Cosmology / introductory remarks

- Very old science in human history
- Practical and speculative side
 - Calendar ephemeris
 - Magic/mythological ideas about origin world
 - Hindus: $T_{\text{universe}} = 1 \text{ Brahma day} = 4.32 \times 10^9 \text{ yr}$

- Very rapid evolution since ~1960
 - Speculative backyard → quantitative science

Contents

<table>
<thead>
<tr>
<th>Relativity & Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution our FRW universe</td>
</tr>
<tr>
<td>Big Bang physics</td>
</tr>
<tr>
<td>Observational cosmology</td>
</tr>
<tr>
<td>Inflation</td>
</tr>
</tbody>
</table>

Will have to skip many issues!
SPECIAL RELATIVITY

\[t \quad \text{or} \quad x^0 = ct \]

Worldline

\[\{ x^\alpha + \Delta x^\alpha \} \]

\[\{ x^i \} \]

\[\text{P} \cdot \{ x^\alpha \} \]

\[\text{V} \]

\[\text{Q} \]

\[\Delta s^2 = (\Delta x^0)^2 - \Delta x^i \Delta x^i = \eta_{\alpha\beta} \Delta x^\alpha \Delta x^\beta \]

\[(c \, dt)^2 \]

\[\eta = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \]

\[\text{Note sign convention} \]

- Notation: \(\Delta s^2 = (\Delta s)^2 \); \(dt^2 = (dt)^2 \)
- \(\Delta s^2 \) is invariant
\[\Delta s^2 \text{ invariant} \rightarrow \text{all observers come to the same result} \]

"we can speak of "the" lightcone"
\[P \{ x^a \} \quad \& \quad Q \{ x^a + \Delta x^a \} \]

\[\Delta S^2 = \eta_{\alpha\beta} \Delta x^\alpha \Delta x^\beta \]

\[\Delta S^2 > 0 \quad \text{TIMELIKE (MATTER)} \]
\[= 0 \quad \text{NULL VECTOR (PHOTONS)} \]
\[< 0 \quad \text{SPACELIKE (TACHYONS)} \]
- proper time
- Lorentz transformations
- tensors
GENERAL RELATIVITY

- Arbitrarily moving frames → force closely related to gravity

- Classical gravity
 \[\nabla^2 \phi = 4 \pi G \rho ; \ \kappa = -m \phi \]
 holds only in one frame
 → \[\nabla^2 \rightarrow \nabla^2 - \frac{1}{c^2} \frac{\phi^2}{2x^2} \]
 → SR-like theory, with one global frame seems dead end.

- Weak equivalence
 \[m_i \ddot{r} = \text{applied force} \]
 \[= -mg \nabla \phi \]
 \[m_i/m_g \text{ same for all bodies, say } \equiv 1 \]
 (Eötvös 10^{-8}, now ~10^{-12})

∴ gravity can be transformed away locally, not globally.

Tidal force cannot be transformed away. Real gravity field is inhomogeneous.
$h = z_1 - z_2 = 22.5 \text{ m}$

(Pound, Rebka & Snider 1961, 1965)

- Experiment: $\Delta t_1 > \Delta t_0$ (redshift)

- Suggests that spacetime is curved due to gravity

$\Delta s^2 = \eta_{\alpha \beta} \Delta x^\alpha \Delta x^\beta \rightarrow ds^2 = g_{\alpha \beta} dx^\alpha dx^\beta$

(metric tensor determined by mass distribution)
Geometrical picture

Co-ordinate picture

\textit{Metric:}

\[ds^2 = d\theta^2 + \sin^2 \theta \, d\phi^2 \]

\[\theta \quad \theta \quad \phi \quad \phi \]
- Co-ordinate lines: do as you like
- Base vectors: tangent to co-ord. lines, in + direction

- Base vector span flat tangent space
 (presupposes existence flat embedding space)

- Metric in tangent space: arbitrary, but there is one preferred metric which is very handy

\[
\text{infinitesimal vector } ds = dx^\alpha e_\alpha \text{ has length } ds \text{ of Riemann space}
\]

\[
\Rightarrow \quad g_{\alpha \beta} = e_\alpha \cdot e_\beta
\]
Contra- & Covariant

- **Finite vectors in tangent space** \(A = A^\alpha e_\alpha \)

