
Nonlinear force-free reconstruction of
the coronal magnetic field with
advanced numerical methods

Von der Fakultät für Elektrotechnik, Informationstechnik, Physik
der Technischen Universität Carolo-Wilhelmina

zu Braunschweig
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr.rer.nat.)
genehmigte
Dissertation

von Tilaye Tadesse Asfaw
aus Boroda/ Eastern Harrarge, Ethiopia



Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

1. Referentin oder Referent: Prof. Dr. Karl-Heinz Glaßmeier
2. Referentin oder Referent: Prof. Dr. Sami K. Solanki
eingereicht am: 05.01.2011
mündliche Prüfung (Disputation) am: 01.03.2011

ISBN 978-3-942171-45-8

uni-edition GmbH 2011
http://www.uni-edition.de
c© Tilaye Tadesse Asfaw

This work is distributed under a
Creative Commons Attribution 3.0 License

Printed in Germany



Contents

Summary 5

1 Solar atmosphere and the importance of its magnetic field 7
1.1 The solar atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Photosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Chromosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Transition region . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.4 Corona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Magnetic field of the solar corona . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Phenomenological examples of the dominant role of corona mag-

netic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1.1 Corona loops . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1.2 Filaments . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2.1 Zeeman effect . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2.2 Hanle effect . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2.3 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.2.4 Resolving 180◦ ambiguity . . . . . . . . . . . . . . . . 22

1.3 Force-free assumptions in the solar corona . . . . . . . . . . . . . . . . . 26

2 Magnetic field extrapolations into the solar atmosphere 29
2.1 Why extrapolation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Magnetic field models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Potential field models . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Linear force-free field models . . . . . . . . . . . . . . . . . . . 36
2.2.3 Nonlinear force-free field models . . . . . . . . . . . . . . . . . 37

2.2.3.1 Upward integration method . . . . . . . . . . . . . . . 38
2.2.3.2 Grad-Rubin methods . . . . . . . . . . . . . . . . . . 39
2.2.3.3 MHD relaxation methods . . . . . . . . . . . . . . . . 40
2.2.3.4 Boundary element or Greens function like methods . . 41
2.2.3.5 Optimization approach . . . . . . . . . . . . . . . . . 41

2.2.4 MHD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



Contents

3 Optimization and preprocessing procedures in spherical geometry 45
3.1 Optimization procedure in spherical geometry . . . . . . . . . . . . . . . 45

3.1.1 Numerics of the optimization procedure . . . . . . . . . . . . . . 47
3.1.2 Discretizing and implementing the method . . . . . . . . . . . . 50
3.1.3 Test case and application to ideal boundary conditions . . . . . . 51

3.1.3.1 Test case . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3.2 Figures of merit . . . . . . . . . . . . . . . . . . . . . 52
3.1.3.3 Application to ideal boundary conditions . . . . . . . . 53

3.2 Preprocessing procedure in spherical geometry . . . . . . . . . . . . . . 59
3.2.1 Boundary consistency criteria in spherical geometry . . . . . . . 59
3.2.2 Numerics of the preprocessing procedure . . . . . . . . . . . . . 65
3.2.3 Tests with different noise-models . . . . . . . . . . . . . . . . . 68

3.3 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Treatment of measurement errors and missing data in vector magnetograms
75

4.1 Optimization procedure for missing data points and measurement errors . 76
4.2 Preprocessing for missing data points . . . . . . . . . . . . . . . . . . . 77
4.3 The SOLIS/VSM instrument . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Implementing the method to SOLIS data . . . . . . . . . . . . . 80
4.4 Application to two neighbouring active regions . . . . . . . . . . . . . . 80

4.4.1 Analysis of the result . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Magnetic energy and electric current density . . . . . . . . . . . 84

4.5 Application to three neighbouring active regions . . . . . . . . . . . . . . 85
4.5.1 Analysis of the result . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Conclusions and outlook 93

A Appendix 97

Appendix 97
A.1 Derivation of F̃ and G̃ in Eq. (3.4) . . . . . . . . . . . . . . . . . . . . . 97
A.2 Finite difference scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3 Partial derivative of L4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 103

Publications 115

Acknowledgements 117

Curriculum Vitae 119

4



Summary

Magnetic fields play a key role in the physics of the solar surface and atmosphere and in
solar activity in particular. To understand the physical mechanism of any of the activity
phenomena observable in the solar atmosphere one needs to know the underlying mag-
netic field. The magnetic field also provides the link between different manifestations of
solar activity like, for instance, sunspots, flares, or coronal mass ejections. Therefore,
there is a strong need for information about the magnetic vector throughout the solar at-
mosphere. Routine measurements of the solar magnetic field are still mainly carried out
in the photosphere. Therefore, one has to infer the field strength in the higher layers of
the solar atmosphere from the measured photospheric field based on the assumption that
the corona is force-free. This approach assumes that the Lorentz force vanishes, i.e. that
the magnetic field and the electric currents are co-aligned with each other. This is justi-
fied in regions where the ratio of the plasma pressure to the magnetic pressure and flow
speeds to Alfven speed are significantly lower than unity. This is true in large parts of
the chromosphere and corona while the photosphere is a region where this assumption is
not warrantable. The procedure used to infer the 3D coronal magnetic field is known as
magnetic field extrapolation.

Extrapolation codes in cartesian geometry for modelling the magnetic field in the
corona do not take the curvature of the Sun’s surface into account and can only be applied
to relatively small areas, e.g., a single active region. Within this thesis, we develop nu-
merical methods to carryout magnetic field extrapolation into solar corona from the photo-
spheric boundary using spherical geometry. The computational box can then be chose as
large that can accommodate much of the connectivity between neighbouring solar active
regions. The method minimizes the volume-integrated force-free and solenoidal condi-
tion for the magnetic field vector simultaneously. Since we use routine measurements of
the photospheric field vector as an input for our numerical method (as lower boundary
condition), we have to "preprocess" the photospheric data in order to achieve boundary
conditions that are consistent with the force-free assumption. We also extend the prepro-
cessing algorithm of Wiegelmann et al. (2006) to spherical geometry which approximates
the physics at a chromospheric level as it transforms an observed, not force-free, pho-
tospheric magnetic field to a nearly force-free, chromospheric-like state. The method
minimizes a functional in spherical geometry so that the preprocessed magnetogram suf-
fices the force-balance and torque-balance conditions (Molodensky 1969, 1974) in such a
way that the optimized boundary condition stays close to the measured photospheric data
and is sufficiently smooth. From these consistent boundary conditions, we are then able to
reconstruct nonlinear force-free fields. While potential fields, only need the longitudinal
(line-of-sight) component of the photospheric magnetic field as an input, the more general
approach of nonlinear force-free fields, needs the longitudinal component of the photo-
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spheric electric current in addition. In our approach, we make use of the full photospheric
magnetic field vector as input. We also calculate the corresponding potential fields in the
computational domain from the normal component of the surface field at the photosphere
at r = 1R�, which is used as initial condition for the code. With these prerequisites, we
are able to investigate the topology of the 3D coronal magnetic field above solar active
regions and to estimate the related physical quantities such as the magnetic energy con-
tent, the free magnetic energy (which can partly be released during solar eruptions) and
the magnetic energy density (i.e. the amount of stored magnetic energy per unit volume)
for larger field of views.

