Introduction to Hydromagnetic Dynamo Theory with Applications to the Sun and the Earth

Dieter Schmitt

Max Planck Institute for Solar System Research

IMPRS Solar System School 18–20 June 2013

Outline

- Introduction
 - Magnetic field of the Earth
 - Magnetic field of the Sun
 - Dynamo hypothesis
 - Homopolar dynamo
- Basic electrodynamics
 - Pre-Maxwell theory
 - Induction equation
 - Alfven's theorem
 - Magnetic Reynolds number
 - Poloidal and toroidal magnetic fields
- Sinematic turbulent dynamos
 - Antidynamo theorems
 - Parker's helical convection
 - Mean-field theory

- Mean-field coefficients
- Mean-field dynamos
- The solar dynamo
 - Basic incredients
 - Convection zone dynamos
 - Overshoot layer dynamos
 - Interface dynamos
 - Flux transport dynamos
- Magnetohydrodynamical dynamos and geodynamo simulations
 - Equations and parameters
 - Proudman-Taylor theorem and convection in a rotating sphere
 - A simple geodynamo model
 - Advanced models
 - Reversals
- 6 Literature

Geomagnetic field

1600 Gilbert, De Magnete: "Magnus magnes ipse est globus terrestris."

(The Earth's globe itself is a great magnet.)

1838 Gauss: Mathematical description of geomagnetic field

$$\mathbf{B} = \sum_{l,m} \mathbf{B}_{l}^{m} = -\sum \nabla \Phi_{l}^{m} = -R \sum \nabla \left(\frac{R}{r}\right)^{l+1} P_{l}^{m} (\cos \vartheta) \left(g_{l}^{m} \cos m\phi + h_{l}^{m} \sin m\phi\right)$$
 sources inside Earth

I number of nodal lines, m number of azimuthal nodal lines

 $l = 1, 2, 3, \dots$ dipole, quadrupole, octupole, ...

m = 0 axisymmetry, m = 1, 2, ... non-axisymmetry

Earth: $g_1^0 \approx -0.3 \,\text{G}$, all other $|g_i^m|, |h_i^m| \le 0.05 \,\text{G}$

mainly dipolar, dipole moment $\mu = R^3 \left[(g_1^0)^2 + (g_1^1)^2 + (h_1^1)^2 \right]^{1/2} \approx 8 \cdot 10^{25} \,\mathrm{G}\,\mathrm{cm}^3$

 $\tan \psi = \left[(g_1^1)^2 + (h_1^1)^2 \right]^{1/2} / g_1^0$, dipole tilt $\psi \approx 11^\circ$

dipole : quadrupole \approx 1 : 0.14 (at CMB)

Internal structure of the Earth

Spatial structure of geomagnetic field

Secular variation

B_r at CMB 1890

westward drift $0.18^{\circ}/\text{yr}$ $u \approx 0.5 \,\text{mm/sec}$

B_r at CMB 1990

Secular variation

SINT-800 VADM (Guyodo and Valet 1999)

NGP (Ohno and Hamano 1992)

Polarity reversals

Solar activity cycle (Schwabe 1843, Wolf 1848)

(Hale 1908)

Butterfly diagram (Spörer ~1865, Maunder 1904)

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Magnetic field of the Eart Magnetic field of the Sun Dynamo hypothesis Homopolar dynamo

Polarity rules (Hale et al. 1919)

of cycle n+1 [104H]

gred

sunspot

Variability of cycle length and strength

Long-term variability / C14 and Be10

Solar activity in the last 11400 years

Other cosmic bodies

Dynamo hypothesis

- Larmor (1919): Magnetic field of Earth and Sun maintained by self-excited dynamo
- Self-excited dynamo: inducing magnetic field created by the electric current (Siemens 1867)
- Example: homopolar dynamo
- Homogeneous dynamo (no wires in Earth core or solar convection zone)
 complex motion necessary
- Kinematic (*u* prescribed, linear)
- Dynamic (**u** determined by forces, including Lorentz force, non-linear)

Homopolar dynamo

electromotive force $\mathbf{u} \times \mathbf{B} \sim$ electric current through wire loop \sim induced magnetic field reinforces applied magnetic field self-excitation if rotation $\Omega > 2\pi R/M$ is maintained where R resistance, M inductance

Pre-Maxwell theory

Pre-Maxwell theory

Maxwell equations: cgs system, vacuum, $\mathbf{B} = \mathbf{H}$, $\mathbf{D} = \mathbf{E}$

$$c\mathbf{\nabla}\times\mathbf{B} = 4\pi\mathbf{j} + \frac{\partial\mathbf{E}}{\partial t}$$
, $c\mathbf{\nabla}\times\mathbf{E} = -\frac{\partial\mathbf{B}}{\partial t}$, $\mathbf{\nabla}\cdot\mathbf{B} = 0$, $\mathbf{\nabla}\cdot\mathbf{E} = 4\pi\lambda$

Basic assumptions of MHD:

- $u \ll c$: system stationary on light travel time, no em waves
- high electrical conductivity: **E** determined by $\partial \mathbf{B}/\partial t$, not by charges λ

$$c\frac{E}{L} pprox \frac{B}{T} \sim \frac{E}{B} pprox \frac{1}{c} \frac{L}{T} pprox \frac{u}{c} \ll 1$$
, E plays minor role : $\frac{e_{el}}{e_m} pprox \frac{E^2}{B^2} \ll 1$

$$\frac{\partial \textbf{\textit{E}}/\partial t}{c \textbf{\textit{V}} \times \textbf{\textit{B}}} \approx \frac{E/T}{cB/L} \approx \frac{E}{B} \frac{u}{c} \approx \frac{u^2}{c^2} \ll 1 \; , \; \text{displacement current negligible}$$