- *N.b. all vectors associated with a particle lie in the local tangent space (\(\nu, \alpha, \text{Spin} \))

- **Definition of** \(A_\alpha \):
 \[
 A \cdot A = A^\alpha A_\alpha \quad \text{(summation)}
 \]

 \[
 = g_{\alpha \beta} A^\alpha A^\beta \quad \text{(} A \cdot A = \text{length)}
 \]

 \[
 \therefore A_\alpha = g_{\alpha \beta} A^\beta \quad \text{Index lowering}
 \]

- **Index raising**:
 \[
 A^\alpha = g^{\alpha \gamma} A_\gamma
 \]
 \[
 = g^{\alpha \gamma} g_{\gamma \nu} A^\nu
 \]

 \[
 \therefore g^{\alpha \gamma} g_{\gamma \nu} = \delta^\alpha_\nu = \begin{cases} 1 & \alpha = \nu \\ 0 & \alpha \neq \nu \end{cases}
 \]

 or: \(\{ g^{\alpha \nu} \} \text{ is inverse of } \{ g_{\nu \nu} \} \)
Interpretation \(A^\alpha \) and \(A_\alpha \)

\[A = A^\alpha e_\alpha \rightarrow A^\alpha \text{ components } A \text{ along basis (parallelogram construction)} \]

\[A_\gamma = g_{\gamma\alpha} A^\alpha = e_\gamma \cdot e_\alpha A^\alpha = e_\gamma \cdot A \]

\[\rightarrow A_\alpha \text{ is projection } A \text{ on base-vector } e_\alpha \]
- All this holds for any vector field $A(x^k) \rightarrow A^\alpha$.

- Tensors? Behaviour under coordinate transform:

$$\{ x^\alpha \} \rightarrow \{ \bar{x}^\beta \}$$

$$\delta \bar{x}^\beta = \frac{\partial \bar{x}^\beta}{\partial x^\alpha} \delta x^\alpha$$

DEF: Any set of numbers that transforms in this way is a (contravariant) tensor of 1st rank. i.e.

$$\bar{A}^\nu = \frac{\partial \bar{x}^\nu}{\partial x^\alpha} A^\alpha$$

Note: \bar{L}^α

- Tensor of higher rank

$$T^{\nu \alpha} = A^\mu B^\nu$$

$$\Phi_{\beta}^\gamma = A^\alpha B^\beta C^\gamma$$

Each index transforms according to

$$\bar{T}^{\mu \nu} = \frac{\partial \bar{x}^\mu}{\partial x^\alpha} \frac{\partial \bar{x}^\nu}{\partial x^\beta} T^{\alpha \beta}$$

- Underlying geometries $T_{\mu \nu} = g_{\mu \chi} T^{\chi \beta}$

- Parallel displacement

- Geodesics (orbits of test particles)

- Curvature
FIELD EQUATION?

- $\nabla^2 \phi = 4\pi G \rho_0 \quad \Rightarrow \quad \text{what??}$

- CURVATURE OF \((\cdot) \) TOTAL ENERGY
 SPACE TIME \((\cdot) \) DENSITY

 \[
 G^{\mu\nu}(\{g_{\alpha\beta}\}) = -\frac{8\pi G}{c^2} \cdot T^{\mu\nu}
 \]

 By considering weak fields \rightarrow classical mechanics
 Rest energy density pressure EM fields \ldots

- Simplest $T^{\mu\nu} = \rho_0 u^\mu u^\nu$ "Dust"

 4-velocity $\frac{1}{c} \frac{dx^\mu}{d\tau} = (\gamma, \nu_1/c)$

- Why relation between tensors of 2nd rank?

- \begin{align*}
 m_0 & \rightarrow m = \gamma m_0 \\
 m_0 & \rightarrow M = \gamma M_0 \\
 \therefore \quad \rho_0 = m_0 m_0 & \rightarrow \rho = m M = \gamma^2 \rho_0
 \end{align*}

 \Rightarrow 0,0 component of 2nd rank tensor.

- Matter tells spacetime how to curve (\(g_{\alpha\beta} \))
 Spacetime tells matter how to move (along geodesics determined by \(g_{\alpha\beta} \))
GENERAL RELATIVITY / RECAPITULATION

- WEAK EQUIVALENCE
 Gravity is partly an apparent force

- ORBIT OF TEST PARTICLE IS GEODESIC
 "Straight" orbit in curved spacetime. Curvature due to energy densities

- WHY CURVATURE?