In particular, we solve the nonlinear force-free field equations by minimizing a func-
tional in spherical coordinates over a restricted area of the Sun. We extend the functional
by an additional term, which allows to incorporate measurement error and treat regions
with missing observational data. We use vector magnetograph data from the Synoptic
Optical Long-term Investigations of the Sun survey (SOLIS) to model the coronal mag-
netic field. We study two neighbouring magnetically connected active regions observed
on May 15 2009 and three neighbouring active regions observed on March 28, 29, and
30 2008. For vector magnetograms with variable measurement precision and randomly
scattered data gaps (e.g., SOLIS/VSM) the new code yields field models which satisfy the
solenoidal and force-free condition significantly better, as it allows deviations between the
extrapolated boundary field and observed boundary data within measurement errors. Data
gaps are assigned to an infinite error. We extend this new scheme to spherical geometry
and apply it for the first time to real data.

6



1 Solar atmosphere and the
importance of its magnetic field

The sun is a magnetically "active" star in the center of our solar system. But compared to
other cool stars it is considered rather quiet. It is the only star on which we can resolve
physical processes down to some important scales. Sunspots are the most readily visi-
ble manifestations of solar magnetic field concentrations and of their interaction with the
Sun’s plasma. It was the rediscovery of sunspots by Galilei, Scheiner and others around
1611, with the help of the then newly invented telescope, that marked the beginning of the
systematic study of the Sun in the western world and heralded the dawn of research into
the Sun’s physical character (Solanki 2003). Over the last years, several satellite missions
such as Ulysses, Yohkoh, SOHO, TRACE, RHESSI, Hinode (SOLAR-B), STEREO and
ground-based observations such as the solar flare telescope/NAOJ (Sakurai et al. 1995),
the imaging vector magnetograph/MEES Observatory (Mickey et al. 1996), Big Bear So-
lar Observatory, VTT, SST (La Palma), DST/NSO (Sacramento Peak) and SOLIS/NSO
(Henney et al. 2008) have helped to improve our understanding about the Sun (Domingo
2002, Bhatnagar and Livingston 2005). The magnetic field of the Sun is an important
quantity which couples the solar interior with the photosphere and atmosphere (Solanki
2004a). Observations have shown that physical conditions in the solar atmosphere are
strongly controlled by solar magnetic field. The appearance of photospheric, chromo-
spheric and coronal structures, including active regions and flares, seen in enhanced emis-
sions in Hα and different lines in the ultraviolet and extreme-ultraviolet as well as in white
light observations, provides evidence of the prevalent nature and importance of the solar
magnetic field. As a matter of fact, to understand the physics of active regions, the stor-
age and release of flare energy, and the formation of hot plasmas and mass ejections, it is
necessary that we understand and study the 3D structure of the coronal magnetic field. In
this chapter, the focus lies on the structures of the solar atmosphere and the importance of
its magnetic field.

In the following, an overview of the solar atmosphere and its structure will be empha-
sized in § 1.1. The phenomenological examples of the dominant role of coronal magnetic
field and its direct measurement techniques are outlined in § 1.2. Finally, the basic prin-
ciples and assumptions of force-free magnetic field are discussed in § 1.3.

1.1 The solar atmosphere
The properties of the surface layers of the Sun are very important to understand many
physical phenomena and the relationships between each other. The surface layers of the
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1 Solar atmosphere and the importance of its magnetic field

Filament Sunspots

Figure 1.1: Basic overview of the Sun’s constituent parts. The cut-out shows the three
major interior zones: the core, the radiative zone, and the convection zone. (Courtesy of
C. E. Parnel).

Sun are shown in Fig. 1.1. The region above the visible surface of the Sun including the
photosphere, chromosphere, transition region, and corona is known as the solar atmo-
sphere. One should not visualize these layers as spherical shells, but as physical regimes
with different physical properties (Benz 2002). The Sun’s atmosphere becomes less dense
as one moves outwards and upwards (see Fig. 1.4). The atmosphere involves a range
of structures and dynamical phenomena including sunspots, fibrils, spicules and ’bright
points’, to mention only a few, all of which need to be explained if we are to say that we
understand the solar atmosphere. Improved understanding depends crucially on the ac-
quisition of improved diagnostic data with high spectral and spatial resolution (Sturrock
et al. 1986). In the next few subsections, the general overviews of each atmospheric layers
will be emphasized independently.

1.1.1 Photosphere
The lowest atmospheric layer, called the photosphere, is an extremely thin and visible sur-
face layer of the Sun where most photons interact with atoms a last time before escaping
from the Sun. Its has a temperature between 4500K and 6000K and the overall density
is about 1017cm−3. The photosphere is covered by granulation, which represents the tops

8



1.1 The solar atmosphere

Figure 1.2: High-resolution picture recorded with the Swedish 1-m solar telescope on La
Palma, showing a dark sunspot (active region 10030) and surrounding granules. (online
source: www.solarphysics.kva.se).

of convective cells rising from the interior. Two or three characteristic cell sizes can be
distinguished: granules are bright features of order of hundreds to a thousand km across,
with lifetimes of about 10 minutes, surrounded by dark edges, representing the down flow
of convection cells; supergranules are of order of 30,000 km across, with lifetimes of 12
to 24 hours. However, over small fractions of the solar surface, the granulation is re-
placed by sunspots (Fig. 1.2) usually surrounded by a filamentary penumbra. They are
regions where strong magnetic field is concentrated (Hale 1908, Zeeman and Winawer
1910). Sunspots are formed when magnetic flux tubes just below the Sun’s surface are
compressed by the subsurface plasma pressure and poke through the solar photosphere.
They are somewhat cooler (4,000 K) than the average surface (6,000K), and so they ap-
pear darker by comparison. Furthermore, it is observed that sunspots often come in pairs,
with opposite magnetic field polarity. The boundaries of supergranules contain a concen-
tration of magnetic fields, swept there by horizontal motions in the supergranule cells.
This concentration of magnetic fields gives rise to the chromospheric network in the layer
above the photosphere (Benz 2002). Inspite of its small altitude, the photosphere has
been a major source of information about the Sun. The magnetic field can be accurately
measured and mapped by observing the Zeeman effect. The photosphere comprises the
footpoints of the field lines extending into the regions above.

