Planet Formation

Jürgen Blum

Institut für Geophysik und extraterrestrische Physik Technische Universität zu Braunschweig Germany

Contents

 What a model of planetary-system formation has to explain
Observational constraints
The formation of planets and planetary systems

A small chronology of the world

• 13,7 Gyr	Big bang; formation of the elements H and He
13,4 Gyr	First stars and galaxies; first supernova explosions produce the heavy elements (C,N,O,Si,Fe,)
🔪 12 Gyr	Formation of the milky way
4,567 Gyr	Formation of the solar system; at this point in time the interstellar medium has been enriched with 1% heavy elements
📍 4,5 Gyr	Formation of the earth and the moon
4,45 Gyr	Layer structure of the earth
4,4 Gyr	Solid earth crust
4,2 Gyr	Early ocean
4 Gyr	Plate tectonics
>3,5 Gyr	Earth's magnetic field
>3,5 Gyr	Origin of life
2,3 Gyr	Formation of oxygen-rich atmosphere; formation of ozone
1 Gyr	"Freeze-out" of inner earth core
0 Gyr	Today

I. What a model of planetarysystem formation has to explain

I. What a model of planetary-system formation has to explain

a. The architecture of our Solar System

- Terrestrial planets in the inner system, gas giants in the outer system
- The occurrence of an asteroid belt between the terrestrial and gaseous planet region
- Kuiper belt
- Oort cloud

The planets of the solar system

Terrestrial vs. gaseous planets

Comparative Planetology

Asteroid belt, Kuiper belt

3. Swarms of asteroids and comets populate the solar system. Asteroids are concentrated in the asteroid belt, and comets populate the regions known as the Kuiper belt and the Oort cloud.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Oort cloud

- I. What a model of planetary-system formation has to explain
 - b. The existence and formation scenario of the Moon

- I. What a model of planetary-system formation has to explain
 - c. The architecture of other solar systems

- I. What a model of planetary-system formation has to explain
 - d. The gaseous-disk lifetime constraint

- I. What a model of planetary-system formation has to explain
 - e. Meteoritic constraints

- I. What a model of planetary-system formation has to explain
 - f. Debris disks

http://upload.wikimedia.org/wikipedia/commons/3/3a/Kuiper_belt_remote.jpg

I. What a model of planetary-system formation has to explain

g. The late heavy bombardment

I. What a model of planetary-system formation has to explain

Fig. 1a and b. Numerical integration of the averaged equations of motion of the solar system 10 Gyr backward and 15 Gyr forward. For each planet, the maximum value obtained over intervals of 10 Myr for the eccentricity (a) and inclination (in degrees) from the fixed ecliptic J2000 (b) are plotted versus time. For clarity of the figures, Mercury, Venus and the Earth are plotted separately from Mars, Jupiter, Saturn, Uranus and Neptune. The large planets behavior is so regular that all the curves of maximum eccentricity and inclination appear as straight lines. On the contrary the corresponding curves of the inner planets show very large and irregular variations, which attest to their diffusion in the chaotic zone.

a. Solar System has disk shape

Inclination							
	Name	Inclination to ecliptic	Inclination to Sun's equator	Inclination to invariable plane ^[3]			
Torrostrials	Mercury	7.01°	3.38°	6.34°			
	Venus	3.39°	3.86°	2.19°			
Terrestriais	Earth	0 °	7.155°	1.57°			
	Mars	1.85°	5.65°	1.67°			
	Jupiter	1.31°	6.09°	0.32°			
Cas giants	Saturn	2.49°	5.51°	0.93°			
Gas giants	Uranus	0.77°	6.48°	1.02°			
	Neptune	1.77°	6.43°	0.72°			

http://en.wikipedia.org/wiki/Inclination#cite_note-meanplane-2

b. Co-formation of Sun and planets

The sun and the planets of our solar system formed at the same time and from the same material reservoir:

- ▷ Elementary abundances
- Age of the meteorites = age of the sun
- Parallel angular momentum of sun and planets

b. Co-formation of Sun and planets

The sun and the planets of our solar system formed at the same time and from the same material reservoir:

- ▷ Elementary abundances
- Age of the meteorites = age of the sun
- Parallel angular momentum of sun and planets

Radiometric dating:					
Material	Age				
Earth (Zircon, Australia)	4.40 Gyr				
Moon (highland rocks)	4.1-4.4 Gyr				
Meteorite (oldest from Mars)	4.5 Gyr				
Meteorite (chondrules)	4.564 Gyr				
Meteorite (CAI)	4.567 Gyr				
Age determination of the sun (evolutionary					
models and helioseismology data):					
Authors	Age				