- RIEMANN SPACES
 Tangent space, finite vectors, contra- & covariant components. Tensor: transformation.

\[D^2 \phi = 4 \pi G \rho \rightarrow ??? \]

\[G^{\alpha \beta} \{g_{\mu \nu}\} = - \frac{8 \pi G}{c^2} T^{\mu \nu} \]

\[c \text{ nonlinear in } g^{\mu \nu} \]
THE EVOLUTION
OF OUR UNIVERSE
COSMOLOGY - WHY GR??

- Universe is compact object

\[R = \frac{2GM}{c^2} = \frac{2G}{c^2} \frac{4\pi}{3} \rho R^3 \]

\(\text{Schwarzschild radius} \)

\[\begin{align*}
\nu &= H_0 d \\
C &= H_0 R \rightarrow R = c/H_0
\end{align*} \]

\[\rho \approx \frac{3H_0^2}{8\pi G} = \rho_c \quad \text{critical density} \]

- \(H_0 = 100 \ h \ \text{km s}^{-1} \ \text{Mpc}^{-1} \)

\(h = 0.71 \pm 0.04 \quad \text{(WMAP)} \)

\(H_0 = (2.3 \pm 0.1) \times 10^{-18} \ \text{s}^{-1} \)

- \(\rho_c \approx 10^{-29} \ \text{g cm}^{-3} \)
\[
\begin{array}{ll}
\text{TYPE} & \Omega = \rho / \rho_c \\
\text{MATTER (\(\Omega_m\))} & 0.27 \\
\text{Luminous baryons} & 0.006 \\
\text{dark matter} & 0.038 \quad \Omega_b \approx 0.04 \\
\text{WIMPS} & 0.23 \quad \text{unknown} \\
\text{DARK ENERGY (\(\Omega_{\Lambda}\))} & 0.73 \quad \text{unknown} \\
\text{TOTAL \(\Omega_m + \Omega_{\Lambda}\)} & 1.02 \pm 0.02 \quad \text{flat geometry}
\end{array}
\]

Matter distribution isotropic
also within redshift classes
WMAP IMAGE CMB, $\lambda = 3.2$ mm.

- $T = 2.725$ K
- Monopole & dipole subtracted, foreground emission not yet black: $-200 \mu K$ red: $+200 \mu K$

Energy densities

$\varepsilon_{\text{matter}} = \frac{\rho_m c^2}{\rho_c} = 2.4 \times 10^{-9}$ erg cm$^{-3}$

$\varepsilon_{\text{CMB}} = \frac{4\pi}{3} \frac{\hbar^2}{c^3} T^4 = 4.2 \times 10^{-13}$ erg cm$^{-3}$

$\uparrow 2.725$ K

$\varepsilon_{\nu\bar{\nu}} = 2.8 \times 10^{-13}$

$\varepsilon_{\text{radiation}} = 7 \times 10^{-13}$ erg cm$^{-3}$
- past lightcone: "nested shells"
- isotropy → shells Σ are homogeneous ($\Sigma_1 \neq \Sigma_2$)
- cosmological principle → spaces t = constant are homogeneous
- Rest \equiv not moving w.r.t. Hubble flow
- Spatial coordinate, galaxies are constant (we ignore their small peculiar velocities)
- worldlines vertical
- coordinate distance $B \& C$ is constant, geometrical distance $B \& C$ grows (Expansion!)
- cosmological principle needed, seems OK, but may prove incorrect in the future!
\[ds^2 = (dx_0)^2 - \delta^2(t) \left[dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right] \]

\(r, \theta, \phi \) spatial coordinates

\[ds^2 = c^2 dt^2 - \delta^2(t) \left(\text{physical distance} \right)^2 \]

- actually \(k=0, \pm 1 \) types, but \(\Omega_m + \Omega_k = 1 \rightarrow \text{flat} \) (without proof)

\[(\delta c^2 S^3) + p(S^3) = 0 \quad \text{d}U + p dV = 0 \]