Pre-Maxwell equations:

$$c\mathbf{\nabla}\times\mathbf{B}=4\pi\mathbf{j}\;,\quad c\mathbf{\nabla}\times\mathbf{E}=-rac{\partial\mathbf{B}}{\partial t}\;,\quad \mathbf{\nabla}\cdot\mathbf{B}=0$$

Pre-Maxwell theory

Pre-Maxwell equations Galilei-covariant:

$$\mathbf{E}' = \mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B}$$
, $\mathbf{B}' = \mathbf{B}$, $\mathbf{j}' = \mathbf{j}$

Relation between ${\it j}$ and ${\it E}$ by Galilei-covariant Ohm's law: ${\it j}' = \sigma {\it E}'$ in resting frame of reference, σ electrical conductivity

$$\mathbf{j} = \sigma(\mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B})$$

Magnetohydrokinematics:

$$c\nabla \times \mathbf{B} = 4\pi \mathbf{j}$$

$$c\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{j} = \sigma(\mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B})$$

Magnetohydrodynamics:

additionally

Equation of motion Equation of continuity Equation of state Energy equation

Induction equation

Evolution of magnetic field

$$\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E} = -c \nabla \times \left(\frac{\mathbf{j}}{\sigma} - \frac{1}{c} \mathbf{u} \times \mathbf{B} \right) = -c \nabla \times \left(\frac{c}{4\pi\sigma} \nabla \times \mathbf{B} - \frac{1}{c} \mathbf{u} \times \mathbf{B} \right)$$
$$= \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times \left(\frac{c^2}{4\pi\sigma} \nabla \times \mathbf{B} \right) = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times \nabla \times \mathbf{B}$$

with $\eta = \frac{c^2}{4\pi\sigma} = {\rm const}$ magnetic diffusivity

induction, diffusion

$$\nabla \times (\textbf{\textit{u}} \times \textbf{\textit{B}}) = -\textbf{\textit{B}} \, \nabla \cdot \textbf{\textit{u}} + (\textbf{\textit{B}} \cdot \nabla) \textbf{\textit{u}} - (\textbf{\textit{u}} \cdot \nabla) \textbf{\textit{B}}$$

expansion/contraction, shear/stretching, advection

 $\nabla \cdot \mathbf{B} = 0$ as initial condition, conserved

Ideal conductor
$$\eta = 0$$
: $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B})$

Magnetic flux through floating surface is conserved :

$$\frac{d}{dt}\int_{F}\boldsymbol{B}\cdot d\boldsymbol{F}=0$$

Proof:

$$\begin{split} 0 &= \int \boldsymbol{\nabla} \cdot \boldsymbol{B} d\boldsymbol{V} = \int \boldsymbol{B} \cdot d\boldsymbol{F} = \int_{\boldsymbol{F}} \boldsymbol{B}(t) \cdot d\boldsymbol{F} - \int_{\boldsymbol{F}'} \boldsymbol{B}(t) \cdot d\boldsymbol{F}' - \oint_{\boldsymbol{C}} \boldsymbol{B}(t) \cdot d\boldsymbol{s} \times \boldsymbol{u} dt \,, \\ \int_{\boldsymbol{F}'} \boldsymbol{B}(t+dt) \cdot d\boldsymbol{F}' - \int_{\boldsymbol{F}} \boldsymbol{B}(t) \cdot d\boldsymbol{F} = \int_{\boldsymbol{F}} \{\boldsymbol{B}(t+dt) - \boldsymbol{B}(t)\} \cdot d\boldsymbol{F} - \oint_{\boldsymbol{C}} \boldsymbol{B} \cdot d\boldsymbol{s} \times \boldsymbol{u} dt \\ &= dt \left(\int \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{F} - \oint_{\boldsymbol{C}} \boldsymbol{B} \cdot d\boldsymbol{s} \times \boldsymbol{u} \right) = dt \left(\int \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) \cdot d\boldsymbol{F} - \oint_{\boldsymbol{C}} \boldsymbol{B} \cdot d\boldsymbol{s} \times \boldsymbol{u} \right) \\ &= dt \left(\oint_{\boldsymbol{C}} \boldsymbol{u} \times \boldsymbol{B} \cdot d\boldsymbol{s} - \oint_{\boldsymbol{C}} \boldsymbol{B} \cdot d\boldsymbol{s} \times \boldsymbol{u} \right) = 0 \end{split}$$

Alfven's theorem

Frozen-in field lines

impression that magnetic field follows flow, but $\mathbf{E} = -\mathbf{u} \times \mathbf{B}/c$ and $c \nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$

$$rac{\partial \mathbf{B}}{\partial t} = \mathbf{
abla} imes (\mathbf{u} imes \mathbf{B}) = -\mathbf{B} \, \mathbf{
abla} \cdot \mathbf{u} + (\mathbf{B} \cdot \mathbf{
abla}) \mathbf{u} - (\mathbf{u} \cdot \mathbf{
abla}) \mathbf{B}$$

(i) star contraction: $\overline{B} \sim R^{-2}$, $\overline{\rho} \sim R^{-3} \curvearrowright \overline{B} \sim \overline{\rho}^{2/3}$

Sun \sim white dwarf \sim neutron star: ρ [g cm⁻³]: 1 \sim 10⁶ \sim 10¹⁵

- (ii) stretching of flux tube: $\bigcirc \rightarrow \stackrel{\$}{} \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$ $Bd^2 = \text{const}, Id^2 = \text{const} \curvearrowright B \sim I$
- (iii) shear, differential rotation

Differential rotation

$$\partial B_{\phi}/\partial t = r \sin \theta \, \nabla \Omega \cdot \boldsymbol{B}_{p}$$

Magnetic Reynolds number

Dimensionless variables: length L, velocity u_0 , time L/u_0

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) - R_m^{-1} \, \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{B} \quad \text{with} \quad R_m = \frac{u_0 L}{\eta}$$

as combined parameter

laboratorium: $R_m \ll 1$, cosmos: $R_m \gg 1$

induction for $R_m\gg 1$, diffusion for $R_m\ll 1$, e.g. for small L

example: flux expulsion from closed velocity fields

duction equation

Magnetic Reynolds number

Flux expulsion

Poloidal and toroidal magnetic fields

Spherical coordinates (r, ϑ, φ)