Authors	Age
Guenther & Demarque 1997	4.5±0.1 Gyr
Bonnano, Schlattl & Paterno 2002	4.57±0.11 Gyr
Houdek & Gough 2007	4.68±0.02 Gyr

c. Existence and lifetimes of PPDs

Gardner et al. 2006

10²

10

 λ (μ m)

Dauphas & Chaussidon 2011 t ≈ 10 My

Molecular clouds I

Molecular clouds II

Molecular clouds III

Molecular clouds IV: dust and gas

Figure 1 Visible and near-infrared images of Barnard 68. Top, deep B,V,I band (0.44 µm, $0.55 \,\mu\text{m}, 0.90 \,\mu\text{m}$) image ($\sim 7' \times 7'$) of the dark molecular cloud Barnard 68 taken with ESO's Very Large Telescope (VLT) located in the Chilean Andes. The cloud is seen in projection against the Galactic bulge. At these optical wavelengths the cloud is completely opaque owing to extinction of background starlight caused by small interstellar dust particles that permeate the cloud. The complete absence of foreground stars projected onto the cloud is a result of the proximity of the cloud to the Solar System (125 pc). The outer radius of the cloud is comparable to the inner size of the Oort cloud of comets that surround the Sun ($\sim 10^4$ Au). The mass of the cloud is about twice that of the Sun. Bottom, deep B,I,K band image of the cloud constructed by combining an infrared K band (2.2 µm wavelength) image with the B and I images. The K band image was obtained with ESO's New Technology Telescope (NTT) in the Chilean Andes. At near-infrared wavelengths the cloud becomes transparent and the stars located behind the cloud clearly appear in the image. Because these stars are observed only in the longest of the three wavelength bands, they appear very red in this three-colour image. These are the stars that provide measurements of dust extinction directly through the cloud.

Molecular clouds V: the interior

Fig. 1. SCUBA map at 850 μ m (left) and SIMBA map at 1.2 mm (right) of Barnard 68, with superimposed A_V contours. The A_V and SCUBA maps have been smoothed to match the SIMBA resolution (*FWHM* = 24"; the beamsize is shown on the right image). All images have been resampled to a pixel size of 12". The field of view is 5' × 5'. A_V contours start at 4 mag and are spaced by 4 mag. For both images, the grayscale in units of S/N.

Fig. 2.— The gravitational fragmentation of molecular cloud is shown from a simulation containing initial structure (*Klessen et al.*, 1998). The gravitational collapse enhances this structure producing filaments which fragment to form individual stars. The time t is given in units of the free-fall time.

Fig. 8.— The fragmentation of a 1000 M_{\odot} turbulent molecular cloud and the formation of a stellar cluster (Bonnell et al., 2003). Note the merging of the smaller subclusters to a single big cluster.

Stars form in clusters: the open clusters h und χ Persei

Hubble Space Telescope • WFPC2

PRC95-45b · ST Scl OPO · November 20, 1995 · M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Planet formation must be a (relatively) fast process!

Maximum lifetime of protoplanetary disks 10⁷ years

d. Dust growth within PPDs

Fig. 3.—*Circles*, VLA measurements at 7 mm and 3.5 cm; *arrow*, an upper limit at 6 cm. The long-wavelength spectrum of TW Hya is better fitted by a model in which nearly all of the mass in solids is in centimeter-size grains (*solid line*) than by the model of Calvet et al. (2002) based on a single-power power-law grain size distribution (*dashed line*).

e. Existence and lifetimes of debris disks

e. Existence and lifetimes of debris disks

Fomalhaut Circumstellar Disk

NASA / JPL-Caltech / K. Stapelfeldt (JPL)

ssc2003-06i

e. Existence and lifetimes of debris disks

e. Existence and lifetimes of debris disks

Figure 3

Evolution of disk mass derived from submillimeter observations. This plot extends the compilation of ages and masses of Wyatt, Dent & Greaves (2003) to include all debris disks currently detected at submillimeter wavelengths (Greaves et al. 2004b; Liu et al. 2004; Sheret, Dent & Wyatt 2004; Najita & Williams 2005; Wyatt et al. 2005; Lestrade et al. 2006; Williams & Andrews 2006; Matthews, Kalas & Wyatt 2007). The same (representative) sample of protoplanetary disks is included from Wyatt, Dent & Greaves (2003), and an opacity of 45 AU² M_{\oplus}^{-1} is assumed for both protoplanetary and debris disks. The upper limit on the Kuiper belt dust mass from submillimeter observations (see Greaves et al. 2004b) is also plotted.
f. Extrasolar planetary systems