9



1 Solar atmosphere and the importance of its magnetic field

a) b)

Figure 1.3: a) Picture of the chromosphere which is taken at the same yellow wavelength
of light emitted by helium atoms; b) the image of the solar ’chromosphere’ which was
obtained on on 20 November 2006 by the Hinode solar observatory, and reveals the struc-
ture of the solar magnetic field rising vertically from a sunspot, outward into the solar
atmosphere. (Credits: Hinode JAXA/NASA/PPARC.)

1.1.2 Chromosphere

The chromosphere is an irregular layer above the photosphere where the temperature rises
from 4200◦C to about 10, 000◦ C (Priest 1982a). At these higher temperatures hydrogen
emits light that gives off a reddish color (H-alpha emission). This colourful emission can
be seen in prominences that project above the limb of the sun during total solar eclipses.
This is what gives the chromosphere its name (color-sphere). The chromosphere is very
faint because the atmosphere becomes transparent (optically thin) in the continuum spec-
trum. At the start of an eclipse one can see light that has originally come up from the
photosphere and is then scattered towards earth at the chromospheric level as well as the
intrinsic photospheric emission. The gas has a density of around 1011cm−3 and is almost
transparent to visible radiation, but opaque in some atomic transition lines. Because of
the importance of outward temperature increase, especially for Ca II emission, a more
precise definition of the chromosphere is used frequently: the layer between the temper-
ature minimum and the level where T = 25, 000K. In the one-dimensional model, this
layer comprises some 2000km. On the other hand the spicules, which also have a chromo-
spheric temperature, cover a range of ≈ 5000km when observed at the limb (Stix 2002).
The magnetic field in the chromosphere connects the coronal magnetic structures with

their photospheric footpoints, i.e. it forms the transition from the photospheric flux tubes
to the coronal loops and open field lines. This transition is far from trivial, involving mag-
netic canopies, cool and hot loops and strongly bent field lines (Solanki 2004b). The most
prominent chromospheric features are filaments, prominences, the chromospheric net-
work associated with the boundaries of super-granular cells. Filaments and prominences
are the same phenomena seen from different perspectives and with different background.
Filaments are seen against the bright disk in absorption whereas prominences are seen
above the limb against dark space in emission of scattered light from the surface.

10



1.1 The solar atmosphere

Figure 1.4: Temperature and density profile of the solar atmosphere. Adopted from Lang
(2001).

1.1.3 Transition region

The transition region is a very thin layer of the Sun’s atmosphere, just above the chromo-
sphere, a relatively small regime of few hundred kilometers (about 500km). This region
is locally visible by space telescopes in the UV (ultraviolet) range. Analyses of both
solar ultraviolet and radio observations have shown the existence of a steep increase of
temperature within transition region. This region is an important chromosphere-corona
boundary over which the temperature rises drastically from 20,000 degrees Kelvin in the
upper chromosphere to over 2 million degrees Kelvin in the corona (see Fig. 1.4). Other
important changes also take place in this part of the atmosphere. As the temperature rises,
the atmosphere changes from predominantly neutral with radiation from hydrogen and
helium dominating the spectrum to highly ionized with radiation from the less abundant
heaver ions dominating (Mariska 1993). The magnetic field also changes here from being
controlled by the denser photospheric gas to controlling the structure of the corona. It is
suspected that the complicated structure of the Sun’s magnetic field may provide clues
to the dramatic increase in temperature over such a small change in radius. Most of the
transition region emission occurs in the VUV (vacuum ultraviolet) range of the electro-
magnetic radiation (Wilhelm et al. 2007). Thus, ultraviolet emission lines can provide
ample information about the magnetic structures and plasma properties of the transition
region.

11



1 Solar atmosphere and the importance of its magnetic field

1.1.4 Corona
The corona is the outermost part of the Sun’s atmosphere. It can clearly be seen during
the total solar eclipse as a bright region that extends more than some solar radii away
from the disk of the sun (see Fig. 1.5). The corona is not always evenly distributed across
the surface of the sun. During periods of quiet, the corona is more or less confined to
the equatorial regions, with coronal holes covering the polar regions. However during
the Sun’s active periods, the corona is distributed over the equatorial and polar regions,
though it is most prominent in areas with sunspot activity. The solar corona is structured
by the coronal magnetic field which is rooted at the solar surface and is partially open
to the heliosphere. Its magnetic fields have generally very complex structure depend-
ing on the solar activity cycle. Often, however, they take shapes of arcades and loops
emerging from the photosphere, penetrating through the coronal medium and sinking into
the photosphere again. Observational data indicate large spatial scales of such magnetic
structures and their stationarity over comparatively long time intervals. The outer bound-
ary of the corona is not precisely defined. Its outer boundary may be placed at a distance
of ∼ 2 − 3R� above the solar surface where the magnetic field lines are dragged out by
the solar wind and bent into radial direction. There are two different magnetic zones in
the solar corona that have fundamentally different properties: open-field and closed-field
regions. Open-field regions connect the solar surface with the interplanetary field and
are the source of the fast solar wind (Schwenn and Marsch 1990). A consequence of
the open-field configuration is efficient plasma transport out into the heliosphere, when-
ever chromospheric plasma is heated at the footpoints. Closed-field regions, in contrast,
contain mostly closed field lines in the corona up to heights of about one solar radius,
which open up at higher altitudes and connect eventually to the heliosphere, but produce
a slow solar wind component. It is the closed-field regions that contain all the bright and
overdense coronal loops, filled with chromospheric plasma that stays trapped on these
closed field lines (Aschwanden 2005). The corona displays a variety of features includ-
ing streamers, plumes, and loops. These features change continuously with the variation
of the surface field configuration and the overall shape of the corona changes with the
sunspot cycle. Figure 1.5 shows an ground-based observation of the corona taken during
the eclipse in 2008. Helmet streamers, large cap-like coronal structures with long pointed
peaks into the heliospheric space, are formed by a network of magnetic loops above the
solar surface. Polar plumes, associated with the open magnetic field lines at the Sun’s
surface, are long thin streamers that project outward from the Sun’s north and south poles
at solar minimum activity.

