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Introduction

– The heating problem
– Generalities about the solar corona
– Heating mechanisms:

• waves
• DC currents

– Eruptions and power-laws. Problem of the scales
– Statistical models built on Self-Organized Criticality

(SOC)
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Vertical profile of temperature and density in the
Solar atmosphere
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The corona seen by Yohkoh/SXT

Active zone
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The corona seen by Yohkoh/SXT

Coronal hole
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The corona seen by Yohkoh/SXT

Quiet zone
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The corona seen by Yohkoh/SXT

Isolated loop 
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The corona seen by Yohkoh/SXT

Loop arcade
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The corona seen by Yohkoh/SXT

X-ray bright point
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Where does the energy for the
heating comes from ?

• Required power:
– Quiet region       300 W m-2

– Active region     (0.5 -1) 104 W m-2

– Coronal holes       800 W m-2

• Acoustic waves ?
• Magnetic energy  ?

– Poynting Flux       104 W m-2
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Dissipation of magnetic energy

Heating by MHD waves
– Dissipation of Alfvén waves (Alfvén 1947)
– Resonance absorption (Ionson 1978)
– Phase mixing (Heyvaerts & Priest 1983)
– Ion cyclotron waves (McKenzie et al. 1995)
– Turbulence

Heating by dissipation of DC
– Anomalous resistivity or double layers
– Reconnection (Giovanelli 1946)
– Anomalous resistivity or double layers
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A solar eruption seen by TRACE
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Statistics of eruptions
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Scaling laws : a signature of self-organized
criticality ? (1/3)

- Instabilities with threshold                 - infinite correlations
- slow perturbation                                - scaling laws
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Statistical models are appropriate:

• No inertial interval
• Small scale events – only statistical information
• Scales problems: V (Energy accumulation) >> V (Energy

dissipation)
• Heating occurs not due to a single event but depends on the

frequency of events, the spatial distribution, etc...
• CA can simulate large number of dissipative events and their

statistics.
• Statistical models allow to make a phenomenological

description with different physical effects which can be easily
considered in these models but with difficulty  in MHD.
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Scaling laws : a signature of self-organized
criticality ? (2/3)

Lu et al., 1993
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Scaling laws : a signature of self-organized
criticality ? (3/3)

•                 in Lu & Hamilton’s model
• Currents artificially calculated
• Instability criterium not very physical
• Very weak and localized source
• Small system size

Difficult physical interpretation
May work for large scales, but which physics
at small scales ?

0  ≠Bdiv
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Heating at small scales
- Heating by eruptions not sufficient
- Heating by frequent nano-eruptions ?
(Parker)

if P(E) = c E−α,
  α < 2  large scales dominate
 α > 2  small scales dominate
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Model description

• Why small-scale sources ?

• Description of homogeneous sources

• Dissipation mechanisms and their physical meaning

Second part
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Why small-scale sources ?

• Krucker & Benz (1988) , SOHO,Yohkoh

• Parnell & Jupp (2000), TRACE, α =[2, 2.1]
• Koutchmy et al. , 1997

We conclude :
•  from the multi-wavelengths observations of Benz & Krucker (1998,1999):

Energy release is similar in large loops and less energetic events,
Heating occurs at the level of the chromosphere, and not only on the borders of the

magnetic network, but also inside the cells.
• from Priest et al. (1998, 2001) : heating is quasi-homogeneous along magnetic loops.
• from Aschwanden et al. (2000)

- quasi-homogeneous distribution of nano-eruptions.
•  Shriver  et al. 1998, Abramenko et al. 1999

Not only dissipative processes, but also energy sources have a small characteristic
scale. The characteristic scale of magnetic loops which provide energy deposition
into the corona is of the same order as the dissipation scale.

The sources are distributed homogeneously in space.
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Homogeneous small-scale sources

The sources evolves in each cell independently from other cells. The
interaction between cells is produced by dissipation. 22

Temporal properties of magnetic field sources (1/3)

• Random sources. Random variable in  {-1,0,1}, in each cell.

(brownian diffusion)
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Temporal properties of magnetic field sources (2/3)

• Chaotic source.  Turbulence is not totally random, and certains aspects can be explained by
deterministic models. Here, sources evolve in each cell following the Ulam map [0,1] [0,1] :

(brownian diffusion) 24

• Source « Geisel map». B in each cell evolves according the map

Geisel map. Fixed points correspond to the intersection of the curve with
The line Bn+1=Bn (dashed).

Temporal properties of magnetic field sources (3/3)

The marginally stable fixed points of this application are responsible for the anomalous 
diffusion
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Dissipation mechanisms

Anomalous resistivity : produced by the develoment of certain instabilities, such as
modified Buneman when the current exceeds a threshold. Does not require a
particular topology, and can exist inside the cells. Produces heating by Joule effect.