Axisymmetric fields: $\partial/\partial\varphi=0$

$$\begin{aligned} & \boldsymbol{B}(r,\vartheta) = (B_r,B_\vartheta,B_\varphi) \\ & \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \ \, \sim \ \, \frac{1}{r^2} \frac{\partial r^2 B_r}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial \sin \vartheta B_\vartheta}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \underbrace{\frac{\partial B_\varphi}{\partial \varphi}}_{=0} = 0 \end{aligned}$$

 $oldsymbol{B} = oldsymbol{B}_p + oldsymbol{B}_t$ poloidal and toroidal magnetic field

$${m B}_t = (0,0,B_{arphi})$$
 satisfies ${m
abla} \cdot {m B}_t = 0$

$$m{B}_p = (B_r, B_\vartheta, 0) = m{
abla} imes m{A}$$
 with $m{A} = (0, 0, A_\varphi)$ satisfies $m{
abla} \cdot m{B}_p = 0$

$$\boldsymbol{B}_{p} = \frac{1}{r\sin\vartheta} \left(\frac{\partial r\sin\vartheta A_{\varphi}}{r\partial\vartheta}, -\frac{\partial r\sin\vartheta A_{\varphi}}{\partial r}, 0 \right)$$

axisymmetric magnetic field determined by the two scalars: $r\sin\vartheta A_{arphi}$ and B_{arphi}

Poloidal and toroidal magnetic fields

Axisymmetric fields:

$$m{j}_t = rac{m{c}}{4\pi}m{
abla}{ imes}m{B}_{m{
ho}}\;,\quad m{j}_{m{
ho}} = rac{m{c}}{4\pi}m{
abla}{ imes}m{B}_t$$

 $r\sin\vartheta A_{arphi}={
m const}: \quad {
m field \ lines \ of \ poloidal \ field \ in \ meridional \ plane}$

field lines of \boldsymbol{B}_t are circles around symmetry axis

Non-axisymmetric fields:

$$\mathbf{B} = \mathbf{B}_{p} + \mathbf{B}_{t} = \nabla \times \nabla \times (P\mathbf{r}) + \nabla \times (T\mathbf{r}) = -\nabla \times (\mathbf{r} \times \nabla P) - \mathbf{r} \times \nabla T$$

$${m r}=(r,0,0)\,,\quad P(r,\vartheta,\varphi)\quad {
m and}\quad T(r,\vartheta,\varphi)\quad {
m defining\ scalars}$$

$$\nabla \cdot \mathbf{B} = 0$$
, $\mathbf{j}_t = \frac{c}{4\pi} \nabla \times \mathbf{B}_p$, $\mathbf{j}_p = \frac{c}{4\pi} \nabla \times \mathbf{B}_t$

 $\mathbf{r} \cdot \mathbf{B}_t = 0$ field lines of the toroidal field lie on spheres, no r component

 \boldsymbol{B}_{p} has in general all three components

Axisymmetric magnetic fields can not be maintained by a dynamo.

Sketch of proof:

- electric currents as sources of the magnetic field only in finite space
- field line F = 0 along axis closes at infinity
- field lines on circular tori whose cross section are the lines F = const

- axisymmetry: closed neutral line
- around neutral line is $\nabla \times \mathbf{B} \neq 0 \quad \sim j_{\varphi} \neq 0$, but there is no source of j_{φ} : $E_{\varphi} = 0$ because of axisymmetry and $(\mathbf{u} \times \mathbf{B})_{\varphi} = 0$ on neutral line for finite \mathbf{u}

Cowling's theorem - Formal proof

Consider vicinity of neutral line, assume axisymmetry

$$\begin{split} \oint B_{p} \textit{d} \textit{l} &= \oint \textbf{\textit{B}} \cdot \textit{d} \textbf{\textit{I}} = \int \textbf{\textit{\nabla}} \times \textbf{\textit{B}} \, \textit{d} \textbf{\textit{f}} = \frac{4\pi}{c} \int \textbf{\textit{j}} \cdot \textit{d} \textbf{\textit{f}} = \frac{4\pi}{c} \int |\textbf{\textit{j}}_{\varphi}| \textit{d} \textit{f} \\ &= \frac{4\pi\sigma}{c^{2}} \int |\textbf{\textit{u}}_{p} \times \textbf{\textit{B}}_{p}| \textit{d} \textit{f} \leq \frac{4\pi\sigma}{c^{2}} \int \textit{\textit{u}}_{p} B_{p} \textit{d} \textit{f} \leq \frac{4\pi\sigma}{c^{2}} \textit{\textit{u}}_{p,\text{max}} \int B_{p} \textit{d} \textit{f} \end{split}$$

integration circle of radius arepsilon

$$\begin{split} B_p 2\pi\varepsilon &\leq \frac{4\pi\sigma}{c^2} u_{\text{p,max}} B_p \pi \varepsilon^2 \quad \text{or} \quad 1 \leq \frac{2\pi\sigma}{c^2} u_{\text{p,max}} \varepsilon \\ \varepsilon &\to 0 \quad \bigwedge \quad u_{\text{p,max}} \to \infty \end{split}$$

contradiction

Toroidal theorems

Toroidal velocity theorem (Elsasser 1947, Bullard & Gellman 1954)

A toroidal motion in a spherical conductor can not maintain a magnetic field by dynamo action.

