Red Giants - Why?

I) Post main sequence expansion of stars: observation and theory

Hertzsprung - Russell - diagram:
- correlation between absolute bolometric magnitude and spectral type of stars

red giants: high luminosity but low surface brightness → large radius

L ~ stellar distances
- trig. parallaxes only for stars within ~ 25 pc
- very inhomogeneous sample

investigation of stellar clusters:
- stars with equal distance and equal age

- open clusters - young: main sequence completely occupied
- globular clusters - old: main sequence void of luminous stars
 - turn off → age

in the course of evolution:
- main sequence stars → red giants

Why?
Theoretical interpretation:
Investigation of a sequence of stellar models of fixed mass and varying chemical composition

--- important: location of nuclear energy production

central hydrogen burning

--- main sequence stars

after depletion of central hydrogen content
hydrogen burning in shell around helium core

--- evolution towards red giants

Why is a shell source model so vastly extended?

[Sun: post main sequence expansion swallows inner planets during next 10^{10} years!]

Stellar structure equations:

hydrostatic equilibrium
energy equilibrium
energy transport

together with equation of state
opacity
nuclear rates

--- stellar models in good agreement with observations
but no simple answer because equations are very general
very complicated
I. Investigation of a simplified model

- only hydrostatic equilibrium is strictly satisfied

 very short relaxation time \(\sim [g\rho]^{-\frac{1}{2}} \)

 \([\text{relaxation time of energy equilib.}]
 \text{Helmholtz-Kelvin time } \sim gH^2/L\]

- composite configuration

 He-core and **H**-envelope

 interface: chemical discontinuity

 nuclear burning shell source

- temperature at interface \(T_f = T_{\text{nucl}} = 2 \times 10^9 \text{K} \)

 \(T_{\text{nucl}} \) fixed due to high temp. sensitivity of nuclear burning

 "thermostatic action of nuclear burning"

 \(\rightarrow \) energy equilibrium satisfied

A) **Schoenberg - Chandrasekhar model (1942)**

core: \(T = \text{const} \) (no energy production inside)

envelope: polytrope \(n = 3 \)

evolutionary sequence:

- \(H \) fixed, \(M_{\text{core}} \) growing, \(T_f = T_{\text{nucl}} \)

 \(\rightarrow \) moderate expansion until \(M_{\text{core}} = M_{\text{SC}} \)

 \[
 \frac{M_{\text{SC}}}{M} \sim 0.1
 \]

 \(\text{no hydrostatic equilibrium for } M_{\text{core}} > M_{\text{SC}} \)

 not surprising because there is

 no isothermal hydrostatic configuration

 of finite mass
Hydrostatic equilibrium

\[\frac{dP}{dr} = -\frac{GMr}{r^2} \phi \]

2 equations for
3 dependant unknowns
\(P, \phi, M_r \)

\[\frac{dMr}{dr} = 4\pi r^2 \rho \]

\(P = k \phi \frac{M_r}{r^{n+1}} \) closed by polytropic rel.
\(n \) polytropic index

special cases:

\(n = 0 \)
\(\phi = \text{const} \) (analytical solution)

\(n = 1.5 \)
equation of state for degenerate electron gas

\(n = 3 \)
approx. satisfying radiative energy transport (Eddington)

\(n \to \infty \)
\(P = k \phi \quad T = \text{const} \) isothermal conf.
not possible for finite mass

integration of hydrostatic equation yields

\[2\int_0^H \frac{3}{2} \phi \, dM_r = \int_0^H \frac{GMr}{r} \, dM_r \quad \text{virial theorem} \]

spec. internal energy - spec. gravitational energy

\[2 \, E_{\text{int}} = -E_{\text{grav}} \quad E_{\text{grav}} \sim -\frac{GM_r}{r} \]

\[\frac{3}{2} \phi \]
\[\frac{GM_r}{r} \]

hydrostatic equilibrium requires equal areas
Escape from Schoenberg–Chandrasekhar trap by contraction (non-local energy sources)

important difficulty:

uniform contraction → uniform increase of temperature.

but:

temperature of shell source fixed by thermostatic action of nuclear burning

→ non-uniform contraction starting at $M_{\text{core}} = M_{\text{sc}}$

further evolution dependant on stellar mass

\(B\), \(M \lesssim 1.5 M_\odot\): Schwarzschild–Hoyle model (1955)

high central density at main-sequence-state

contraction leads to electron degeneracy

→ hydrostatic equilibrium possible!