Reconnection : in our model it occurs whith the additional condition that an X-point 
exists. It represents a change of equilibrium, from one topology to another. It results 
in accelerated outgoing flows, and thus can be associated with non-thermal radiation.
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• Can local dissipative processes produce long-range spatial
correlations ?

• How does the spatial correlation length influences the
statistics of dissipated energy ?

How does the nature of dissipative phenomena
influences the dissipated energy ?

Third part
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Enhancement of the emission measure (195 A)
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- network nanoflares

- intracell nanoflares

- gaussian d.

Compare: Observed PDFs of quiet Sun
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Self-organized criticality ?

Anomalous resistivity:
- system dynamics similar to Brownian motion
- most spatial correlation functions are exponential
- PDF of (E, B) is Gaussian
- Small scales structures are observed with short lifetime
- no SOC

Reconnection :
- longer spatial correlations due to higher currents
- deviation of PDF(E) far from the Gaussian
- spatial correlations decrease as a power-law during large energy releases
- PDF(B) most of the time strongly non-Gaussian 
- PDF(E) has a power-law tail
- filtering low energy events, the distribution follows a power-law and also has a 
  power-law power-spectrum
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Jmax = 30

Chaotic source

Statistics of dissipated energy (2/5)

Anomalous resistivity

Reconnection
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Statistics of dissipated energy (5/5)

 For large values of the threshold, we observe a
suprathermal tail at high energies with a power-
law shape. The absolute value of the exponent
is bigger when dissipation is provided by
reconnection rather than anomalous resistivity.
This tendency is similar to the one found by
Benz & Krucker (2000) who have studied
augmentation of emission measures.
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Large scale magnetic structures
driven by different sources

Fourth part
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Magnetic field

Intermittent source, reconnection
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Magnetic field

Ulam map, reconnection
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Caracterisation of spatial complexity
• Spatial correlation function : linear properties

•  Singular value decomposition (SVD) or Karhunen-Loève transformation. At each timestep, B(x,y) can
be seen as a 2D image. This image is decomposed into a set of separable spatial modes.

• The decomposition becomes unique for orthogonal modes, <fkfl*> = <gkgl*> = delta(k-l).  The
weigths  µk of these modes (singular values), are by convention classified in decreasing order, and are
invariant by all orthogonal transformations of the matrix B(x,y). SVD captures large scale structures in
heavily weighted modes. The distribution of eigenvalues is thus characteristic of the disorder.

• From the SVD, one can define a quantitative measure of spatial complexity known as SVD-entropy
(Aubry, 1991). If

• Is the energy contained in the k-th mode, the entropie is defined as

         H=1   maximal disorder. Ek=1/N  for all k (equipartition)
H=0   All variance is contained in a single mode

• SVD can also be used as a  linear filter to extract large scale structures from a noisy background. To do
that, one cancels singular values below a certain value.
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Spatial correlations of the magnetic field

Sub-diffusive source

L=17 L=19

L=22

Random source

Anomalous resistivity Reconnection
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Singular values and spatial modes (1/5)

• B field for subdiffusive sources and reconnection

H = 0.73 H = 0.51

H = 0.527
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Singular values of the magnetic field

Profile f(x) of the most energetic mode

Singular values and spatial modes (2/5)
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Singular values and spatial modes (3/5)

• B field for random sources and reconnection

H = 0.79

H = 0.807

41

• Temporal characteristics of large scale structures

Sub-diffusive source
(Geisel)

Random source t = 202 t = 220

t = 2958t = 1435

20 first modesAll modes

Autocorrelation function calculated from 4 104 time steps

Singular values and spatial modes (4/5)
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• Magnetic field entropy

 Entropy and system size

Entropy H (N) as a function of the grid-size N.
H=1 corresponds to maximal disorder.

Singular values and spatial modes (5/5)
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Spatial properties and sources
Large scale spatial properties such as correlation length, most energetic

eigenmodes and entropy, depend on the statistical properties of dissipation
mechanisms and sources.

•  Spatial correlation functions are exponential. (The correlation length is finite
and not infinite as supposed in SOC).

 
• SVD allows to extract most energetic magnetic field structures, which are

essentially of larger scale than the sources et survive for a long time. This
supports the idea that the plasma can organise itself  on large scale while
being driven at small scales.

  
• The entropy of the magnetic field generated by intermittent sources is

significantly smaller (around 20-30%) for sub-diffusive source than for other
sources.

 
• Coherent structures with large lifetime are significantly larger in that case.

This indicates a stronger degree of organisation of the system than in the case
of random sources.

 
• These results can be explained by the influence of the temporal diffusion

properties of the sources on the spatial diffusion. 44

Classification of distributions
by means of Pearson technique
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Why classify distributions ?

Distributions in solar physics : peak flux, peak count rate, pixel intensities, energy flux or
increase of emission measure...

     different types of distributions !