1. \[(\frac{\delta^2}{S^2}) = \frac{8\pi G\rho}{3} + \frac{\Lambda c^2}{3} \]

classical gravity

\[\text{cosmological constant} \rightarrow S \propto \exp(t) \]

- Three unknowns: \(S, p, S' \)

need e.g. \(p(S) \), or rather \(p(S') \)
CLASICAL GRAVITY

NEWTON:

\[m \ddot{S} = -G m \left(\frac{4\pi}{3} S^3 \rho \right) \cdot \frac{1}{S^2} \]

\[\ddot{S} = - \frac{4\pi G}{3} \rho S \]

\[\rho S^3 = \rho_o S_o^3 \]

\[\ddot{S} = - \frac{4\pi G \rho_o S_o^3}{3} \frac{1}{S^2} \]

* Integrate

\[S^2 = \frac{8\pi G \rho_o S_o^3}{3} \frac{1}{S} + \text{const} \]

\[= 0 \]

\[\rho_o S_o^3 / S = \rho S^2 \]
COSMOLOGICAL CONSTANT

- $T^{\mu \nu}$ of classical fluid in rest-frame:

$$T^{\mu \nu} = \frac{1}{c^2} \left(\begin{array}{cc} \phi^2 & \phi p \\ \phi & pp \end{array} \right)$$

- Note: pressure p is form of energy and if $p \sim \rho c^2$ it generates gravity
 This causes collapse $NS \rightarrow BH$!

- Note: $\frac{dp}{dr}$ supports star; $p \rightarrow gravity$

- Accept this $T^{\mu \nu}$ as $T^{\mu \nu}$ of vacuum

 $\phi - \rho V$, $p = \rho V$

- Vacuum identical in all inertial frames,

 $T^{\mu \nu} \propto \eta^{\mu \nu} = \left(\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$

 $T^{\mu \nu} = \mathcal{S}_V \left(\begin{array}{ccc} 1 & -1 & \phi \\ -1 & 1 & \phi \\ 0 & 0 & 0 \end{array} \right)$ and $p_V = -\mathcal{S}_V c^2 < 0$!

- \mathcal{S}_V: universal attraction: space tries to contract $p_V < 0$: space blows itself up

- Ultimate explanation: Quantum Gravity
\[
\rho S^3 = \text{constant} \quad \Rightarrow
\]

\[
\dot{u} = H_0 \left(-\Omega_m u^{-1} + \Omega_\Lambda u^2 \right)^{1/2} \quad u = s/s_0.
\]

\[
\left[
\begin{array}{l}
\Omega_m = \frac{s_0}{s_c} \approx 0.27 \\
\Omega_\Lambda = \frac{s_\Lambda}{s_c} \approx 0.73
\end{array}
\right]
\]

- \(u \ll 1 \rightarrow \dot{u} \propto u^{-1/2} \rightarrow u(\cdot) t^{2/3} \)
- \(u \gg 1 \rightarrow \dot{u} \propto u \rightarrow u(\cdot) \exp(-t) \)
- Singularity \(u = 0 \) must occur if \(\Omega_\Lambda < 1 \)
- Age \(\simeq H_0^{-1} \approx 14 \text{ Gyr} \).
$1/a \approx 3300$

$(1/a)(S/S_0)$

- Radiation Era
- Matter Era
- $\tau^{2/3}$
- Recombination

$\tau = t/t_m$

$\tau^{1/2}$

$\approx 9 \times 10^4$ yr

$T_{rad} = T_{mat} \cdot S^{-1}$

$\epsilon_{rad} > \epsilon_{mat}$

$\epsilon_{rad} \propto S^{-4} \propto T^4$

$T_{rad} \approx 3000K$

$S_0/S \approx 1100$

Universe very homogeneous

No galaxies
THE BIG BANG

Elementary Particles

Quarks 6 types, 3 colour charge, + antiquarks \rightarrow 36 in total

Leptons e^-, \nu_e, \mu^-, \nu_\mu, \tau^-, \nu_\tau + antiparticles, 12 in total