- Planets around solar-type stars
- Total of 556 extrasolar-planet candidates (8 June 2011)
 - ► Spectroscopically detected: 507
 - Transits: 135
- Kepler candidates: 1235 (confirmed: 16)
- \triangleright System with 2 or more planets: 127
- Fraction of stars with planets: 0-25%(depending on metallicity of the star)

f. Extrasolar planetary systems

Figure 7. Number of observed candidates versus semi-major axis for four candidate size ranges. As defined in Table 6, Earth-size refers to $R_p < 1.25 \text{ R}_{\oplus}$, super-Earth-size to $1.25 \text{ R}_{\oplus} < R_p < 2 \text{ R}_{\oplus}$, Neptune-size to 2 R_{\oplus} , $< R_p < 6 \text{ R}_{\oplus}$, and Jupiter-size refers to $6 \text{ R}_{\oplus} < R_p < 15 \text{ R}_{\oplus}$. Bin size for the semi-major axis is 0.04 AU.

II. Observational constraints

f. Extrasolar planetary systems

Orbits of extrasolar planets

About the metallicity of stars and the connection to planets

The search for planets around stars in globular cluster has so far been unsuccessful; stars in globular clusters possess metallicities «1%.

 \triangleright The sun possesses a metallicity of ~1%.

The mean metallicity of stars with extrasolar planets is >1%.

13,7 Gyr

Age of stars

in globular clusters

f. Extrasolar planetary systems

core; An approximate mass-radius relation known extrasolar Figure 3: Radius versus mass for giant planets after 4.5 Ga of evolution complanets is shown as dashed and dashhydrogen- $15\,{
m M}_\oplus$ 0.25and a values for our four giant planets and four 0.30a pure, dotted lines, respectively (Courtesy of W.B. Hubbard) a model with Y H+He: espond to: 0.36water and olivine a): but with Y = 0.25the lines for zero-temperature b): the same model nelium composition pared to measured As in fig. planets.

f. Extrasolar planetary systems

g. The existence of chondrules

Chondrule formation

Scott 2007

Chondrule size distribution

h. Meteoritic evidence of formation timescales

NWA 5932, carbonaceous chondrite, CV3

Source: http://tw.strahlen.org/ fotoatlas1/meteorite_ chondrite1.html

Radiometric dating of meteorites - long half lives

Radioactive Isotope	Product	Half-Life		
(Parent)	(Daughter)	(Years)		
Samarium-147	Neodymium-143 106 billi			
Rubidium-87	Strontium-87	48.8 billion		
Rhenium-187	Osmium-187	42 billion		
Lutetium-176	Hafnium-176	38 billion		
Thorium-232	Lead-208	14 billion		
Uranium-238	Lead-206	4.5 billion		
Potassium-40	Argon-40	1.26 billion		
Uranium-235	Lead-207	0.7 billion		

http://www.asa3.org/ ASA/resources/wiens .html

Absolute ages – the Pb-Pb method

Fig. 1. Pb-Pb isochrons for the six most radiogenic Pb isotopic analyses of acid-washed chondrules from the CR chondrite Acfer 059 (solid line), and for acid-washed fractions from the Efremovka CAIs (dashed lines). ²⁰⁷Pb/²⁰⁶Pb ratios are not corrected for initial common Pb. Error ellipses are 20. Isochron age errors are 95% confidence intervals.

