal brightness fluctuations: microflares

a SUMER time series of quiet Sun. All variations interpreted as nanoflares (proposed by Parker 1983 to heat the corona)

b Synthetic light curve produced under the assumption that all emission is due to nanoflares (very simple model)

Best correspondence with obs. is achieved for $\alpha \approx 2.5$

Huge number of smallest micro- + nanoflares \Rightarrow background emission
Reaction of atmosphere to heating

- **So far:** briefly considered energy transport (from photosphere to corona) and release (in corona)
- **Now:** how does solar atmosphere react to heating?
- Reaction depends strongly on magnetic structure, in particular open or closed field regions
- In general: atmosphere must remove the energy from the place where it is deposited
- Energy transport in corona: thermal conduction, radiation, particle acceleration (reconnection)
Open and closed magnetic flux

Closed flux: slow solar wind

Most of the solar flux returns to the solar surface within a few R_\odot (closed flux)

A small part ($\approx 5\%$) of the total flux through the solar surface connects as “open flux” to interplanetary space

Open flux: fast solar wind
Energy budget: Open & closed coronal field

Assume the same energy input into open and closed regions:

almost ALL emission we see on the disk outside coronal holes originates from magnetically closed structures (loops)!

\[
\begin{align*}
F_H &= \text{Energy flux heating the gas; } \\
F_q &= \text{Conductive energy flux; } \\
F_{SW} &= \text{Solar wind flux}
\end{align*}
\]

kindly provided by Hardi Peter
Heat conduction

- In the corona and transition region main method of heat transport is thermal conduction by electrons. Conducted heat flux F_c for fully ionized gas (Spitzer & Härms 1953):

$$F_c = \kappa_e T_e^{5/2} \nabla T_e$$

where κ_e is heat conduction coefficient and T_e is e^- - temp.

- Clearly, F_c increases with temperature and with temperature gradient.

- In magnetized atmosphere: conduction is far more effective along magnetic field, since e^- can flow freely, than across it (motion of e^- is limited to gyro-radius).
Radiation in the corona

- Corona is \(\approx \) optically thin: emitted photons are generally not reabsorbed in corona
- No radiative transfer needed. Atomic processes are sufficient
- Main atomic processes in corona (many collisions, weak radiation):
 - Collisional excitation of atom or ion, \(X \), followed by radiative decay:
 \[
 X + e^- \rightarrow X^* + e^-
 \]
 \[
 X^* \rightarrow X + h\nu
 \]
 (works best for \(n_e > 10^8 \text{ cm}^{-3} \))
 \(\Rightarrow \) Line intensity: \(I_\lambda \sim n_e^2 \)
 - Resonant scattering (fluorescence):
 \[
 X + h\nu \rightarrow X^* \rightarrow X + h\nu
 \]
 \(\Rightarrow \) Line intensity: \(I_\lambda \sim n_e \)
 - Collisional ionisation followed by radiative recombination:
 \[
 X^{+z} + e^- \rightarrow X^{+z+1} + 2\ e^-
 \]
 \[
 X^{+z} + e^- \rightarrow X^{+(z-1)*} \rightarrow X^{+z-1} + h\nu
 \]
 \(\Rightarrow \) Continuum intensity
Transitions forming lines and continua: scattering

- Radiative excitation
- De-excitation, b-b transition: Emission line
- Absorbed photon
- Emitted photon in different direction

Energy: increases radially outwards
Radiation in the corona II

- Intensity of typical coronal spectral lines depends on

 - **temperature**, since \(+m\) ionization state of atom only exists in a given temperature range

 - **gas density \(\sim e^-\) density**: more atoms/vol \(\Rightarrow\) more emission

 - **\(e^-\) density**: more \(e^-/\)volume \(\Rightarrow\) more collisions with atoms \(\Rightarrow\) more atoms get excited to higher level \(\Rightarrow\) more emission

 - **volume**: larger the emitting volume \(\Rightarrow\) more atoms \(\Rightarrow\) more emission

- Intensity \(\sim\) Emission Measure \((\times\) atomic factors\):

 \[
 EM = \int_V n_e^2 \, dV \sim \int_h n_e^2 \, dh = \int_h n_e^2 \left(\frac{dT}{dh}\right)^{-1} \, dT
 \]

 \(\Rightarrow\) Radiative cooling most effective in active regions & in chromosphere (high \(n_e\))
Dependence of ionization states on temperature

Example: ionization balance of Oxygen

Emission measure & formation of transition region

- Emission measure is low in corona!
- Emission measure is high in lower TR and chromosphere
- Consequently, energy deposited in corona is transported down till it can be radiated away in lower TR and chromosphere
- Downward transport if via thermal conduction