Gauge bosons gluons vector bosons photon graviton

WIMPS (WIMP)
Table 2. Overview of the evolution of the universe

<table>
<thead>
<tr>
<th>age (s)</th>
<th>temperature (K)</th>
<th>size (S/S₀)</th>
<th>composition a</th>
<th>baryons</th>
<th>leptons</th>
<th>gauge bosons</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10⁻⁷</td>
<td>> 10¹³</td>
<td>< 2 x 10⁻¹³</td>
<td>q q̄</td>
<td>l l̄</td>
<td>γ, g, W⁺⁻, Z⁰⁻</td>
<td></td>
</tr>
<tr>
<td>10⁻⁶</td>
<td>5 x 10¹²</td>
<td>5 x 10⁻¹³</td>
<td>p p̄, n n̄, l l̄</td>
<td>γ, g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⁻⁴</td>
<td>10¹²</td>
<td>3 x 10⁻¹²</td>
<td>p, n</td>
<td>e⁻⁺ e⁺, ν ν̄</td>
<td>γ, g, x</td>
<td></td>
</tr>
<tr>
<td>10²</td>
<td>10⁹</td>
<td>3 x 10⁻⁹</td>
<td>p, n</td>
<td>e⁻, ν ν̄</td>
<td>γ, g, x</td>
<td></td>
</tr>
<tr>
<td>10³</td>
<td>3 x 10⁸</td>
<td>10⁻⁸</td>
<td>¹H, ⁴He</td>
<td>e⁻, ν ν̄</td>
<td>γ, g</td>
<td></td>
</tr>
<tr>
<td>> 10¹³</td>
<td>< 3000</td>
<td>> 10⁻³</td>
<td>H, He atoms</td>
<td>ν ν̄</td>
<td>γ, g</td>
<td></td>
</tr>
<tr>
<td>4 x 10¹⁷</td>
<td>3</td>
<td>1</td>
<td>galaxies</td>
<td>neutrino, microwave and graviton background</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Boldface printed particles have comparable number densities, and these are about 10⁹ times larger than those of the other particles on the same line.

REACTIONS

\[A + B \leftrightarrow C + D \]

\[\rightarrow \text{p + q} \]

Whole network

- Available time: \(\sim (S/S₀)^{-1} \sim \text{age universe} \)
- Thermal equilibrium \(\rightarrow \) freeze out
- M̅M̅ asymmetry \(\sim 10⁻⁸ \) unknown origin
- \(\frac{M̅}{P} = \exp (\Delta E/kt) = 1 \rightarrow \text{freeze out at } \frac{M̅}{M_0} = 0.16 \)
- Decrease (M̅ decay) to \(\sim 0.13 \) at onset synthesis of elements.
- All n's end up in $^4\text{He} \rightarrow \gamma = 2 \times 0.13 = 0.26$
- no time for synthesis heavier element!
Observational Issues

1. how do we observe the universe
2. the horizon (problem)
3. a common misconception
4. the angular correlation spectrum of the CMB
- Horizon delimits sphere of influence around each observer

 Light emitted by matter outside horizon has not (yet) been able to reach the observer

- Visible Universe = sphere inside horizon of the observer

- Horizon Problem only solved with advent of inflation theory
Distance to Horizon

\[ds^2 = c^2 dt^2 - s^2 \left(dr^2 + r^2 d\theta^2 \right) \]

\[d\theta = d\phi = 0 \]

\[ds = 0 \text{ (photon)} \quad \rightarrow \quad dr = c dt / s \]

\[r = c \int_0^t \frac{dt}{s} \quad \rightarrow \quad \text{distance} = Sr = cs \int_0^t \frac{dt}{s} \]

- take \(S(\cdot) t^\alpha \)
- distance = \(\frac{ct}{1 - \alpha} \)
 \[\begin{align*}
 &\alpha = \frac{2}{3} \\
 &\alpha = \frac{1}{2}
 \end{align*} \]
- photons superluminal??
A common misconception: The Big Bang as a point explosion

- $\bar{\rho} + \text{AGE} \Rightarrow T$ to boundary of explosion is $\ll 1$

- Universe isotropic \Rightarrow we are in the center of a spherically symmetric explosion

Universe visible universes
POWER SPECTRUM CMB FROM WMAP DATA

\[\overline{I} = \text{PREVIOUS RESULTS} \]

1. \[\Delta T = T(\vartheta, \phi) - \langle T \rangle \quad \quad \langle . \rangle = \frac{1}{4\pi} \int d\Omega \]