Sketch of proof:

$$\frac{d}{dt}(\mathbf{r} \cdot \mathbf{B}) = \eta \nabla^2(\mathbf{r} \cdot \mathbf{B}) \quad \text{for} \quad \mathbf{r} \cdot \mathbf{u} = 0$$

$$\mathbf{r} \cdot \mathbf{B} \to 0 \quad \text{for} \quad t \to \infty \quad \mathbf{r} \to 0 \quad \mathbf{r} \to 0$$

Toroidal field theorem / Invisible dynamo theorem (Kaiser et al. 1994)

A purely toroidal magnetic field can not be maintained by a dynamo.

Parker's helical convection

velocity **u**

vorticity $\omega = \nabla \times \boldsymbol{u}$

helicity $H = \mathbf{u} \cdot \boldsymbol{\omega}$

(Parker 1955)

Mean-field theory

Statistical consideration of turbulent helical convection on mean magnetic field (Steenbeck, Krause and Rädler 1966)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \eta \nabla \times \nabla \times \mathbf{B}$$

$$oldsymbol{u} = \overline{oldsymbol{u}} + oldsymbol{u}'$$
 , $oldsymbol{B} = \overline{oldsymbol{B}} + oldsymbol{B}'$ Reynolds rules for averages

$$\frac{\partial \overline{\boldsymbol{B}}}{\partial t} = \nabla \times (\overline{\boldsymbol{u}} \times \overline{\boldsymbol{B}} + \boldsymbol{\mathcal{E}}) - \eta \nabla \times \nabla \times \overline{\boldsymbol{B}}$$

$$\mathcal{E} = \overline{\mathbf{u}' \times \mathbf{B}'}$$
 mean electromotive force

$$\frac{\partial \boldsymbol{B}'}{\partial t} = \nabla \times (\overline{\boldsymbol{u}} \times \boldsymbol{B}' + \boldsymbol{u}' \times \overline{\boldsymbol{B}} + \boldsymbol{\mathcal{G}}) - \eta \nabla \times \nabla \times \boldsymbol{B}'$$

$$G = u' \times B' - \overline{u' \times B'}$$
 usually neglected, FOSA = SOCA

 ${m B}'$ linear, homogeneous functional of ${m \overline{B}}$

approximation of scale separation: ${m B}'$ depends on ${m B}$ only in small surrounding

Taylor expansion:
$$(\overline{u' \times B'})_i = \alpha_{ij} \overline{B}_j + \beta_{ijk} \partial \overline{B}_k / \partial x_j + \dots$$

$$(\overline{\mathbf{u}' \times \mathbf{B}'})_{i} = \alpha_{ij} \overline{B}_{j} + \beta_{ijk} \partial \overline{B}_{k} / \partial x_{j} + \dots$$

 α_{ii} and β_{iik} depend on \mathbf{u}'

homogeneous, isotropic \mathbf{u}' : $\alpha_{ii} = \alpha \delta_{ii}$, $\beta_{iik} = -\beta \varepsilon_{iik}$ then

$$\overline{\mathbf{u}' \times \mathbf{B}'} = \alpha \overline{\mathbf{B}} - \beta \nabla \times \overline{\mathbf{B}}$$

Ohm's law: $\mathbf{i} = \sigma(\mathbf{E} + (\mathbf{u} \times \mathbf{B})/c)$

$$\bar{j} = \sigma(\overline{E} + (\overline{u} \times \overline{B})/c + (\alpha \overline{B} - \beta \nabla \times \overline{B})/c)$$
 and $c \nabla \times \overline{B} = 4\pi \bar{j}$

$$ar{m{j}} = \sigma_{ ext{eff}}(\overline{m{E}} + (\overline{m{u}} imes \overline{m{B}})/c + lpha \overline{m{B}}/c)$$

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times (\overline{\mathbf{u}} \times \overline{\mathbf{B}} + \alpha \overline{\mathbf{B}}) - \eta_{\text{eff}} \nabla \times \nabla \times \overline{\mathbf{B}} \quad \text{with} \quad \eta_{\text{eff}} = \eta + \beta$$

Two effects:

(1)
$$\alpha$$
 – effect: $\bar{\boldsymbol{j}} = \sigma_{\text{eff}} \alpha \overline{\boldsymbol{B}} / c$

(2) turbulent diffusivity:
$$\beta \gg \eta$$
, $\eta_{\rm eff} = \beta = \eta_{\rm T}$

Sketch of dependence of α and β on u'

$$\frac{\partial \mathbf{B}'}{\partial t} = \nabla \times (\overline{\mathbf{u}} \times \mathbf{B}' + \mathbf{u}' \times \overline{\mathbf{B}} + \mathcal{G}) - \eta \nabla \times \nabla \times \mathbf{B}'$$

simplifying assumptions: ${\cal G}=0$, ${\it u}'$ incompressible, isotropic , $\overline{\it u}=0$, $\eta=0$

$$B'_{k} = \int_{t_{0}}^{t} \underbrace{\varepsilon_{klm}\varepsilon_{mrs}}_{\delta_{kr}\delta_{ls} - \delta_{ks}\delta_{lr}} \frac{\partial}{\partial x_{l}} (u'_{r}\overline{B}_{s})d\tau + B'_{k}(t_{0})$$

$$\mathcal{E}_{i} = \langle \mathbf{u}' \times \mathbf{B}' \rangle_{i} = \varepsilon_{ijk} \Big\langle u'_{j}(t) \Big[\int_{t_{0}}^{t} \Big(\frac{\partial u'_{k}}{\partial x_{l}} \overline{B}_{l} + u'_{k} \frac{\partial \overline{B}_{l}}{\partial x_{l}} - \frac{\partial u'_{l}}{\partial x_{l}} \overline{B}_{k} - u'_{l} \frac{\partial \overline{B}_{k}}{\partial x_{l}} \Big) d\tau + B'_{k}(t_{0}) \Big] \Big\rangle$$

$$= \varepsilon_{ijk} \int_{t_{0}}^{t} \Big[\underbrace{\Big\langle u'_{j}(t) \frac{\partial u'_{k}(\tau)}{\partial x_{l}} \Big\rangle}_{\mathcal{O}_{i}} \overline{B}_{l} - \underbrace{\Big\langle u'_{j}(t) u'_{l}(\tau) \Big\rangle}_{\mathcal{O}_{i}} \frac{\partial \overline{B}_{k}}{\partial x_{l}} \Big] d\tau$$

isotropic turbulence:
$$\alpha = -\frac{1}{3} \overline{\boldsymbol{u}' \cdot \nabla \times \boldsymbol{u}'} \tau^* = -\frac{1}{3} \overline{H} \tau^*$$
 and $\beta = \frac{1}{3} u'^2 \tau^*$