1.2 Magnetic field of the solar corona
One of the most fascinating characteristics of the Sun is its magnetic field. Although the
solar magnetic field is not special among stars (neither especially strong nor especially
fast evolving), the proximity of the Earth to the Sun allows to analyse this magnetic field
with high spatial and temporal resolution, as well as in different solar layers. According
to the present knowledge, the magnetic field of the sun is generated by hydromagnetic
dynamo processes (Ossendrijver 2003) in the presence of differential rotation, turbulent
convection, and meridional flows. The most likely location for the intensification of the
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1.2 Magnetic field of the solar corona

Figure 1.5: Image of the solar corona taken during the 2008 total eclipse . The brush-
like strokes in the corona are aligned with the sun’s magnetic field, similar to iron filings
around a magnet. Photo: Miloslav Druckmüller, Peter Aniol and Vojtech Rusin.

large-scale azimuthal magnetic field is the tachocline region at the bottom of the convec-
tion zone, where there is a strong radial and azimuthal differential rotation (Thompson
et al. 2003). From there, the solar magnetic field rises to the solar surface, expands from
there to the corona in magnetic loops and swept away by the solar wind, filling the inter-
planetary medium until meeting with the interstellar medium. On its way from the interior
to far outside, the solar magnetic field affects all matter which it encounters either by just
perturbing it or even by confining it and governing its dynamics. At the solar surface and
below, the magnetic field modifies the normal gas flow, the convection pattern, the travel-
ling of waves, and more, gives rise to so-called "active phenomena" as sunspots, plages,
etc. The plasma in the solar corona is dominated by the magnetic field in the sense that
the magnetic energy density is orders of magnitude greater than the thermal, kinetic and
gravitational energy density (Gary 2001). Hence the Lorentz force affects the charged
particles of the corona plasma consisting electrons and ions, which are guided in a spiral-
ing gyromotion along the magnetic field lines. The critical parameter plasma-β which is
the ratio of the thermal pressure pth to the magnetic pressure pmag is:

β =
pth

pmag
=

2neκBTe

B2/8π
(1.1)

where κB the Boltzmann constant, B the magnetic field strength, ne the electron density
and Te the electron temperature. In the corona a plasma-β parameter is very much less

13



1 Solar atmosphere and the importance of its magnetic field

Figure 1.6: Plasma-β as a function of height in the solar atmosphere. Outlined in red
is the region in the chromosphere and the corona where magnetic field is dominant over
non-magnetic forces. Horizontal dashed lines outline the approximate vertical extension
of the atmospheric layers. (Courtesy of G. A. Gary.)

than unity (see Fig. 1.6). Therefore it is the magnetic field in the corona which dictates
the plasma motion. If the changes of the coronal structures take place on length scales
comparable to the typical coronal scale height (&50 000 km, as a consequence of the high
coronal temperature and light hydrogen gas; see Aschwanden 2005), one can assume the
electric currents to be co-aligned with the magnetic field. Thus, the Lorentz force vanishes
and the magnetic field is said to be in a "force-free" state, which we will illustrate using
basic MHD equations in section 1.4. Then the coronal magnetic field can be considered to
evolve slowly through a sequence of neighbouring force-free equilibria, which, however,
is not the case during an eruption. In the next subsection we will discuss some effects of
the magnetic fields influence in the solar corona and the techniques that have been used
to measure the magnetic field of the Sun at the photospheric level.

1.2.1 Phenomenological examples of the dominant role of corona mag-
netic field

The magnetic field in the solar corona is generally believed to be a necessary ingredient for
a wide range of phenomena from being the carrier of MHD waves (through the plasma) to
heat the corona, to produce the gyro-synchrotron radiation in the radio wavelength range.
The structure and evolution of the magnetic field (and the associated electric currents)
that permeates the solar atmosphere plays key roles in a variety of dynamical processes

14



1.2 Magnetic field of the solar corona

observed to occur on the Sun. Such processes range from the appearance of extreme ul-
traviolet (EUV) and X-ray bright points, to brightenings associated with nanoflare events,
to the confinement and redistribution of coronal loop plasma, to reconnection events, to
X-ray flares, to the onset and liftoff of the largest mass ejections. It is believed that
many of these observed phenomena take place on different morphologies depending on
the configurations of the magnetic field, and thus knowledge of such field configurations
is becoming an increasingly important factor in discriminating between different classes
of events. In the next two subsections we discuss two phenomenological examples such
as coronal loops and filaments to illustrate the dominant role of magnetic field in the solar
corona.

1.2.1.1 Corona loops

Coronal loops are a phenomenon of active regions and there is growing evidence that
they are in fact the dominant structures in the higher levels (inner corona) of the Sun’s
atmosphere. They are visible at X-ray, ultraviolet, and white-light wavelengths, consist-
ing of an arch, extending upward from the photosphere for tens or hundreds of thousands
of kilometers. They form the basic structure of the lower corona and transition region of
the Sun. These highly structured and elegant loops are a direct consequence of the solar
magnetic flux tubes within the solar interior. They owe their high luminosity and variety
to their nature of magnetic flux tubes where the plasma is confined and isolated from the
surroundings. They are magnetic flux tubes threading through the solar interior, thrusting
up into the solar atmosphere (see Fig. 1.7). They are nothing other than conduits filled
with heated plasma shaped by the geometry of the coronal magnetic field (Aschwanden
2005). The population of coronal loops can be directly linked with the solar cycle. Coro-
nal loops are ideal structures to observe when trying to understand the transfer of energy
from the solar interior, through the transition region and into the corona. Many scales
of coronal loops exist, neighbouring open flux tubes that give way to the solar wind and
reach far into the corona and heliosphere. Anchored in the photosphere (with two foot-
points of opposite polarity, see Fig. 1.7.a), coronal loops penetrate the chromosphere and
transition region, extending high into the corona. Magnetized and fully-ionized plasma
conducts thermal energy mostly along the magnetic field lines. Observations show that
coronal loops have a wide variety of temperatures along their lengths. Loops existing at
temperatures between 105K and 1MK are generally known as cool loops (Brekke et al.
1997). Warm loops are well observed by EUV imagers such as SoHO/EIT1 and TRACE2,
and confine plasma at temperature around 1 - 1.5 MK (Lenz et al. 1999). Hot loops are
those typically observed in the X-ray band and hot UV lines (e.g., Fe xvi), with tempera-
tures around or above 2 MK (Bray et al. 1991). Naturally these different categories radiate
at different EUV wavelengths.