2. \[C_\ell = 2\pi \int_0^\pi \langle \Delta T(\vartheta) \Delta T(\vartheta) \rangle |_{\vartheta = \vartheta_1, \vartheta} P_\ell (\cos \vartheta) \sin \vartheta d\vartheta \]

3. Figure shows "power spectrum" \(\ell (\ell + 1) C_\ell / 4\pi \)
THE PLAYERS

(1). SCALAR FIELD ϕ

 At end of inflation $\phi \rightarrow \rho \& \delta \rho$
 (matter)

(2). "BARYONIC FLUID"

 - ρ, ^4He, e^-, γ
 - $\Omega_B = 0.04$
 - A tightly coupled system until t_{rec}
 - High 'sound' speed $c/\sqrt{3}$ (10^9 m per baryon)

(3). NONBARYONIC DARK MATTER "DM"

 - No EM interactions
 - $\Omega_{\text{dark}} = 0.23 \rightarrow \text{DM fixes } \phi, \delta \phi$
 - Cold \rightarrow Low 'sound' speed ("CDM model")
THE PLOT

(1) DM and bary communicate only through gravity

(2) $\epsilon_m = \epsilon_r$

t_{mat} (60 kyr) t_{rec} (380 kyr)

$\delta \rho / \rho$ evolves

bary fluid deintegrates; imprint of characteristic δT

- L line of sight
- Comoving with Hubble flow
- in L.S.S. at t_{rec}
\[\frac{\delta p}{\rho} = \sum \text{fourier modes} \quad \text{(only in LSS)} \]

- \((\delta p/\rho)_{\text{DM}} \) grows, but modes do not move
- \((\delta p/\rho)_{\text{be}} \) damps, but modes do move

- All be modes travel same distance \(D \), shown is that mode for which \(D = \lambda/2 \) at \(t_{\text{rec}} \)

- \[\frac{\delta T}{T} = \begin{cases} \frac{\delta\phi/c^2}{\rho} > 0 \text{ in } A & < 0 \text{ in } B \\ \frac{1}{3} (\frac{\delta p}{\rho})_{\text{be}} > 0 \text{ in } A & < 0 \text{ in } B \end{cases} \]

\[\theta = \frac{\lambda/2}{d} = \frac{D}{d} \rightarrow \frac{D}{(2n+1)d} = \frac{0.6}{2n+1} \]
ANALYSIS WMAP DATA

- Complex modelling required

\[A \]
\[B \]
\[C \]
\[\Omega_0 \]

WMAP + HST Key \(H_0 \) + SNIa \(\rightarrow \) \(\Omega_m + \Omega_\Lambda = 1 \)

\[B/C \] \(\rightarrow \) \(\Omega_b \ h^2 \)

\[B/A \] \(\rightarrow \) \(\Omega_m \ h^2 \)

\[\Omega_0 \] \(\rightarrow \) \(h \)
INFLATION

- Most important **theoretical** development in cosmology of last 25 yr.

- Successes of F.R.W. Universe
 - expansion velocities distant galaxies
 - the relics: CMB + chemical composition
 \((H, D, ^4He, ^3He, ^7Li) \)

- **BUT**

 - why is universe spatially flat?
 - horizon problem?
 - why expansion?

\[
\begin{align*}
&\cdot \text{ m \in asymmetry} \\
&\cdot \text{ vacuum energy}
\end{align*}
\]
THE ESSENCE OF INFLATION

\[S(t) \propto t^{1/2} \]

1. **Distance to horizon**
 \[c S \int_0^t \frac{dt}{S(t)} \propto t \]
 for \(S(\tau) \propto \tau^x \)

 Change \(S(t) \) near \(t=0 \) \(\Rightarrow \) much larger horizon distance!

 \((S(t) \text{ at later time, virtually fixed})\)

2. \(S(\tau) \propto \tau^x \rightarrow S \uparrow \propto a, \ t \downarrow 0 \)

 Expansion speed infinite \(\rightarrow \) universe desintegrates into separate parts

3. Take universe initially extremely small
 wait size/c sec \(\rightarrow \) causal contact
 blow up to huge proportion \(\rightarrow \) horizon distance also huge
NORMAL FRW EXPANSION ~ 10^{25}

INFLATION $10^{50} - 10^{(108)}$

PREEXISTING SPACETIME

SIZE ~ PLANCK LENGTH ($\sim 10^{-33}$ cm)

(QUANTUM FLUCTUATION IN METRIC)

10^{-33} S

10^{-43} S (PLANCK TIME)

10^{18} S
- Guth (1981): Scalar fields may cause inflation

- Scalar fields correspond to hypothetical, heavy, zero-spin bosons that may occur in GUTs.