Various reconstructions of the emission measure in the solar corona and transition region
Transition region structure due to coronal heating

- Figure: temperature structure of TR assuming all heat deposited in corona is conducted down to chromosphere (which has sufficiently strong spectral lines to radiate it away)
- Different curves correspond to different coronal heating rates
- Higher heating rate \Rightarrow hotter corona \Rightarrow transition region moves down \Rightarrow higher density \Rightarrow stronger TR spectral lines
- Curves become flat at 20 kK \Rightarrow Lyα radiates all energy away

For low T conduction is inefficient \Rightarrow ∇T must increase \Rightarrow sharp lower TR

$F_{m0} = 100 \text{ W m}^{-2}$ (chain curve), $F_{m0} = 500 \text{ W m}^{-2}$ (broken curve), $F_{m0} = 1000 \text{ W m}^{-2}$ (dotted curve), $F_{m0} = 3000 \text{ W m}^{-2}$ (full curve).

Hansteen 2000
Solar Flares

- Sudden localized and transient release of energy
- Maximum energy of 10^{32} to 10^{33} erg released in 10–1000 s
- Only a fraction of the released energy is radiated directly away:
 - 50%: acceleration of CMEs
 - 30 – 50%: acceleration of energetic ions (> 1MeV), electrons (20-100keV). These particles eventually radiate away their energy as well
 - 1-10%: radiant energy from radio to γ-rays + unknown amount in UV and visible

SDO/AIA 195 Å
Flare classification

- Flares are classified according to their strength:
 - X-class: strong
 - M-class: medium
 - C-class: weak
 - B-class: very weak

- Factor of 10 difference in strength between classes

- Subdivision into:
 - X1 → X9: incr. strength
 - similarly M1 - M9, C1 - C9

Weaker, but more common than flares are the microflares. Even weaker are nanoflares: below today's obs. sensitivity
Flare light curves

- Flares radiate over the full solar spectrum, from γ-rays to radio wavelengths.
- The light curve displays different shapes in the different spectral parts.
- In general one distinguishes between an impulsive and a gradual phase.
- At many wavelengths also a precursor is often observed.

Kane 1974
Evidence of reconnection in flares

- Soft x-rays show typical cusp-shaped loop-tops during flares
- Such cusps: interpreted as the lower parts of X-points where magnetic reconnection occurs
- Presence of hard X-rays at loop tops also supports this interpretation

Tsuneta (1992), Tsuneta et al. (1996)
Evidence of reconnection in flares

- Soft x-rays show typical cusp-shaped loop-tops during flares.
- Such cusps: interpreted as the lower parts of X-points where magnetic reconnection occurs.
- Presence of hard X-rays at loop tops also supports this interpretation.

Shibata et al. 1995
Masuda 1994
Tsuneta (1992), Tsuneta et al. (1996)
Post-flare loops

- Production of dense hot post flare loops is a typical signature of strong flares.
- This occurs during the gradual phase, after the impulsive phase is over.
- According to theory, the gas in these loops is originally chromospheric material heated and evaporated by the high energy particles accelerated by the flare.
Cartoon of a flare

1) Magnetic energy stored in corona is released via magnetic reconnection

2) Energy transported from corona to chromosphere by energetic particles

3) Most of energy is radiated by chromosphere (opt-UV)

4) HXR, γ-ray emission is evidence of non-thermal electrons/ions

5) Chromosphere is heated and expands into corona \Rightarrow dense, hot flare loops

Kindly provided by L. Fletcher
HXR source motions in magnetic reconnection

\[\nu_{in} = \text{coronal inflow velocity} \]

\[\mathbf{B}_c = \text{coronal magnetic field} \]

\[a_c = \text{coronal width} \]

\[\nu_{fp} = \text{HXR footpoint velocity} \]

\[\mathbf{B}_{fp} = \text{HXR footpoint magnetic field (photospheric)} \]

\[a_{fp} = \text{HXR footpoint width} \]

Magnetic reconnection rate

\[\frac{d\Phi}{dt} = \nu_{in} \mathbf{B}_c a_c = \nu_{fp} \mathbf{B}_{fp} a_{fp} \]
Causes

- Flares are produced when energy built up in a magnetic field is released via magnetic reconnection.
- Energy build-up occurs via shear-flows and/or the emergence of fresh magnetic flux at a location of already existing flux.
- Flares occur preferentially in young active regions with still emerging magnetic flux.
Flares, electric currents and changes in the magnetic field

Before flare

White field lines: closed field lines (from force-free extrapolations)

Coloured lines: field lines open within box

Red area: currents

After flare

Schrijver et al. 2008