H helicity, τ^* correlation time

Mean-field coefficients derived from a MHD geodynamo simulation

(http://www.solar-system-school.de/alumni/schrinner.pdf, Schrinner et al. 2007)

Mean-field dynamos

Dynamo equation:
$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \nabla \times (\overline{\mathbf{u}} \times \overline{\mathbf{B}} + \alpha \overline{\mathbf{B}} - \eta_T \nabla \times \overline{\mathbf{B}})$$

- spherical coordinates, axisymmetry
- $\overline{\mathbf{u}} = (0, 0, \Omega(r, \vartheta)r \sin \vartheta)$
- $\bullet \ \overline{B} = (0, 0, B(r, \vartheta, t)) + \nabla \times (0, 0, A(r, \vartheta, t))$

$$\begin{split} \frac{\partial B}{\partial t} &= r \sin \vartheta (\nabla \times \mathbf{A}) \cdot \nabla \Omega - \alpha \nabla_1^2 A + \eta_T \nabla_1^2 B \\ \frac{\partial A}{\partial t} &= \alpha B + \eta_T \nabla_1^2 A \quad \text{with} \quad \nabla_1^2 = \nabla^2 - (r \sin \vartheta)^{-2} \end{split}$$

rigid rotation has no effect

no dynamo if
$$\alpha = 0$$

$$\frac{\alpha - \text{term}}{\nabla \Omega - \text{term}} \approx \frac{\alpha_0}{|\nabla \Omega|^{1/2}}$$

$$\frac{\alpha - \text{term}}{\nabla \Omega - \text{term}} \approx \frac{\alpha_0}{|\nabla \Omega| L^2} \quad \begin{cases} \gg 1 & \alpha^2 - \text{dynamo with dynamo number } R_\alpha^2 \\ \sim 1 & \alpha^2 \Omega - \text{dynamo} \\ \ll 1 & \alpha \Omega - \text{dynamo with dynamo number } R_\alpha R_\Omega \end{cases}$$

$$\sim 1$$
 $\alpha^2\Omega$ -dynamo

Sketch of an $\alpha\Omega$ dynamo

periodically alternating field, here antisymmetric with respect to equator

Sketch of an α^2 dynamo

stationary field, here antisymmetric with respect to equator

Dynamo waves

Consider $\alpha\Omega$ —equations locally

Cartesian coordinates (x, y, z) corresponding to (θ, ϕ, r)

$$\alpha = \text{const}, \, \eta_T = \text{const}, \, \boldsymbol{u} = (0, \Omega z, 0) \text{ with } \Omega = \text{const}$$

$$\mathbf{B}_{t} = (0, B(x, t), 0), \, \mathbf{B}_{p} = (0, 0, \partial A(x, t)/\partial x)$$

$$\dot{B} = \Omega A' + \eta_T B'', \quad \dot{A} = \alpha B + \eta_T A'', \quad \dot{B} = \partial/\partial t, \quad \dot{B} = \partial/\partial t$$

ansatz
$$(B, A) = (B_0, A_0) \exp[i(\omega t + kx)]$$

dispersion relation
$$(i\omega + \eta_T k^2)^2 = ik\Omega\alpha$$

assume
$$\alpha\Omega$$
 < 0, e.g. α > 0, Ω < 0 and take k > 0

$$\omega = i\eta_T k^2 - (1+i)|k\alpha\Omega/2|^{1/2}$$
 (Parker 1955)

growth rate
$$-\omega_I = -\eta_T k^2 + |k\alpha\Omega/2|^{1/2} \ge 0$$
 for $|k\alpha\Omega/2|^{1/2} \ge \eta_T k^2$:

inductive effects must exceed threshold

frequency $\omega_R = -|k\alpha\Omega/2|^{1/2} < 0$: wave propagation in positive *x*-direction identical result for k < 0

if $\alpha\Omega > 0$ wave propagation in negative *x*-direction

Dynamo waves and dynamo number

In general:

wave propagates along surfaces of constant rotation (Yoshimura 1975) direction of propagation depends on $\mathrm{sign}(\alpha\Omega)$ period is geometric mean of $(k\alpha)^{-1}$ and Ω^{-1}

in the critical case period equals $(\eta_T k^2)^{-1}$, decreasing with increasing excitation

Dynamo number:

$$\begin{split} &\Omega = \Omega_0 \tilde{\Omega}, \quad \alpha = \alpha_0 \tilde{\alpha}, \quad t = \frac{R^2}{\eta_T} \tilde{t}, \quad B = B_0 \tilde{B}, \quad A = R B_0 \tilde{A}, \quad \tilde{\tilde{A}} = \frac{\Omega_0 R^2}{\eta_T} \tilde{A} \\ &\frac{\partial B}{\partial t} = r \sin \theta (\nabla \times \mathbf{A}) \cdot \nabla \Omega + \Delta_1 B \quad \text{and} \quad \frac{\partial A}{\partial t} = P \alpha B + \Delta_1 A \end{split}$$

$$P = R_{\alpha}R_{\Omega} = rac{lpha_0 R}{\eta_T} \cdot rac{\Omega_0 R^2}{\eta_T}$$
 dynamo number, $B_t/B_p pprox (R_{\Omega}/R_{\alpha})^{1/2}$