Amelin et al. 2002

Radiometric dating of meteorites - short half lives

Table 1. Extinct radioactivities in meteorites

Parent nuclide	Half-life (My)	Decay constant (My ⁻)	Daughter nuclide	Estimated initial abundance
Samarium-146	103	0.00673	Neodymium-142	¹⁴⁶ Sm/ ¹⁴⁴ Sm=(8.4±0.5)×10 ⁻³
Plutonium-244	80	0.0087	Fission products	²⁴⁴ Pu/ ²³⁸ U=(6.8±1.0)×10 ⁻³
lodine-129	15.7	0.0441	Xenon-129	¹²⁹ I/ ¹²⁷ I=(1.19±0.20)×10 ⁻⁴
Hafnium-182	8.9	0.078	Tungsten-182	¹⁸² Hf/ ¹⁸⁰ Hf=(9.72±0.44)×10 ⁻⁵
Manganese-53	3.74	0.185	Chromium-53	⁵³ Mn/ ⁵⁵ Mn=(6.28±0.66)×10 ⁻⁶
Beryllium-10	1.385	0.500	Boron-10	¹⁰ Be/ ⁹ Be=(7.0±0.8)×10 ⁻⁴
Aluminum-26	0.717	0.967	Magnesium-26	²⁶ Al/ ²⁷ Al=(5.23±0.13)×10 ⁻⁵
Niobium-92	34.7	0.0200	Zirconium-92	⁹² Nb/ ⁹³ Nb=(1.6±0.3)×10 ⁻⁵
Palladium-107	6.5	0.11	Silver-107	¹⁰⁷ Pd/ ¹⁰⁸ Pd=(5.9±2.2)×10 ⁻⁵
Iron-60	2.62	0.265	Nickel-60	(7.9±2.8)×10 ⁻⁹ < ⁶⁰ Fe/ ⁵⁶ Fe<(6.3±2.0)×10 ⁻⁷
Chlorine-36	0.301	2.30	Sulfur-36 (1.9 %), argon-36 (98.1 %)	³⁶ Cl/ ³⁵ Cl>(17.2±2.5)×10 ⁻⁶
Curium-247	15.6	0.0444	Uranium-235	²⁴⁷ Cm/ ²³⁸ U=(5.5±2.0)×10 ⁻⁵
Lead-205	15.1	0.0459	Thallium-205	²⁰⁵ Pb/ ²⁰⁴ Pb=(1.0±0.4)×10 ⁻³
Cesium-135	2.3	0.30	Barium-135	¹³⁵ Cs/ ¹³³ Cs=(4.8±0.8)×10 ⁻⁴
Calcium-41	0.102	6.80	Potassium-41	⁴¹ Ca/ ⁴⁰ Ca=(1.41±0.14)×10 ⁻⁸
Beryllium-7	1.46×10 ⁻⁷	6.86×10 ⁶	Lithium-7	⁷ Be/ ⁹ Be=0.0061±0.0013
Technetium-97	4.21	0.16464	Molybdenum-97	⁹⁷ Tc/ ⁹² Mo<3×10⁻ ⁶
Technetium-98	4.2	0.17	Ruthenium-98	⁹⁸ Tc/ ⁹⁶ Ru<2×10 ⁻⁵
Tin-126	0.23	3.0	Tellurium-126	¹²⁶ Sn/ ¹²⁴ Sn<7.7×10 ⁻⁵

Dauphas & Chaussidon 2011

Relative ages – the decay of ²⁶Al

Dauphas & Chaussidon 2011

Condensation of 1-10 µm dust from nebular gas

Trieloff & Palme 2006

Scott 2007

Scott 2007

ΔT after CAIs (My)

Fig. 1. Declining crater densities versus time, after Wilhelms (1987). *N* is the cumulative number of craters >20 km diameter per sq. km. The thin gray bar is the period of the well-defined late heavy bombardment, between the formation of Nectaris and Imbrium, when a dozen lunar basins were formed. Two extensions to the upper left indicate schematically either a lull prior to a cataclysm or a continued high bombardment rate in -6 pre-nectarian times.

Observational constraints

j. Formation timescale and mass of Mars

Dauphas & Chaussidon 2011

SNC (Martian) meteorites http://www.meteorites.com.au/media/SNC.jpg SNC = Shergottites, Nakhlites, Chassignites DAG 1037 4 Mass of protoMars (present=1 ^{ε182}W of the martian mantle TI2 NN 0.8 3 Measured T=2 NN £182₩ 0.6 2 0.4 0.2 Dauphas & Chaussidon 2011 0 2 6 8 10 20 40 60 80 100 4 0 Time after solar system birth (My) Time after solar system birth (My)

k. Formation of the Earth and the Moon

I. Cosmochemical composition of planetary bodies as a function of distance to Sun

Mercury - 5.427 g/cm³ Venus - 5.204 g/cm³ Earth - 5.515 g/cm³ Mars - 3.934 g/cm³ Jupiter - 1.326 g/cm³ Saturn - 0.687 g/cm³ Uranus - 1.27 g/cm³ Neptune - 1.638 g/cm³

Material densities

Iron: 7.9 g/cm³ Silicates: ~2.25-4.25 g/cm³ Carbonaceous material: ~0.8-2.3 g/cm³ Water ice: ~1.0 g/cm³