1.2.1.2 Filaments

Filaments are dark, thread-like features (see Fig. 1.8.a) seen in the red light of hydrogen
(H-alpha). These are dense, somewhat cooler than the surroundings, clouds of material

1Solar and Heliospheric Observatory /Extreme ultraviolet Imaging Telescope
2Transition Region and Coronal Explorer
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1 Solar atmosphere and the importance of its magnetic field

a) b)

Figure 1.7: a). The image of coronal loops over the eastern limb of the Sun which was
taken in the TRACE 171Å pass band, characteristic of plasma at 1 MK, on November
6, 1999. (Windows to the Universe original artwork by Randy Russell using an image
from NASA’s TRACE). b). The image taken by SDO’s AIA instrument in the 171 Å
wavelength of extreme ultraviolet light for coronal loops of the July 9th, 2010. Credit:
SDO satellite / NASA.

that are suspended above the solar surface by loops of coronal magnetic field against
gravity. A prominence is a large, bright feature extending outward from the Sun’s sur-
face, often in a loop shape. When a prominence is viewed from a different perspective
so that it is against the sun instead of against space, it appears darker than the surround-
ing background, which is known as a solar filament. They form over a wide range of
latitudes on the Sun. Their locations spread everywhere, from the active belt to the po-
lar crown. Poleward transport of magnetic flux across the solar surface during the solar
cycle is accompanied by a poleward migration of the preferred locations of filament for-
mation (Minarovjech et al. 1998, Ambrož and Schroll 2002). They are cooler and darker
because thermal conduction across a field line is negligible compared to thermal conduc-
tion along a field line, where the magnetic fields also insulate the cool filament material
(T ∼ 10, 000K) from the surrounding hot corona (Tc > 10, 000K) (Sankarasubramanian
et al. 2005). Although solar filaments may form at many locations on the Sun, they always
form above Polarity Inversion Lines (PIL) which divide regions of positive and negative
flux (i.e. locations where Bz = 0 and the field is mainly horizontal). However, the exis-
tence of a PIL is not a sufficient condition for a filament to form (Benz 2002, Bhatnagar
and Livingston 2005). Magnetic diagnostics of solar filaments in the chromosphere are
crucial for our understanding of their formation, maintenance, and final eruption. How-
ever, due to the intrinsically weak chromospheric magnetic field (Solanki et al. 2006),
direct spectropolarimetric measurements of magnetic field vectors in filaments had been
extremely rare, difficult, and unreliable for a long time. Filaments last for a few weeks
or months. The gas in a filament will eventually move to a different layer in the Sun and
will no longer be visible in an image of the chromosphere. But at the same time, other
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a) b)

Figure 1.8: a). Hα image showing filaments on the Sun. b). image of solar prominance
taken by SDO’s AIA instrument on the March 30, 2010. Credit: SDO satellite / NASA.

gas may move into the chromosphere and create a new filament someplace else. The birth
and death of filaments is a mystery and the subject of ongoing study by solar scientists.

1.2.2 Measurements

The magnetic field has had a unifying role in solar physics, bringing order to the chaos of
solar events and phenomena. The reason is that solar activity is an electromagnetic phe-
nomenon caused by the ordered interplay between solar rotation, convective motions and
magnetic fields. As a matter of fact, to understand those activities in the solar atmosphere,
one has to know more about the magnetic field of the solar corona. One way to achieve
this would be to measure the magnetic field (Hagyard 1985, Stenflo 1978). Spectro-
polarimetric measurement allows to deduce the magnetic field strength and its orientation
by means of the Zeeman effect and the Hanle effect. The spectral-line polarization has
to be recorded and interpreted using the theory of radiative transfer of the Stokes vector
in a magnetized plasma. Such remote measurements are restricted by the requirement
to observe more or less indirect effect of magnetic field vector B on the electromagnetic
radiation and by various limits in the resolution and span in coordinate space. There are
different ways of magnetic field determination on the Sun, which can be divided into two
groups (Beckers 1971). The first utilizes the influences of the magnetic field on the solar
electromagnetic radiation. It includes measurements made by means of the Zeeman ef-
fect, Hanle effect ( or resonance scattering), the gyro-resonance radiation and synchrotron
radiation in the radio region, and the Faraday rotation of radio waves. The second group
makes use of the influence of magnetic field on the temperature and density structure of
the solar atmosphere. In the following, Zeeman and Hanle effects will be discussed along
with the inversion techniques and resolving 180◦ ambiguity.
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1.2.2.1 Zeeman effect

It is well known that electronic states of atom are characterized by a unique set of discrete
energy levels. When excited through photon absorption or collision, the electron state
makes transitions between these quantized energy levels. The emitted light forms a dis-
crete spectrum, reflecting the quantized nature of the energy states or energy levels. In the
presence of a magnetic field, these energy levels can shift (Herzberg 1950). This effect
is known as the Zeeman effect. The effect is the splitting of spectral lines into several
components in the presence of an external magnetic field. It was first recorded by Pieter
Zeeman in 1896. An early attempt to explain the the origin of Zeeman effect was given
by Lorentz in term of the classical Larmor’s precession theory. The quantum mechani-
cal approach offers a more adequate and general explanation of the Zeeman effect. The
splitting of spectral lines into several components is due to a change in energy levels of
the electrons involved in the quantum transitions. In the presence of a magnetic field each
level with the magnetic quantum number MJ gets additional energy

EB = gMJ~
eB
2me

= g~ωL (1.2)

where e is the elementary charge, B is the magnetic field strength, me the mass of the
electron, ~ the Planck constant, ωL is the Larmour frequency, g is the Landé factor de-
pending on the quantum numbers L, S , J, and MJ: L is for orbital angular momentum of
the electrons, S is their spin quantum number, J is the associated total angular momen-
tum quantum number, and MJ is the quantum number for the component of total angular
momentum along the direction of the magnetic field (magnetic quantum number)(Stenflo
1978, Stix 2002). The Landé factor is

g = 1 +
J(J + 1) − L(L + 1) + S (S + 1)

2J(J + 1)
(1.3)

Each level with total angular momentum J splits into (2J + 1) sublevels. As a result, the
frequencies related to the transitions between the lower level with Jl and upper level with
Ju are defined by

νJl Ml←→Ju Mu = ν0 +
eB
2me

(guMu − glMl) (1.4)

where ν0 is the frequency of the line in the absence of magnetic field, gu and gl are the
Landé factors for upper and lower levels respectively, and Mu and Ml are the magnetic
quantum numbers for those levels.