$\alpha\Omega$ dynamo modes

bounded $\alpha\Omega$ dynamo solutions, dimensionless

$$\alpha = \alpha_0 \cos x$$
, $\partial u_y / \partial z = G_0 \sin x$ dynamo effects

$$\dot{A} = P \cos xB + A'', \quad \dot{B} = \sin xA' + B''$$
 dynamo equations

$$P = R_{\alpha}R_{\Omega} = \frac{\alpha_0L}{\eta_T} \cdot \frac{G_0L^2}{\eta_T}$$
 dynamo number

boundary conditions, $L = \pi/2$

$$x = 0 : A = B = 0$$
 0 $\pi/2$ π $x = \pi : A = B = 0$ North Pole Equator South Pole

$$x = \pi/2$$
: antisymmetric solution, dipolar: $A' = B = 0$

symmetric solution, quadrupolar :
$$A = B' = 0$$

now antisymmetric solution

Free decay:
$$A = A''$$
 and $B = B''$

$$A_n = e^{\omega_n t} \sin nx$$
 with $\omega_n = -n^2$, $n = 1, 3, 5, ...$
 $B_n = e^{\omega_n t} \sin nx$ with $\omega_n = -n^2$, $n = 2, 4, 6, ...$

$$B_n = e^{\omega_n t} \sin nx$$
 with $\omega_n = -n^2$, $n = 2, 4, 6, ...$

Eigenvalue problem

$$\dot{A} = P \cos xB + A''$$
 and $\dot{B} = \sin xA' + B''$ expansion in decay modes (complete, orthogonal, satisfy b.c.)

$$A = e^{\omega t} \sum_{n=1,3,5,\dots} a_n \sin nx \quad \text{and} \quad B = e^{\omega t} \sum_{n=2,4,6,\dots} b_n \sin nx$$

$$\sin x \cos nx = 1/2 \left[\sin(n+1)x - \sin(n-1)x \right] \quad \text{and} \quad \cos x \sin nx = 1/2 \left[\sin(n+1)x + \sin(n-1)x \right]$$
orthogonality relations:
$$\int_0^{\pi/2} \sin nx \sin mx \, dx = \pi/4 \, \delta_{nm}$$

$$\omega a_m = P/2(b_{m-1} + b_{m+1}) - m^2 a_m, \qquad m \text{ odd}$$

$$\omega b_m = 1/2((m-1)a_{m-1} - (m+1)a_{m+1}) - m^2b_m$$
, m even

$$\omega \left(\begin{array}{c} a_1 \\ b_2 \\ a_3 \\ b_4 \\ \vdots \end{array} \right) = \left(\begin{array}{ccccc} -1 & P/2 \\ 1/2 & -4 & -3/2 \\ & P/2 & -9 & P/2 \\ & & 3/2 & -16 & -5/2 \\ & & & \ddots \end{array} \right) \left(\begin{array}{c} a_1 \\ b_2 \\ a_3 \\ b_4 \\ \vdots \end{array} \right)$$

vary P until $\omega_R = 0$: P_{crit}

Dipolar solution

antisymmetric with respect to equator

Pcpublic/schmitt/dynamo/dynewp.f and dynew.f

Exercise: find critical dynamo numbers for quadrupolar solution, symmetric with respect to equator

Basic incredients
Convection zone dynamos
Overshoot layer dynamos
Interface dynamos
Flux transport dynamos

Basic solar dynamo incredients

Dieter Schmitt

Hydromagnetic Dynamo Theory

Convection zone dynamos

 $\alpha\Omega$ -dynamo in convection zone, $\Omega(r)$ with $\partial\Omega/\partial r<0$, $\alpha\sim\cos\vartheta$, $\eta_T=10^{10}\,\mathrm{cm^2s^{-1}}$

(Stix 1976)

Convection zone dynamos

Theoretical butterfly diagram

(Steenbeck and Krause 1969)

Difficulties of convection zone dynamos

• Intermittency: $B' \gg \langle B \rangle$

Polarity rules: B ~ 10⁵ G

Magnetic buoyancy and storage problem: rise time

≪ cycle length

Rotation law

Butterfly diagram

Overshoot layer dynamos

- ullet Favourable dynamo site: storage, reduced turbulent diffusivity, rotation, dynamic lpha-effect
- Dynamo action of magnetostrophic waves (Schmitt 1985): magnetic field layer unstable due to magnetic buoyancy
 - → excitation of magnetostrophic waves in a fast rotating fluid

$$v_A^2/v_{\rm rot} \approx v_{\rm mw} \ll v_A \ll v_{\rm rot} \ll v_S$$

mw are helical and induce an electromotive force

- → electric current parallel to toroidal magnetic field
- \equiv dynamic α -effect: $\alpha \langle \boldsymbol{B} \rangle_{tor} = \langle \boldsymbol{u} \times \boldsymbol{b} \rangle_{tor}$

not based on convection, applicable to strong fields superposition of most unstable waves:

Overshoot layer dynamos

Dynamo model

(Schmitt 1993)

- \bullet Disadvantages: overlapping wings, parity, α concentrated near equator
- Flux tube instability: $B > B_{\text{threshold}}$ (Ferriz-Mas et al. 1994)

Interface dynamos

Parker (1993), Charbonneau and MacGregor (1997), Zhang et al. (2004):

Dynamo on interface between

convection zone: η large, α

overshoot layer: η small, $\partial\Omega/\partial r$, most flux

Flux transport dynamos

Durney (1995), Choudhari et al. (1995), Dikpati and Charbonneau (1999):

- regeneration of poloidal field through tilt of bipolar active regions close to surface (Babcock 1961, Leighton 1969)
- rotational shear in tachocline
- transport of magnetic flux by meridional circulation
 - → determines migration direction and cycle period

Basic incredients
Convection zone dynamos
Overshoot layer dynamos
Interface dynamos
Flux transport dynamos