Object	mean density	uncompressed density	semi-major axis
Mercury 🌣	5.4 g cm ⁻³	5.3 g cm ⁻³	0.39 AU
Venus ♀	5.2 g cm ⁻³	4.4 g cm ⁻³	0.72 AU
Earth 🕀	5.5 g cm ⁻³	4.4 g cm ⁻³	1.0 AU
Moon 🕊	3.3 g cm ⁻³	3.3 g cm ⁻³	1.0 AU
Mars o	3.9 g cm ⁻³	3.8 g cm ⁻³	1.5 AU
Vesta 🔶	3.4 g cm ⁻³	3.4 g cm ⁻³	2.3 AU
Pallas 🔮	2.8 g cm ⁻³	2.8 g cm ⁻³	2.8 AU
Ceres ?	2.1 g cm ⁻³	2.1 g cm ⁻³	2.8 AU

Planetary densities

http://en.wikipedia.org/wiki/Terrestrial_planet

I. Cosmochemical composition of planetary bodies as a function of distance to Sun

Figure 1 Comparison with theoretical models of cosmochemically derived constraints on disk midplane temperatures (CAIs, volatile depletions, FeS, water ice, and comets; see text for references). Solid lines are values of *Tm* for three *Ansatz* disk models (Boss 1996a), labeled from top to bottom by the disk masses (inside 10 AU). Dashed line is *Tm* for a viscous accretion disk model (Morfill 1988) with $\dot{M} = 10^{-5} M_{\odot}$ /year, and a mass of 0.24 M_{\odot} inside 10 AU.

m. The low (?) abundance of interstellar dust in meteorites and Stardust material

Composition	Diameter (μ m)	Abundance ^a	Origins ^b
C (diamond)	0.002	$5 imes 10^{-4}$	SN
SiC ^c	0.3-20	$6 imes 10^{-6}$	AGB
C (graphite) ^d	1-20	$1 imes 10^{-6}$	AGB, SN II, nova
SiC type X	1-5	$6 imes 10^{-8}$	SN
Al ₂ O ₃ (corundum)	0.5-3	$3 imes 10^{-8}$	RG, AGB
Si_3N_4	~ 1	$2 imes 10^{-9}$	SN II

TABLE 3Presolar grains in meteorites (Hoppe & Zinner 2000)

^aOverall abundance in primitive carbonaceous chondrite meteorites.

 ^{b}SN = supernova; AGB = asymptotic giant branch star; RG = red giant.

^cSiC grains sometimes contain very small TiC inclusions.

^dGraphite grains sometimes contain very small TiC, ZrC, and MoC inclusions.

III.

The formation of planets and planetary systems

III. The formation of planets and planetary systems

a. The general picture

Star formation – an overview

The five-stage process of planet formation

III. The formation of planets and planetary systems

b. Dust to planetesimals

i. Solar-nebula models

Zone limits Mass Fe mass Solar comp. Surface density fraction $(g \, cm^{-2})$ (M_{\oplus}) mass (M_{\oplus}) (AU) 0.22 880 Mercury 0.053 0.62 27 235 Venus 0.815 0.35 0.56 4750 0.38 320 0.86 3200 Earth 1 0.30 Mars 0.107 27 1.26 95 Asteroids 0.25 0.1 2.0 0.13 0.0005 present 0.15? 30 40 original 3.3 7.4 120-2400 Jupiter 318 600-12 000 55-330 1000-6000 14.4 Saturn 95 700-2000 24.7 15 - 4014.6 Uranus 800-2000 35.5 10 - 2517.2 Neptune

Planetary zones: masses and surface densities

Inferred surface densities

Fig. 1. Surface densities, σ , obtained by restoring the planets to solar composition and spreading the resulting masses through contiguous zones surrounding their orbits. The meaning of the 'error bars' is discussed in the text.

III. The formation of planets and planetary systems

b. Dust to planetesimals

ii. Metallicity of the solar nebula

Model	T_c	ρ_c	P _c	Y_{init}	Z_{init}	Y_c	Z_{c}
Standard	15.696	152.7	2.342	0.2735	0.0188	0.6405	0.0198
NACRE	15.665	151.9	2.325	0.2739	0.0188	0.6341	0.0197
AS00	15.619	152.2	2.340	0.2679	0.0187	0.6341	0.0197
GN93	15.729	152.9	2.342	0.2748	0.02004	0.6425	0.02110
Pre-M.S	15.725	152.7	2.339	0.2752	0.02003	0.6420	0.02109
Rotation	15.652	148.1	2.313	0.2723	0.01934	0.6199	0.02032
Radius ₇₈	15.729	152.9	2.342	0.2748	0.02004	0.6425	0.02110
Radius ₅₀₈	15.728	152.9	2.341	0.2748	0.02004	0.6425	0.02110
No Diffusion	15.448	148.6	2.304	0.2656	0.01757	0.6172	0.01757
Old Physics	15.787	154.8	2.378	0.2779	0.01996	0.6439	0.02102
$S_{34} = 0$	15.621	153.5	2.417	0.2722	0.02012	0.6097	0.02116
Mixed	15.189	90.68	1.728	0.2898	0.02012	0.3687	0.02047