core: \(T = \text{const} \)

equation of state \(P(\rho)\) allowing for degeneracy

two asymptotic branches:

- complete degeneracy \(P \sim \rho^{\frac{5}{3}}\)
- no degeneracy \(P \sim \rho\)

envelope: polytrope \(0 \leq n \leq 5\) (\(n = 0\))

\[
\log R
\]

evolutionary sequence:

- M fixed, M_{core} growing
- \(T_f = T_{\text{nuc}}\)

time scale = nuclear burning time
Simplified model is successful — but what does it teach us?

Close inspection of solutions reveals two-fold evolutionary behaviour of core due to two branches of equation of state:

- only inner part of core is highly contracted → high density (highly degenerate)
- (almost) no contraction of interface — T_f fixed!
- outer part of core is rarefied accordingly (non degenerate)

before contraction of core

after contraction of core

- envelope must expand to restore equality of density at interface
- envelope only responding to actions of core
Working of thermostat:

- contraction after reaching Schrenberg-Chandrasekhar mass-limit
 → increasing temperature, especially T_f
 → increasing energy production

- local temperature gradient limited by hydrostatics cannot transport increased energy
 → surplus energy drives expansion of matter against gravity
 adiabatic expansion until $T_f = T_{mic}$ is restituted.
Application of virial theorem:

\[3 \int \frac{\rho}{P} \, dM_r = \int \frac{GM_r}{r} \, dM_r \]

- only core is energetically important
- virial theorem satisfied due to strong decrease of \(GM_r/r \) at interface — resulting from rarefied outer part of core
- it is forced by \(T_f = T_{\text{mc}} \)

almost identical situation obtained from actual stellar evolution simulations by H. Stix

age \(14.1 \times 10^9 \) yrs \(M = 1 M_\odot \) \(M_{\text{core}} = 0.85 M_\odot \) \(R = 8.98 R_\odot \)
Figure 2. Specific internal and gravitational energy u and w as functions of fractional mass M_r/M for the $1M_\odot$-model with $M_{\text{core}}/M = 0.25$.

Figure 3. Specific internal and gravitational energy u and w as functions of fractional mass M_r/M for the sun with $M_{\text{core}}/M = 0.25$ as obtained by numerical simulation (Stix, 1997).
continued contraction of core after reaching
Schoenberg– Chandrasekhar mass
continued release of gravitational energy
which must be transported to the outside
escape from Schoenberg– Chandrasekhar trap
due to energy transport by radiation

\[\frac{d}{dP} \left(\frac{a}{3} T^4 \right) = \frac{2}{4\pi c G} \frac{L_r}{M_r} \]

\(L_r \) from non-local energy sources
∴ problem becomes time–dependant
considerable complication — avoided by
global approximation by Schwarzschild–Sandage

\[\frac{L_r}{M_r} = \frac{L_{\text{core}}}{M_{\text{core}}} \]

\[L_{\text{core}} = \frac{1}{2} \int \frac{G M r}{r} dM_r \]

now energy transport equation may be integrat:

\[\frac{a}{3} T^4 = \frac{2}{4\pi c G} \frac{L_{\text{core}}}{M_{\text{core}}} P + \text{const} \]

\(a/3 T^4 \sim \frac{a}{3} T_{\text{nuc}}^4 \)

two asymptotic branches:

\[\frac{n}{4\pi c G} \frac{L_{\text{core}}}{M_{\text{core}}} P \gg \frac{a}{3} T_{\text{nuc}}^4 \]

\[\frac{d\log T}{d\log P} = \frac{1}{4} \quad (n=3) \]

\[\frac{n}{4\pi c G} \frac{L_{\text{core}}}{M_{\text{core}}} P \ll \frac{a}{3} T_{\text{nuc}}^4 \]

\[\frac{d\log T}{d\log P} = 0 \quad (n \to \infty) \]

→ two-fold structure of core due to
fixed \(T_{\text{nuc}} \)
core: \textit{"equation of state"}

\begin{align*}
\frac{a}{3} T^4_{\text{nuc}} & \quad \text{Log Increasing} \\
\frac{a}{3} & \quad P
\end{align*}

\begin{align*}
\text{log} T & \quad \frac{d\log T}{d\log P} = \frac{1}{4} \\
\text{log} P & \quad \frac{d\log T}{d\log P} = 0
\end{align*}

envelope: polytrope \(n = 3 \)

evolutionary sequence:

- \(M \) fixed, \(M_{\text{core}} = M_{\text{sc}} \), \(T_f = T_{\text{nuc}} \)
- \(L_{\text{core}} \) growing (evolutionary parameter)
- time step between succeeding models from

\[
L_{\text{core}} = \frac{1}{2} \frac{\Delta t}{\Delta r} \int \frac{GM_r}{r} dM_r
\]

\[
M = 5 M_\odot
\]

\[
M_{\text{sc}} / M = 0.07
\]

\[
T_{\text{nuc}} = 2 \times 10^7 \text{ K}
\]

simplified model is successful

thermostatic action of nuclear shell-source: strongly contracting inner part of core and fixed location of interface

→ rarefied zone below interface

→ adjustment of envelope by expansion

evident by comparing specific internal and specific gravitational energy
Fig. 4. Specific internal and gravitational energy as functions of fractional mass $\frac{M_{r}}{M}$ for a simplified stellar model of $5\, M_\odot$ at $t = 1.6 \times 10^5$ years.

Fig. 5. Specific internal and gravitational energy as functions of fractional mass $\frac{M_{r}}{M}$ for an evolved star of $5\, M_\odot$ obtained by numerical simulation (Langer 1999).
III. Summary: red giants — why?

- He-core / H-envelope with nuclear shell source at interface
- Hydrostatic equilibrium only possible if mass of isothermal core is smaller than Schoenberg - Chandrasekhar limit
- After that core must contract
 but:
 temperature of interface and consequently its position fixed by thermostatic action of nuclear shell source
- Hydrostatic equilibrium requires two-fold structure of core:
 highly contracted inner part
 rarefied outer part
- Hydrostatic equilibrium requires accordingly rarefied and thus expanded envelope
- Post main sequence expansion driven by surplus nuclear energy released by thermostatic action of shell source
On the post main sequence expansion of low mass stars

W. Deinzer
Universitäts-Sternwarte, Geismarlandstrasse 11, D-37083 Göttingen, Germany

Received 29 June 1998 / Accepted 20 October 1998

Abstract. The post main sequence expansion of stars is investigated by means of a simple composite configuration: an isothermal He-core (allowing for non-relativistic electron degeneracy) is surrounded by an H-envelope of constant density (polytrope $n = 0$). Solving the equations of hydrostatic equilibrium for fixed values of total mass and temperature at the interface a one dimensional sequence of models is obtained with the mass of the core as parameter. As soon as the main part of the core becomes fully degenerate, the model stars expand rapidly. This behaviour is in good agreement with that of models obtained by numerical simulations.

On the post main sequence expansion of stars with contracting helium cores

M. Schrinner and W. Deinzer
Universitäts-Sternwarte Göttingen, Geismarlandstrasse 11, 37083 Göttingen, Germany

Received 12 July 2001 / Accepted 10 September 2001

Abstract. The post main sequence expansion of a 5 M_\odot-star is investigated by means of a simple composite configuration: a contracting He-core of Schoenberg-Chandrasekhar mass surrounded by an H-envelope of polytropic index $n = 3$. While the structure of the envelope is immediately obtained by solving the equations of hydrostatic equilibrium, the core requires some further simplification: if the actual non-local gravitational energy release due to contraction is replaced by its constant core-average, the equation of radiative energy transport may be easily integrated. Thus an explicit relation between pressure and temperature is obtained and the equations of hydrostatic equilibrium may be solved. Specifying M, M_{core} and T_0 (the temperature of the H-burning shell-source at the interface), a sequence of models follows with L_{core}, the gravitational energy released from the core per second, and hence with t, the contraction time, as the parameter. The resulting simple models show very rapid expansion, a consequence of the thermostatic action of the shell-source. Its fixed temperature prevents the shell-source from participating in the contraction of the core – thus causing the outer parts of the core and hence the adjoining envelope to decrease in density. Accordingly, the envelope must expand. This consequence of a fixed temperature T_0 is clearly demonstrated by the distributions of the specific internal and gravitational energies. This characteristic behaviour is also found in stellar models obtained by elaborate numerical simulations.

Key words. stars: Hertzsprung-Russell diagram - stars: interiors - stars: evolution