Flux transport dynamos

Dieter Schmitt

Hydromagnetic Dynamo Theory

Flux transport dynamos

(Charbonneau 2013)

Basic incredients
Convection zone dynamos
Overshoot layer dynamos
Interface dynamos
Flux transport dynamos

Magnetohydrodynamical dynamos and geodynamo simulations

Overshoot layer dynamo with meridional circulation

Equations and parameters
Proudman-Taylor theorem, convection in a rotating sphere and Taylor's constraint
A simple needynamo model

Reversals

MHD equations of rotating fluids in non-dimensional form

Navier-Stokes equation including Coriolis and Lorentz forces

$$E\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla^2 \boldsymbol{u}\right) + 2\hat{\boldsymbol{z}} \times \boldsymbol{u} + \nabla \Pi = \frac{Ra E}{Pr} \frac{\boldsymbol{r}}{r_0} T + \frac{1}{Pm} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}$$
Inertia Viscosity Coriolis Buoyancy Lorentz

Induction equation

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \frac{1}{Pm} \nabla \times \nabla \times \mathbf{B}$$
Induction Diffusion

Energy equation

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T = \frac{1}{Pr} \boldsymbol{\nabla}^2 T + Q$$

Incompressibility and divergence-free magnetic field

$$\nabla \cdot \boldsymbol{u} = 0$$
, $\nabla \cdot \boldsymbol{B} = 0$

Equations and parameters
Proudman-Taylor theorem, convection in a rotating sphere and Taylor's constrain

simple geodynamo model dvanced models eversals

Non-dimensional parameters

Control parameters (Input)

Parameter	Definition	Force balance	Model value	Earth value
Rayleigh number	$Ra = \alpha g_0 \Delta T d / \nu \kappa$	buoyancy/diffusivity	1 - 50 <i>Ra</i> _{crit}	≫ Ra _{crit}
Ekman number	$E = v/\Omega d^2$	viscosity/Coriolis	$10^{-6} - 10^{-4}$	10^{-14}
Prandtl number	$Pr = v/\kappa$	viscosity/thermal diff.	$2 \cdot 10^{-2} - 10^3$	0.1 – 1
Magnetic Prandtl	$Pm = v/\eta$	viscosity/magn. diff.	$10^{-1} - 10^3$	$10^{-6} - 10^{-5}$

Diagnostic parameters (Output)

Parameter	Definition	Force balance	Model value	Earth value
Elsasser number	$\Lambda = B^2/\mu ho\eta\Omega$	Lorentz/Coriolis	0.1 - 100	0.1 - 10
Reynolds number	Re = ud/v	inertia/viscosity	< 500	$10^8 - 10^9$
Magnetic Reynolds	$Rm = ud/\eta$	induction/magn. diff.	$50 - 10^3$	$10^2 - 10^3$
Rossby number	$Ro = u/\Omega d$	inertia/Coriolis	$3 \cdot 10^{-4} - 10^{-2}$	$10^{-7} - 10^{-6}$

Earth core values: $d \approx 2.10^5 \text{ m}, u \approx 2.10^{-4} \text{ m s}^{-1}, v \approx 10^{-6} \text{ m}^2 \text{s}^{-1}$

Proudman-Taylor theorem

Non-magnetic hydrodynamics in rapidly rotating system

 $E \ll 1$, $Ro \ll 1$: viscosity and inertia small

balance between Coriolis force and pressure gradient

$$-\nabla p = 2\rho \mathbf{\Omega} \times \mathbf{u} \;, \quad \nabla \times : \quad (\mathbf{\Omega} \cdot \nabla) \mathbf{u} = 0$$

 $\frac{\partial \mathbf{u}}{\partial z} = \mathbf{0}$ motion independent along axis of rotation, geostrophic motion

(Proudman 1916, Taylor 1921)

Ekman layer:

At fixed boundary ${\pmb u}=0$, violation of P.-T. theorem necessary for motion close to boundary allow viscous stresses $\nu {\pmb \nabla}^2 {\pmb u}$ for gradients of ${\pmb u}$ in z-direction Ekman layer of thickness $\delta_l \sim E^{1/2} L \sim 0.2$ m for Earth core

Convection in rotating spherical shell

inside tangent cylinder: $g \parallel \Omega$:

Coriolis force opposes convection outside tangent cylinder:

P.-T. theorem leads to columnar convection cells $\exp(im\varphi - \omega t)$ dependence at onset of convection, 2m columns which drift in φ -direction

inclined outer boundary violates Proudman-Taylor theorem

 \sim columns close to tangent cylinder around inner core

inclined boundaries, Ekman pumping and inhomogeneous thermal buoyancy lead to secondary circulation along convection columns:

poleward in columns with $\omega_z < 0$, equatorward in columns with $\omega_z > 0$

~ negative helicity north of the equator and positive one south

Convection in rotating spherical shell

Taylor's constraint

$$2\rho \mathbf{\Omega} \times \mathbf{u} = -\nabla p + \rho \mathbf{g} + (\nabla \times \mathbf{B}) \times \mathbf{B}/4\pi$$
 magnetostrophic regime $\nabla \cdot \mathbf{u} = 0$, $\rho = \mathrm{const}$; $\mathbf{\Omega} = \omega_0 \mathbf{e}_z$

Consider φ -component and integrate over cylindrical surface C(s) $\partial p/\partial \varphi = 0$ after integration over φ , g in meridional plane

$$2\rho\Omega\underbrace{\int_{C(s)} \mathbf{u} \cdot d\mathbf{S}}_{=0} = \frac{1}{4\pi} \int_{C(s)} ((\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B})_{\varphi} dS$$

$$= 0$$

$$\int_{C(s)} ((\mathbf{\nabla} \times \mathbf{B}) \times \mathbf{B})_{\varphi} dS = 0 \quad \text{(Taylor 1963)}$$

net torque by Lorentz force on any cylinder $\parallel \Omega$ vanishes

B not necessarily small, but positive and negative parts of the integrand cancelling each other out

violation by viscosity in Ekman boundary layers

torsional oscillations around Taylor state

Benchmark dynamo

$$Ra = 10^5 = 1.8 Ra_{crit}$$
, $E = 10^{-3}$, $Pr = 1$, $Pm = 5$

radial magnetic field at outer radius

radial velocity field at $r = 0.83r_0$

axisymmetric axisymmetric magnetic field flow

(Christensen et al. 2001)