TABLE 5

Some Interior Characteristics of the Solar Models

NOTE.—The quantities T_c (in units of 10⁷ K), ρ_c (10² g cm⁻³), and P_c (10¹⁷ ergs cm⁻³) are the present-epoch central temperature, density, and pressure; Y and Z are the helium and heavyelement mass fractions, where the subscript "init" denotes the zero-age main-sequence model and the subscript "c" denotes the center of the solar model. Bahcall et al. 2001

III. The formation of planets and planetary systems

b. Dust to planetesimals

iii. Condensation sequence: temporal or spatial (or both)?

- \triangleright Formation of an accretion disk.
- ▷ The disk is initially hot \rightarrow few dust grains.
- As the disk cools down, dust particles condense.
- Dust materials: oxides, silicates, organics, ices.
- \triangleright Particle sizes: sub-µm µm.

© NASA, after Shu et al. 1987

TABLE II Condensation temperatures for selected materials

III. The formation of planets and planetary systems

- **b.** Dust to planetesimals
 - iv. Dust-aggregate velocities in the solar nebula
- Brownian motion (Weidenschilling 1984)
- Vertical sedimentation, radial drift, azimuthal velocity differences (Weidenschilling 1984)
- Gas turbulence (magneto-rotational instability or selfinduced) (Balbus & Hawley 1991; Johansen et al. 2006; Weidenschilling 1980; Sekiya 1998)

Motion of protoplanetary dust

turbulence, X-wind, photophoresis, ...

III. The formation of planets and planetary systems

- **b.** Dust to planetesimals
 - v. Collisional dust growth

What happens in a collision between two dust particles/aggregates?

Pull-off force (nN)

The importance of the threshold velocity for sticking

$\triangleright v_{SG} \approx v_{FR}$

 v_{SG} : threshold velocity for single-grain sticking

 v_{FR} : threshold velocity for dust-aggregate fragmentation.

 \triangleright The threshold velocity for dust sticking is dependent on the monomer size.

How does dust agglomeration start? The initial growth phase

Observe aggregate mass Start with monomers at $t_0 = 0$ (distribution) and structure at $t > t_0$

Relative velocities due to Brownian motion, drift, gas turbulence

Ρ

R

Ν

С

Ρ

Ε

Consider the simplest cases

<u>BPCA</u> *N*=4

<u>BCCA</u> *N*=2

٩,

BCCA N=4

а,

<u>BCCA</u> *N*=16

23 2920

<u>BCCA</u> *N*=1024

Consider the simplest cases

growth timescale determined by collision timescale

Ε X Ρ Ε R Μ Ε Ν

The restructuring/compaction growth regime

Low impact energy: hit-and-stick collisions

Intermediate impact energy: compaction

- \triangleright Collisions result in sticking.
- Impact energy exceeds energy to overcome rolling friction (Dominik and Tielens 1997; Wada et al. 2007).
- ▷ Dust aggregates become non-fractal (?) but are still highly porous.

Overview of possible collisional outcomes

A simplified collision model for dust aggregates

Güttler et al., 2010

A simplified collision model for dust aggregates

- The current model has a binary nature
- No smooth transition in porosity and mass ratio
- Critical mass ratio of $r_{\rm m}$ =100
- Critical porosity of $\phi_c=0.4$

Güttler et al., 2010

An experiment to determine the sticking threshold for dust aggregates

- Microgravity experiment (drop tower, suborbital flight)
- Particle diameter: 0.5-1.5 mm
- Initial velocity ~0.1m/s
- Collisional cooling down to mm/s

Weidling et al. 2011

Example: bouncing collision

Bouncing collision

v = 12 mm/s

Dust-aggregate size: 0.5-1.5 mm

particle diameter: 1 mm
filling factor: 40%
<u>47 analyzed collisions:</u>
6x sticking
40x bouncing
1x fragmentation

Weidling et al. 2011

Example: sticking collision

Sticking collision v = 9 mm/s Dust-aggregate size: 0.5-1.5 mm

particle diameter: 1 mm
filling factor: 40%
<u>47 analyzed collisions:</u>
6x sticking
40x bouncing
1x fragmentation