- QM in expanding space-time

\[E^2 = (pc)^2 + (mc^2)^2 \]
\[E \rightarrow i\hbar \frac{\partial}{\partial \phi} \]
\[p \rightarrow -i\hbar \nabla \]
\[\mu = mc/\hbar \]

Klein-Gordon equation for wave function

free relativistic s=0 boson

\[\eta^{\alpha \beta} \psi_{\alpha \beta} + \mu^2 \psi = 0 \rightarrow \eta^{\alpha \beta} \psi_{\alpha \beta} + \mu^2 \psi = 0 \]

ordinary covariant derivative

- Assume \(\Box \psi = 0 \)

\[\psi,_{0,0} + \frac{3}{c^2} \frac{s}{S} \psi,_{0} + \mu^2 \psi = 0 \]

\(s = \hbar c, d \)

Damped harmonic oscillator
\[\left(\frac{\dot{S}}{S} \right)^2 = \frac{8\pi G S}{3} + \frac{\Lambda c^2}{3} \]

- **Important in early Univ.**
- replace by energy density \(\Psi \) field
- add curvature term \(k c^2 / S^2 \)

\[
\left(\frac{\dot{S}}{S} \right)^2 + \frac{k c^2}{S^2} = \frac{4\pi G}{3} \left\{ \Psi_0^2 + \mu^2 \Psi^2 + \left| \dot{\phi} \right|^2 \right\}
\]

- think of energy \(\dot{\phi}^2 + \mu^2 \phi^2 \)
- of harmonic oscillator!

- **Make dimensionless**

\[
M = \left(\frac{\hbar c}{G} \right)^{\frac{1}{2}} = \text{Planck Mass} \left(2.2 \times 10^{-5} \text{ g} \right)
\]

\((\text{Planck length} = \lambda_{\text{compt}}) \)

\[
l_p = \frac{\hbar}{MC} = 1.6 \times 10^{-33} \text{ cm}
\]

\[
t_p = l_p / c = 5.4 \times 10^{-44} \text{ s}
\]

Substitute \(G = \frac{\hbar c}{M^2} \), then set \(\hbar = c = 1 \)
\[\ddot{\psi} + 3H \dot{\psi} + m^2 \psi = 0 \quad \text{(1)} \]

\[H^2 + \frac{k}{S^2} = \frac{4\pi}{3M^2} (\psi^2 + m^2 \psi^2) \quad \text{(2)} \]

p.m. \(\dot{\psi} = 0 \) and \(H = \dot{S}/S \)

closed set equations for \(\psi \) and \(S \)

- **Initial conditions** \(\Rightarrow \)

- **Solution of equations**

 Assume \(H \gg m \)
 (strong damping) \[\{ \Rightarrow \dot{\psi} = 0 ; \dot{\psi} \ll m \psi \]

\[H = \dot{S}/S \sim \text{constant} \Rightarrow S(t) \text{ exponential and } k/S^2 \text{ rapidly ignorable} \]

\[3H \dot{\psi} + m^2 \psi = 0 \quad \text{(1)} \]

\[H^2 = \frac{4\pi m^2}{3M^2} \psi^2 \quad \text{(2)} \]

- \(\psi \rightarrow m^2 \psi^2 = -3H \dot{\psi} \rightarrow \text{in (2)} \)

\[H^2 = \frac{4\pi}{3M^2} (-3H \psi \dot{\psi}) \rightarrow H = -\frac{4\pi}{M^2} \psi \dot{\psi} \quad \text{(3)} \]

\[\therefore \frac{\dot{S}}{S} + \frac{4\pi}{M^2} \psi \dot{\psi} = 0 \rightarrow \text{integrate}! \]
Initial conditions at $t = t_p$

- All energy "quantum bubble" $\sim L_p$ may contain resides in one scalar field ϕ