Conversion of toroidal field into poloidal field

Equations and parameters

Proudman-Taylor hoorem, convection in a rotating sphere and Taylor's constraint

A simple geodynamo model

Advanced models

Generation of toroidal field from poloidal field

Field line bundle in the benchmark dynamo

(cf Aubert)

Dieter Schmitt

Hydromagnetic Dynamo Theory

Strongly driven dynamo model

$$Ra = 1.2 \times 10^8 = 42 Ra_{crit}$$
, $E = 3 \times 10^{-5}$, $Pr = 1$, $Pm = 2.5$

radial magnetic field at outer radius

radial velocity field at $r = 0.93r_0$

magnetic field flow

(Christensen et al. 2001)

Comparison of the radial magnetic field at the CMB

Scaling laws

(Christensen and Aubert 2006, Christensen et al. 2009, Christensen 2010)

Equations and parameters

Proudman-Taylor hoerem, convection in a rotating sphere and Taylor's constraint

A simple geodynamo model

Advanced models

Dynamical Magnetic Field Line Imaging / Movie 2

(Aubert et al. 2008)

Reversals

Reversals

(Glatzmaier and Roberts 1995)

Equations and parameters
Proudman-Taylor theorem, convection in a rotating sphere and Taylor's constraint
A simple geodynamo model
Advanced models
Reversals

Reversals

(Aubert et al. 2008)

Geodynamo as a bistable oscillator

a o -1 -2 0 500 1000 1500 2000

Time

(Hoyng et al. 2001, Schmitt et al. 2001)

Geodynamo as a bistable oscillator – equations

 $\alpha\Omega$ dynamo with α fluctuations

expansion of magnetic field \boldsymbol{B} into dynamo eigenmodes \boldsymbol{b}_i

$$\begin{split} & \boldsymbol{B}(\boldsymbol{r},t) = \sum_{i} a_{i}(t)\boldsymbol{b}_{i}(\boldsymbol{r}) \\ & \frac{\partial a_{i}}{\partial t} = \lambda_{i}a_{i} + (1-a_{0}^{2})\sum_{k} N_{ik}a_{k} + \sum_{k} F_{ik}a_{k} \\ & \text{Fokker-Planck equation: } \frac{\partial p}{\partial t} = -\frac{\partial}{\partial a}Sp + \frac{1}{2}\frac{\partial^{2}}{\partial a^{2}}Dp \end{split}$$

p(a) probability distribution of fundamental dipole amplitude $a = a_0$

drift term:
$$S = \Lambda(1 - a^2)a = -\frac{\partial U}{\partial a}$$

diffusion term *D* comprising stochastic effects

Magnetohydrodynamical dynamos and geodynamo simulations

Domino model for geomagnetic field reversals

Ising-Heisenberg model of N spins $S_i(\vartheta)$

$$\mathbf{S}_i = (\sin \vartheta_i, \cos \vartheta_i) , i = 1, \dots, N$$

$$K(t) = \frac{1}{2} \sum_{i} \dot{\vartheta}_{i}^{2}$$

$$P(t) = \gamma \sum_{i} (\boldsymbol{\Omega} \cdot \boldsymbol{S}_{i})^{2} + \lambda \sum_{i} (\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1})$$

Reversals

$$\mathcal{L} = K - P$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}_i} \right) = \frac{\partial \mathcal{L}}{\partial \theta_i} - \kappa \dot{\theta}_i + \frac{\varepsilon \chi_i}{\sqrt{\tau}}$$

$$M(t) = \frac{1}{N} \sum_{i} (\mathbf{\Omega} \cdot \mathbf{S}_{i}) = \frac{1}{N} \sum_{i} \cos \vartheta_{i}$$

Literature

- P. H. Roberts, An introduction to magnetohydrodynamics, Longmans, 1967
- H. Greenspan, The theory of rotating fluids, Cambridge, 1968
- H. K. Moffatt, Magnetic field generation in electrically conducting fluids, Cambridge, 1978
- E. N. Parker, Cosmic magnetic fields, Clarendon, 1979
- F. Krause, K.-H. Rädler, Mean-field electrodynamics and dynamo theory, Pergamon, 1980
- F. Krause, K.-H. Rädler, G. Rüdiger (Eds.), The cosmic dynamo, IAU Symp. 157, Kluwer, 1993
- M. R. E. Proctor and A. D. Gilbert (Eds.), Lectures on solar and planetary dynamos, Cambridge, 1994
- D. R. Fearn, Hydromagnetic flows in planetary cores, Rep. Prog. Phys., 61, 175, 1998

Literature continued

- M. Ossendrijver, The solar dynamo, Astron. Astrophys. Rev., 11, 287, 2003
- P. Charbonneau, Dynamo models of the solar cycle, Living Rev. Solar Phys., 2, 2005, updated 7, 2010
- Treatise on geophysics, Vol. 8, Core dynamics, P. Olson (Ed.), Elsevier, 2007
 - P. H. Roberts, Theory of the geodynamo
 - C. A. Jones, Thermal and compositional convection in the outer core
 - U. R. Christensen and J. Wicht, Numerical dynamo simulations
 - G. A. Glatzmaier and R. S. Coe, Magnetic polarity reversals in the core
- P. Charbonneau, Solar and stellar dynamos, Saas-Fee Advanced Course, Vol. 39, Springer, 2013