Coronal heating and energetics

- Magnetic structures in the solar corona
- Coronal heating, what does it mean?
- Flares and coronal cooling
- Observations of MHD waves in loops
- Dissipation processes in the corona
- Oscillations of coronal loops

Coronal heating - an unsolved problem

Facing complexity and variability:

- Solar corona is non-uniform and highly structured
- Corona varies in time (magnetic activity cycle)
- Temporal and spatial changes occur on all scales
- Corona is far from thermal (collisional) equilibrium
- Coronal processes are dynamic and often nonlinear

Parameter (erg cm ⁻² s ⁻¹)	Coronal hole (open)	Active region (closed)
Chromospheric radiation loss	4 10 ⁶	2 10 ⁷
Radiation	10 ⁴	< 10 ⁶
Conduction	5 10 ⁴	$10^5 - 10^6$
Solar wind	(5-10) 10 ⁵	(< 10 ⁵)

Mechanical and magnetic energy:

Generation/release

Transport/propagation

Conversion/dissipation

• Magnetoconvection, restructuring of fields and magnetic reconnection

- Magnetohydrodynamic + plasma waves, shocks
- Ohmic + microturbulent heating, radiative cooling, resonance absorption

Collisional heating rates

Chromosphere: $N = 10^{10} \text{ cm}^{-3} \text{ h}_{G} = 400 \text{ km}$. Perturbations: $\Delta L = 200 \text{ km}, \ \Delta B = 1 \text{ G}, \ \Delta V = 1 \text{ km/s}, \ \Delta T = 1000 \text{ K}$.

Viscosity: (erg cm ⁻³ s ⁻¹)	$H_V = \eta (\Delta V / \Delta L)^2 = 2 \ 10^{-8}$		
Conduction:	$H_{\rm C} = \kappa \ \Delta T / (\Delta L)^2 = 3 \ 10^{-7}$		
Joule: $H_J = j^2/\sigma =$	$(c/4\pi)^2(\Delta B/\Delta L)^2/\sigma = 7 \ 10^{-7}$		
Radiative cooling: $C_R =$	$N^{2}\Lambda(T) = 10^{-1} \text{ erg cm}^{-3} \text{ s}^{-1}$		
Smaller scale, $\Delta L \approx 200$ n	n, required λ _{Coll} ≈ 1 km		
Effective Reynolds number must smaller by 10 ⁶ – 10 ⁸ !			

Coronal ultraviolet emission from multiple filamentary loops

1. Filamentary nature of loops is consequence of fine solar surface fields....

2. Transient localised heating with threshold.....

3. Non-classical diffusive perpendicular transport by turbulence too slow

4. Field line stochasticity...

Litwin & Rosner, ApJ 412, 375, 1993

- Well-defined transverse dimension

Coronal heating - an unsolved problem

Why?

Incomplete and insufficient diagnostics:

• Only remote-sensing through photons (X-rays, extreme ultraviolet (EUV), visible, infrared) and electromagnetic waves (radio, plasma), and corpuscular radiation (solar wind, energetic particles)

• No coronal in-situ measurements, such as possible in other solar system plasmas (Earth's magnetosphere, solar wind,.....)

Loop oscillation	properties
------------------	------------

10.0 40.4 3.5	
10.2 - 49.4 Mm	A M M M M M M
3.9 - 14.1 Mm	
1.3 - 6.3 s	Contraction of the second
65 - 205 km s ⁻¹	NXSI -
0.7 - 14.6 %	1.2 Jahr
2.9 - 18.9 Mm	
195 - 705 mW m⁻²	
	1.3 - 6.3 s 65 - 205 km s ⁻¹ 0.7 - 14.6 % 2.9 - 18.9 Mm

Statistical overview of the ranges of the physical properties of 38 longitudinal oscillations detected at the base of large coronal loops (1 R_s = 700 Mm).

De Moortel, Ireland and Walsh, 2002