Weidling et al. 2011

Example: multiple sticking collisions

v = 1-10 cm/s; dust-aggregate size: 180 µm

The Braunschweig laboratory drop tower

- Laboratory drop tower
- Two aggregates collide in free fall
- Two falling cameras, 1.5 m drop height
- Velocities from 1 cm/s to 3 m/s

Beitz et al. 2011

Low-velocity collisions between large dust aggregates

2 cm diameter, 50% filling factor, velocity: 10 mm/s

2 cm diameter, 50% filling factor, velocity: 1.8 m/s

Dust-aggregate fragmentation in moderate-velocity collisions

Accretion efficiency in moderate-velocity dust-aggregate collisions

Accretion efficiency in moderate-velocity dust-aggregate collisions

- Projectiles: approx.
 1mm, RBD
 aggregates, partly
 pre-fragmented
- Target: sintered SiO₂, filling factor 0.45
- Velocities: 2-6 m/s

Versuch 20091214A

Accretion efficiency in moderate-velocity dust-aggregate collisions

A recent update of the collision model

A recent update of the collision model

Numerical simulations of aggregate growth in PPDs using the Monte-Carlo method -Mass-porosity evolution

Dust growth in the MMSN model

A. Zsom, C.W. Ormel, C. Guettler, J. Blum, C.P. Dullemond

Zsom et al. 2010

Numerical simulations of aggregate growth in PPDs using the Monte-Carlo method -Results for the mass evolution

Numerical simulations of aggregate growth in PPDs using the Monte-Carlo method -Results for the porosity evolution

Lessons learned

- 1. Growth stops due to bouncing \rightarrow "bouncing barrier"
- 2. Mass distribution stays narrow
- Compaction in bouncing collisions is of eminent importance; final porosity "only" ~60-70%
- 4. Fragmentation regime is only reached for highest turbulence but does not invoke a new growth mode

Where are we in terms of completeness ?

Sizes of protoplanetary dust aggregates:

Can there be any collisional growth beyond the "bouncing barrier"?

III. The formation of planets and planetary systems

b. Dust to planetesimals

vi. Gravitational instability models

Johansen et al. 2007

Capture of macroscopic particles by long-living gas vortices

- Trapping of solid objects in pressure maxima and/or in anticyclonic vortices.
- Basically all solid bodies with sizes
 0.1-10 m are efficiently captured.
- No escape of dust with sizes 0.1-1000 m from vortices.
- Low relative velocities within the vortices
 - \Rightarrow collisional growth ?
- No shear inside vortices.
- ▷ Concentration of the dust particles in the centers of the vortices ⇒ gravitational instability ?

© H. Klahr (MPIA Heidelberg)

Δ : 1m dust particle

Gravitational instability

Johansen et al. 2007

- In absence of turbulence, >cm-sized dust aggregates sediment towards the midplane of the protoplanetary disk.
- When the dust density exceeds the gas density, the gas in the midplane is forced to rotate at Keplerian velocity. Due to the shearing between the midplane rotation and the layers above/below the midplane, a Kelvin-Helmholtz instability forms.
- Due to a local variation of the dust-to-gas ratio and, thus, the rotation speed, a streaming instability occurs.
- ▷ Gravitationally-bound dust ensembles are formed when the dust size exceeds ~0.1 m.
- ▷ Direct formation of planetesimals with sizes up to 100-1 000 km, if fragmentation is negligible.
- ▷ However, if collisions results in fragmentation, no net growth occurs (Johansen et al. 2008).

III. The formation of planets and planetary systems

c. Planetesimals to planets

http://www.phys.boun.edu.tr/~semiz/universe/near/18.html#pix

Accretion of planetesimals

- \triangleright Gas friction is negligible
- > Typical collision velocity < escape velocity</p>
 - Gravitational sticking
 - Collision probability increased due to gravitational focussing
 Iarge bodies grow faster than small bodies

Kokubo & Ida 2000

Formation timescales of terrestrial planets

Time ^{\$} (yr)	Size	Process	
0	10 ⁻⁶ m	Condensation of dust particles)
~ 10 ³ -10 ⁴	0.1 m	Agglomeration with high sticking probability	Stage 1
? (< 10 ⁷)§	10 km	Planetesimals with mass <i>m</i> ₀	Stage 2
Time# (yr)	Mass	Process	
~ 10 ³	30 <i>m</i> ₀)
~ 7×10 ³	10 ⁵ <i>m</i> ₀		
~ 2×10 ⁴	10 ⁶ <i>m</i> ₀		
~ 6×10 ⁴	10 ⁷ <i>m</i> ₀		Stage 3
~ 10 ⁵	10 ^{7,5} <i>m</i> ₀ ; 0,01-0,1 <i>M</i> _E	Planetary embryos (isolated)	5
~ 10 ⁶⁻⁷	0.1-0.5 <i>M</i> _E	Protoplanets (+ embryos; embryos are slowly consumed)	
~ 10 ⁷⁻⁸	1 <i>M</i> _E	Planets on isolated orbits	J