Active zones : PDFs of eruptions and microeruptions follow power laws

- For eruptions : peak flux or peak count rate, α ~1.6 -1.8 ; total energy of eruption’s
electrons α ~1.8  (Lin et al., 1984 ; Crosby et al., 1993,1998 ; Georgoulis et al., 2000)

- For eruptions of energy > 1027   ergs,  α ~1.6 -1.8  (Shimizu, 1995 )

Quiet Sun:
- Total energy in heating events α < - 2 (critical value) 1024 –1026  ergs  (Krucker & Benz,

1998 ; Parnel & Jupp 2000)
- Or total energy in nano-eruptions α > - 2 (Achswanden et al., 2000) ?
- Different statistics for emission measures above cell interior and magnetic network.
− χ-distribution (quasi-Gaussian) for pixel intensities, with a power-law tail, α ~ -5. (Aletti

et al.,  2000)

  a precise knowledge of experimental distributions is necessary !

27
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“Graphical” approximation of a distribution
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• An optimal approximation allows to :
– Predict and compare theories and models
– Classify distributions, for exemple to associate them

with different physical phenomena

• A study of empirical distributions and their fit by
theoretical ones should fulfill the following conditions:
– Objectivity
– Automatisation
– Results should be presented under a compact form

• Pearson proposed a classification from :
– Relationship between the first 4 moments
– Fit by functions belonging to a large class of known

distributions
48

Pearson distributions (1/3)

Pearson distributions are smooth, have 1 single maximum (mode) at
x = a.
They satisfy to

which implies a recurrence relationship between the moments. 
For the first four centered moments:
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Pearson distributions (2/3)

Formally, they read

with

Depending on the roots of

They can be classified in 12 classes and some particular cases, 
such as the Gaussian or the exponential distribution. 
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Pearson distributions (3/3)

skewness2

kurtosis + 3 necessarily
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Approximation technique by Pearson curves

• From the time series, one computes the first 4 moments
•  β1 and β2 are computed, and thus class is determined
• One determines the distribution parameters, by equating the

experimental moments with thoses of the theoretical distribution.
• Inserting these parameters into the formal solution of Pearson

curves, one gets an explicit form of the distribution
• The quality of the approximation is tested by a best-fit criterium

(Pearson’s χ2)
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Application of Pearson’s technique
to known laws

p(x) = e-x+0,01

p(x) = 0.165(x-0.05)-0,68 p(x) =3.84*104(x-0.03)3,03
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p(x) =1.1*10-5(exp[11 arctg x]) / (f(x)2+1)15

Application of Pearson’s technique
to simulated data

p(z)~(z/0.083)0,30*e-z/0.083 , z =x-0.2p(x)~(x/0.067)0,87*e-x/0.067 54

Classification of simulated data
as a function of model’s parameters
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What did we learn from Pearson’s technique ?

• Possibility to approximate empirical laws
• Classify them as a function of parameters or physical

processes involved
• Possibility recognize Gaussian distributions and deviations

from the Gaussian
• All found distributions belong to Pearson’s classification
•  Allows a more precise description of experimental laws
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Some perspectives
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Turbulent sources (1/2)

• Why ?
    - photospheric convection is partly turbulent, for example

in between granules
     - a power-law spectrum allows to change the relative

weights of differents scales. This allows to study the
influence of the characteristic scales of the source.

•  How ?
      - power-law spectrum + random phases, 
          independant, at each time step

58

Turbulent sources (2/2)

p(x)=ce –[x/γ] | x| -9
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Dynamo (1/2)

• Why ?
    - generation of magnetic field by plasma

turbulence. Can be important near the surface.
    - internal source of magnetic field.

•  How ?
     - include alpha-effect in the induction equation
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Dynamo (2/2)

Large scale growth of the magnetic field

Requires extension to 3D. Dissipation of parallel currents.
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Recent observations from satellites such as SoHO or
TRACE, due to their high resolution, have made
even more important the questions of the
characteristic scales of the heating.

We have examined a statistical model of heating at
small scales. In this model, we have studied small
scale sources and dissipative processes. Their
influence on the statistical properties of the heating
was studied in detail.

Conclusion and perspectives

62

The model thus presents some properties qualitatively similar
to certain observations. It is flexible enough to be
improved and augmented by the addition of new effects:

- Study of the role of characteristics scales of the sources,
with « turbulent sources »

- generation of B-field by dynamo effect
- Improve and combine reconnection and anomalous

resistivity
- Separate energy transformed into heating and acceleration
- Detailed validation with experimental data
- Extension to 3D
- …

Conclusion and perspectives
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Application of Pearson’s technique
to TRACE data (171 A°)

p(x)=ce –[x+73.7]/560 |x-40| -0.,94
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Application of Pearson’s technique
to TRACE data (195 A°)

p(x)=ce –[x+194.3]/1044 |x-102| -0.,92