The selection rules for allowed electric dipole transitions are:

∆J = 0,±1, Ju = 0→ Jl = 0 is forbidden,
∆L = 0,±1, ∆S = 0, (1.5)
∆M = 0,±1

The selection rule for magnetic dipole transition is ∆M = 0,±1. The lines 5303Å and
10747Å for Fe XIV and Fe XIII ions, are forbidden for the electric dipole transitions but
allowed for the magnetic dipole transitions. When the spectral lines split into the three
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Figure 1.9: Zeeman transitions.

components, σb, σr, and π, the effect is known as normal Zeeman effect, which agrees
with the classical theory of Lorentz. The π-components correspond to the transitions with
∆M = 0, and σ-components with ∆M = ±1. The case when spectral lines split into more
than three components is known as anomalous Zeeman effect, depends on electron spin,
and is purely quantum mechanical (Stix 2002) (see Fig. 1.9).

The degree of the splitting depends on the field strength. For weak magnetic field
(weak-field Zeeman effect), which is not strong enough to produce energy changes com-
parable to the separation of the sublevels, the separation between the splitting line com-
ponents is directly proportional to gλ2B, where B is the field strength, λ is the wavelength.
It is the ratio of the splitting to the linewidth which determines the ability to detect small
splitting effects and, consequently, the Zeeman effect is more significant when probed at
longer wavelengths.

For a normal Zeeman triplet, the π-component can not be observed in a view direc-
tion for which the magnetic field is parallel to the line-of-sight (longitudinal Zeeman
effect), and the two σ-components become right- and left-handed circularly polarized.
Therefore, the longitudinal Zeeman effect has the great advantage that it allows circular
polarization maps to be directly interpreted as maps of the line-of-sight component of the
magnetic field strength. When the magnetic field is perpendicular to the line-of-sight, the
intensity of the π-component equals the sum of the two σ-components. In emission, the
π-component is linearly polarized with the electric vector parallel to the magnetic field,
and in absorption it is perpendicular to the field. The σ-components are linearly polar-
ized in the perpendicular direction with respect to the π-component (transversal Zeeman
effect). When the magnetic field makes an arbitrary angle to the line-of-sight, the π and σ-
components have elliptical and mutually orthogonal polarizations. Although these rules
appear straightforward to apply, a correct interpretation generally requires the use of a the-
ory of spectral line formation in magnetic fields, particularly in the case when the splitting
does not exceed the linewidth. (Stenflo 1978, 1994). In the case of very strong magnetic
fields (strong-field Zeeman effect), where the field is sufficiently strong to produce energy
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changes comparable with the separation of the sublevels, the line-splitting effect is no
longer linearly proportional to the magnetic field (Condon and Shortley 1970). Then, line
splitting can be large compared to the separation of the spin-orbit system so that the cou-
pling between the orbital and spin angular momenta gets disrupted and the spectral line
rearranges (which is referred to as the "Paschen-Back effect"). This is different from the
weak-field Zeeman effect in which the magnetic field is not strong enough to disturb the
orbit-spin interaction so that the total angular momentum is conserved. For strong-field
Zeeman effect the external magnetic field overpowers the spin-orbit effect and decouples
L and S so that they precess about B nearly independently; thus, the ML and MS are ap-
proximately conserved and the effect reduces to three lines, each of which is a closely
spaced doublet. The impact of the strong-field Zeeman effect for field strengths found
on the Sun is, in general, small compared to the weak-field Zeeman effect and is thus
neglected.

1.2.2.2 Hanle effect

The Hanle effect is the modification of the polarization by a local magnetic field of scat-
tered radiation, which provides a very sensitive tool for studying the distribution of weak
magnetic fields on the Sun (Sahal-Brechot 1981, Leroy 1985). The change of the polar-
ization depends on the magnetic field orientation (Fig. 1.10). The effect begins to have
an influence on the polarization at fairly small field strengths of just a few gauss, with
sensitivity to fields up to around 300 G (Ignace et al. 2004). Experiments to describe
the polarization from resonance line scattering date primarily back to the first third of
the 20th century (Mitchell and Zemansky 1934). The influence of a magnetic field on
line polarization was explained first by a young physicist named Wilhelm Hanle. Hanle
(1924) described the change of linear polarization by the magnetic field in semiclassical
terms as arising from the precession of an atomic, damped, harmonic oscillator. From a
quantum mechanical point of view, the effect is understood in terms of interferences that
occur when the degeneracy of the magnetic sublevels in the excited state is partially lifted.

The Hanle effect is most sensitive when the magnetic splitting is comparable to the
natural line width. For most atomic transitions this implies weak magnetic fields, so
that the level splitting can be calculated in the Zeeman effect (ZE) regime (Shapiro et al.
2007). The well-known Zeeman effect and the Hanle effect are complementary because
they respond to magnetic fields in very different parameter regimes. The Zeeman effect
depends on the ratio between the Zeeman splitting and the thermal line width. The Hanle
effect though depends on the ratio between the Zeeman splitting and the inverse life time
of the atomic levels involved in the process of the formation of the polarized line. For the
permitted UV lines, the Zeeman effect is of limited interest for the determination of the
magnetic field in the quiet corona. This is because the ratio between the Zeeman splitting
and the thermal width is small due to the weakness of the magnetic field and the high
Doppler width in the hot coronal plasma. On the contrary, the measurement and physical
interpretation of the scattering polarization of the UV lines are a very efficient diagnostic
tool for determining the coronal magnetic field through its Hanle effect (Derouich et al.
2010, Trujillo Bueno 2001).

Although the Hanle effect opens new diagnostic possibilities that are not available with
the Zeeman effect, it has the disadvantage that it does not lead itself to direct mapping of
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Figure 1.10: Hanle effect in scattering.

the magnetic field but instead constrains the field properties in more convolved ways. A
fundamental reason for this is that the Hanle effect shows up in two observed parameters,
Q and U3, while the magnetic field vector needs three parameters to fully constrain its
three vector components (Parker 2003). The field vector is therefore not uniquely con-
strained by Hanle observations alone, but needs some additional constraint, either from
theory or other types of observations ( e.g. from the longitudinal Zeeman effect in Stokes
V4).