^{\$} Since the formation of the sun

- § Dispersion of the nebula after $\sim 10^7$ years
- [#] Since the formation of planetesimals

Making terrestrial planets

Raymond et al. 2004

Making terrestrial planets

Overview of the formation of terrestrial planets

III. The formation of planets and planetary systems

d. Gas accretion

http://www.psc.edu/science/2003/quinn/how_to_cook_a_giant_planet.html

The formation of gas planets

Two hypotheses for the formation of the planets Jupiter, Saturn, Uranus and Neptune:

- 1. Gravitational instability (Boss 2001; 2003; 2007)
 - \triangleright Pro: fast process.
 - Con: unclear whether the process is feasible (problems with radiation transport);
 "Brown Dwarf Desert".

- 2. Formation of a 10-15 M_E solid core; gravitational accretion of gas (Pollack et al. 1996; Klahr & Bodenheimer 2006; Klahr & Kley 2006)
 - Pro: gas accretion on solid core well understood and fast (within ~300.000 yrs).
 - ▷ Con: formation of a 10-15 M_E terrestrial planet within < 10⁷ yrs difficult; possible if (1) long-living eddies exist in the gas, which can efficiently trap m-sized bodies (in this case, no need for stages 2-3) or (2) if the mass density is sufficiently high.

Reminder: masses and sizes of extrasolar planets

Tests of the formation hypotheses of gas planets:

- → Do extrasolar planets possess a core with more than ~2% of the planetary mass?
 (→ solar metallicity ~2%)
- → Simultaneous measurement of mass and radius of extrasolar planets.

Reminder: masses and sizes of extrasolar planets

Core masses of extrasolar planets

Tests of the formation hypotheses of gas planets

Prediction model 1: core mass / total mass ~0.02. Prediction model 2: core mass \geq 10-20 earth masses.
Core masses of extrasolar planets

The formation of gas planets within 10⁶-10⁷ yrs

The formation of gas planets within 10⁶-10⁷ yrs

Klahr & Kley 2006

The formation of gas planets within 10⁶-10⁷ yrs

Klahr & Kley 2006

Has the formation of a gas planet been (indirectly) observed in statu nascendi?

- **III.** The formation of planets and planetary systems
- e. Dynamical interaction and re-arrangement of planets

http://www.maths.qmul.ac.uk/~masset/moviesmpegs.html

Planet migration und reorganization

Excitation of spiral density waves in the gas by the planet; torque anisotropy between inner and outer disk; in most cases, the influence of the outer spiral wave dominates so that the planet loses angular momentum and spirals radially inward. Stop of migration by (a) clearing of the nebula or (b) tidal friction with the central star.

The Nice model for the dynamical evolution of the giant planets of the solar system

Left: before the 2:1 Jupiter-Saturn resonance, center: scattering of Kuiper-belt objects due to radial motion of Neptune, right: after scattering of the Kuiper-belt objects by Jupiter

http://www.obsnice.fr/morby/LHB/LHBxy.AVI

The Nice model for the dynamical evolution of the giant planets of the solar system

The Nice model for the dynamical evolution of the giant planets of the solar system

Desch 2007 (Prediction of the core masses of the giant planets; modified solar-nebula model, based upon Nice model) III. The formation of planets and planetary systems

10²⁰

10¹⁸

10¹⁶

10¹⁴

10¹²

10¹⁰

10⁸

4.5

Mass (g/years)

f. The late heavy bombardment

- III. The formation of planets and planetary systems
 - g. Exchange of Oort
 cloud objects in
 young star clusters

Conclusions

Conclusions

The five-stage process of planet formation

Conclusions

The five-stage process of planet formation has the potential to explain/fulfil:

- The architecture of the Solar System \checkmark
- The architecture of other planetary systems \checkmark
- The gaseous-disk lifetime constraint ✓
- The existence and formation scenario of the Moon \checkmark
- Meteoritic constraints \checkmark
- The late heavy bombardment \checkmark
- The existence of debris disks \checkmark
- The stability of the Solar System over 5 Gyrs (?)

THANK YOU FOR YOUR ATTENTION !