[Nb: Usually energy divided over many different fields, but these regions do not inflate]

\[M^2 \cdot t_p \sim L_p \] (Heisenberg)

\[\therefore \frac{\dot{\phi}^2 + m^2 \phi^2}{\rho} \approx \frac{M^2}{L_p^3} = M^4 \]

energy density

strong damping $\Rightarrow \phi$ very small

\[\varphi_p \approx \psi(t_p) = \frac{M^2}{m} \]

\[\varphi_p \text{ not needed} \]

further:

\[s_p = s(t_p) = L_p \]

- Why $\nabla \phi \approx 0$?

\[|\nabla \phi|^2 \leq M^4 \Rightarrow \delta \psi \approx |\nabla \phi| L_p \leq M^2 M^{-1} M \]

\[\therefore \delta \psi / \psi \approx M / (M^2 / m) = m / M \ll 1 \]

scalar boson mass \ll Planck mass

\therefore all energy in ϕ field implies homogeneity of ϕ over L_p
\[
S = S_p \exp \left[\frac{2\pi}{M^2} \left(\Psi^2 - \Psi_t^2 \right) \right]
\]

(4)

3. \(\dot{\psi} = -\frac{mM}{\sqrt{12\pi}} \)

Evolution of \(\psi \)

- Since \(H(\psi) \), see 2, eventually weak damping limit is reached \(\rightarrow \) oscillations
- Coupling with other (weak) quantum fields becomes important \(\rightarrow \) creation of matter \(\rightarrow \) begin of hot Big Bang
- Inflation creates homogeneous, expanding, hot, flat FRW Universe

Evolution of \(S \)

\[
\text{small } t : \quad S = S_p \exp \left[\frac{2\pi}{M^2} \left\{ \Psi_t^2 - (\Psi - \dot{\Psi}t)^2 \right\} \right]
= S_p \exp \left[\frac{4\pi \Psi \dot{\Psi}}{M^2} + \frac{\dot{\Psi}^2}{M^2} \right]
\]

\(\therefore \text{Exponential Expansion} \)
Large t

$$S = S_0 \exp \left[\frac{2\pi}{M^2} (4\rho^2 - \psi^2) \right]$$

≈ 0 at end of inflation

$$\therefore \frac{S_e}{S_0} \sim \exp \left[2\pi \frac{M^2}{m^2} \right] = \text{HUGE}$$
- Many inflation scenarios, none wholly acceptable

- this one called chaotic inflation, see Linde, Phys. Today, Sept ’82, p. 61.

- conceptual picture ⇒

- pro & cons

++ all energy in \(\phi \)-field ⇒ dynamics \(\phi \) probably reasonably described by equation for free particle.
No speculative particle physics needed!

-- classical reasoning right at \(t = t_p \) !
does Quantumgrav. permit instability of the vacuum?

- What drives inflation?

 \(\phi \)-field does not scale as \(s^{-3} \) like matter

 Evolution is driven by equivalent \(\rho, \rho' \):

 \[
 \rho = \frac{1}{2} \dot{\psi}^2 + \frac{1}{2} m^2 \psi^2 = \frac{1}{2} m^2 \psi^2
 \]

 \[
 \rho = -\frac{1}{2} \dot{\psi}^2 - \frac{1}{2} m^2 \psi^2 \approx -\frac{1}{2} m^2 \psi^2
 \]

 vacuum with huge cosm. constant \(\Lambda \) \(m^2 \psi^2 \)
 huge antigravity from \(\rho < 0 \)

 Global energy conservation does not exist in GR!!
Rand quantum-bel

Quantumfluctuaties in de metrik
$t = t_0 \sim 10^{-43}$ s

Onze positie

Horizon

Spontane fluctuatie in onze ruimte-tijd

x^0

ct_4

ct_3

ct_2

ct_1

$\{x^i\}$

Horizon

t_4

t_3

t_2

t_1

Ruinthe
THE BIG QUESTIONS

Observational
- Where are the optically dark baryons?
- Structure formation
- Relic $\nu\bar{\nu}$ ($T = 1.95k$)

Particle Physics
- Origin $\bar{\mu}\mu$ asymmetry
- Nature nonbaryonic dark matter
- Properties quark-gluon plasma

Quantum Gravity
- Origin Λ?
- Acceptable inflation theory

Cosmologists have a great phantasy:

Universe (\gg our visible universe) originates from tiny quantum fluctuation!? True or not? Only future will tell