1.2.2.3 Inversion

Solar magnetic field leaves its fingerprint in the state of polarization of the emergent
electromagnetic radiation. Zeeman-induced polarization in photospheric absorption lines
contains most of the information necessary to recover the vector magnetic field. However,
inference of the vector magnetic field from the polarization profiles of solar absorption
lines is an inverse problem (Unno 1956, Skumanich and Lites 1987, Ruiz Cobo and del
Toro Iniesta 1992). Typically, those problems are solved by linearizing an appropriate
forward model, computing the sensitivities and then iteratively solving a regularized op-
timization problem. In this sense most of the inversion procedures for Stokes profiles are
based on a non-linear least-squares minimization (Landolfi et al. 1984). The results of this
inversion are, therefore, to some extent model-dependent and one can only expect to find a

3where Q describes the amount of linear polarization and U the amount of +45◦ or −45◦ polarization.
4V describes the amount of right- or left-handed circular polarization.
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set of model parameters that are capable of reproducing the observations (Socas-Navarro
2001).

Four quantities are needed to fully describe the state of polarization of electromag-
netic radiation. The Stokes four-dimensional vector I = [I,Q,U,V] is widely used to
represent the state of polarized light, where I is total intensity. Conveniently, the com-
ponents of I may be defined operationally in terms of intensities measured with ideal
optical elements. The advantage of the Stokes vector is that it describes partial polariza-
tion of radiation from multiple incoherent sources of light. In order to compute synthetic
Stokes profiles one has to solve the radiative transfer equation (RTE) for polarized light
(Unno 1956). The RTE describes how energy (i.e. a polarized light beam) is transmitted
through a medium where a magnetic field is present, taking into account how the mag-
netic field modifies the polarization state of the light. One of the simplest solutions of the
radiative transfer equation for polarized radiation is the solution for an atmosphere under
the Milne-Eddington (ME) approximation, which is based on the assumption that all the
atmospheric and atomic parameters involved in the radiative transfer are constant along
the line formation region and over the whole resolution element (except for the source
function). This simplification yields an analytical solution to the RTE. An inversion code
based on such an atmospheric model is applied to the data and gives a fast estimation of
the magnetic field strength. However, such an assumption is far from being verified for
most solar observations: in all those cases when the magnetic field is a function of optical
depth, or of position within the observed area, or both, the deduced value represents a sort
of ill-defined mean of the real values.

A basic inversion of the Stokes profiles yields the major vector properties of the mean
field: its components in the line of sight (BLOS) and transverse (Btrans) directions, and
its inclination (γ ) and azimuth (ϕ) angles. Sophisticated methods that perform least-
squares fits of the Stokes profiles can extract more information. For instance, the response
function technique of Ruiz Cobo and del Toro Iniesta (1992) can invert the profiles into
a model solar atmosphere with stratified velocities, magnetic fields, and temperatures,
without the need to rely on the analytical Milne-Eddington solution and therefore it is able
to retrieve height dependent information within a reasonable time. This method is one of
the most modern techniques used to invert Stokes profiles, but it is computer intensive
due to the large number of profiles to fit and the large number of parameters involved in
the fitting procedure.

1.2.2.4 Resolving 180◦ ambiguity

After decades of performing solar vector magnetography, a quantitative interpretation of
the measurements is still hampered by the azimuthal ambiguity inherent in the transverse
Btrans (perpendicular to the line of sight) magnetic field component. While the Zeeman ef-
fect reliably yields the magnetic field vector in the active region solar photosphere or chro-
mosphere, its symmetric properties allow a 180◦ difference between two equally likely
values of the azimuth angle γ or γ+180◦ for the transverse magnetic field. Therefore, one
cannot easily tell which direction is correct. This ambiguity is attributed to the fact that
the polarization signal due to the transverse field component provides only the plane of
linear polarization. Using the linear polarization of magnetically sensitive spectral lines
to determine the field perpendicular to the line-of-sight results in an ambiguity of 180◦
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in its direction (Harvey 1969). The resolution of this 180◦-ambiguity or, equivalently,
the azimuth disambiguation of the measured magnetic field vector needs to be performed
self-consistently over the observational field of view to eliminate bogus magnetic field
discontinuities and subsequent artificial electric currents before the vector magnetic field
can be fully determined.

There is no known method for resolving the ambiguity through direct observation us-
ing the Zeeman effect, at least for the single-height observations that are the most popular
and well-understood approach for inferring the solar magnetic field. Hence, to resolve
the ambiguity, some further assumption on the nature of the solar magnetic field must
be made (Leka et al. 2009). Many algorithms are presently in use for resolving the am-
biguity in vector magnetic field observations. These methods typically fall into one of
two categories: comparison to a reference field (e.g., Cuperman et al. 1992, Moon et al.
2003, Li et al. 2007), or minimization of some property of the field, typically related
to the forces or currents present (e.g., Canfield et al. 1993, Metcalf 1994, Gary and De-
moulin 1995, Georgoulis 2005). In all cases, an assumption or approximation must be
made which may not be valid for solar photospheric or chromospheric fields. However,
Crouch and Barnes (2008) demonstrated that the azimuthal ambiguity that is present in
solar vector magnetogram data can be resolved with line-of-sight and horizontal helio-
graphic derivative information by using the divergence-free property of magnetic fields
without additional assumptions. They discussed the specific derivative information that
is sufficient to resolve the ambiguity away from disk centre, with particular emphasis on
the line-of-sight derivative of the various components of the magnetic field. Conversely,
they also showed cases where ambiguity resolution fails because sufficient line-of-sight
derivative information is not available.

In the following, we describe some methods that have been used to solve the 180◦

ambiguity problem in the transverse fields.

J Acute angle method

In this method, the directions of transverse field, Bobs
trans, are determined by com-

paring them with the transverse field directions of an equivalent potential field,
Bpot

trans, which is matched to the observed line-of-sight field strength at the surface.
Although some areas of the solar atmosphere where vector magnetic field measure-
ments are made are clearly not force-free, let alone current-free, it is often useful
to consider a potential, or linear force-free, extrapolation of the magnetic field as a
reference for comparison to the observations. The simplest approach is to use the
observed, ambiguity-free longitudinal or line-of-sight component of the magnetic
field Bl as a boundary condition to calculate the potential field using the Green’s
function method (Chiu and Hilton 1977). Acute Angle Methods resolve the 180◦

ambiguity by comparing the observed field to an extrapolated model field. The
azimuth is thus resolved by requiring that some component (i.e., image-plane trans-
verse, or heliographic-plane horizontal) of the observed field and the extrapolated
field make an acute angle, i.e., −90◦ ≤ ∆θ ≤ 90◦, where ∆θ = θobs − θextrapol is the
angle between the observed and extrapolated components. This condition may also
be expressed as Bobs

trans · B
pot
trans > 0, where Bobs

trans is the transverse or horizontal com-
ponent of the observed field, and Bpot

trans is the transverse or horizontal component of
the extrapolated potential field (see Metcalf et al. 2006, for more details).
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J Magnetic Field Pressure Gradient

Implemented by Cuperman et al. (1993), this analytic method uses the condition
that the magnetic field is nonlinear force-free. Under this assumption, magnetic
fields are proportional or parallel to the electric current density, where the steady
state equations describing force-free magnetic field configurations are: ∇×B = αB.
Multiplying the this equation with B vectorially, one can obtain

B × (∇ × B) =
1
2
∇B2 − (B · ∇)B

Because the left side of the equation is null, the equation leads to

1
2
∇B2 = (B · ∇)B

In Cartesian coordinate, the z-component of the above equation is

1
2
∂

∂z
B2 =

(
Bx

∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

)
Bz

Combining the above equation with the magnetic field divergence-free condition,
∇ · B, one obtains

1
2
∂

∂z
B2 =

(
Bx
∂Bz

∂x
+ By

∂Bz

∂y

)
− Bz

(∂Bx

∂x
+
∂By

∂y

)
(1.6)

where B2 = B2
x + B2

y + B2
z . Variables appearing on the right hand side of the equa-

tion (1.6) are three observable magnetic components in the photosphere, except for
180◦ ambiguous directions of Bx and By. A switch by 180◦ in (Bx, By) just changes
the sign of the RHS of Eq. (1.6). We assume that the magnetic pressure decreases
with vertical direction perpendicular to the solar surface, i.e., the magnetic pressure
gradient is negative:

∂

∂z
B2 5 0

which then determines the sign of (Bx, By) uniquely if the RHS of Eq. (1.6) is
nonzero. The signs of Bobs

trans are determined to satisfy the above equation at each
pixel with three observable magnetic field components in the photosphere (see Li
et al. 2007, Metcalf et al. 2006, for more details). At disk center, the vertical field
and the magnitude of the horizontal components of the field are measured, and the
two choices for the direction of the horizontal component give equal magnitude
but oppositely signed results for the vertical derivative of the magnetic pressure.
Away from disk center, the observed line-of-sight and transverse fields can be trans-
formed into heliographic coordinates for either choice of the ambiguity resolution,
and Equation (1.6) still holds. In either case, the ambiguity is resolved, with no it-
eration, by evaluating ∂B2/∂z for an initial choice of the direction of the transverse
field. The direction of the transverse field is reversed at each pixel if ∂B2/∂z > 0 at
that point.
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J Minimum energy method
Implemented by T. Metcalf (Metcalf 1994, Metcalf et al. 2006), this method

simultaneously minimizes both the electric current density, J, and the magnetic
field divergence, ∇ · B. Unfortunately, one can not compute the divergence exactly
since the height dependence of the vertical magnetic field is unknown. However,
the divergence condition is still useful, since one can drive an approximate height
derivative of Bz from potential ( or force-free) field computed from the observed
line-of-sight field. Minimizing |∇ · B| gives a physically meaningful solution and
minimizing J provides a smoothness constraint. For a force-free field, the magnetic
free energy is bounded above by a value proportional to the maximum value of
J2/B2 as shown by Aly (1988). Since B2 is unambiguous, by minimizing J2 we
are minimizing the upper bound on the magnetic free energy. The functional to be
minimized is

E =
∑
pixels

(
|∇ · B| + |J|

)2

The calculation of the vertical electric current density, Jz, is straightforward, re-
quiring only observed quantities in the computation and a choice of the ambiguity
resolution. However, calculation of ∇ · B and the horizontal current, Jx and Jy, re-
quires a knowledge of the vertical derivatives of the magnetic field. Variations of
the magnetic field with height are not normally known, so the vertical derivatives of
the field are approximated from a linear force-free field (LFFF) extrapolation using
the unambiguous line-of-sight field as the lower boundary condition.

J The nonpotential magnetic field calculation method
Implemented by M. Georgoulis (Georgoulis 2005), this method assumes that an

isolated, current-carrying, solar magnetic structure B is measured on a plane S
by means of a longitudinal field Bl, a transverse field Btrans, and an azimuth an-
gle φ of the transverse field on the line-of-sight reference system. Then the two
equally likely ambiguity solutions in this coordinate frame are [Bl, Btrans, φ] and
[Bl, Btrans, π + φ]. Then transforming these two solutions to the local, heliographic,
reference system to obtain the two heliographic ambiguity solutions B1 and B2,
respectively. The disambiguation then corresponds to finding the correct spatial
combination of B1 and B2 that provides B over the observational field of view.
Georgoulis (2005) decomposed the magnetic field vector B into a current-free, vac-
uum, magnetic field component Bp and a nonpotential, current-carrying, magnetic
field component Bc; i.e., B = Bp + Bc. The solenoidal condition ensures that all
terms in this equation are divergence-free for a closed, flux-balanced, magnetic
configuration on S . Moreover, B and Bp share the same boundary condition for the
normal (local vertical) magnetic field component Bz on S ; i.e., Bz|S = Bpz|S then the
nonpotential magnetic field component Bc follows from

∇ · Bc = 0; Bc · ẑ|S = 0 and (∇ × Bc) · ẑ|S = Jz (1.7)

These conditions still leave the horizontal divergence ∇S · Bc = ∂Bcx/∂x + ∂Bcy/∂y
undetermined. The assumption ∂Bcz/∂z = 0 enforces ∇S · Bc = 0 which freely
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determines (Bx, By)|S upto a 2D Laplacian. The nonpotential component Bc is re-
sponsible for any electric currents present since Bp is current-free. From these con-
ditions, and the further assumption that ∂Bcz/∂z vanishes on the boundary S , the
nonpotential field Bc becomes analytically determined on S in terms of the vertical
electric current density by

Bc = F −1
[ iky

k2
x + k2

y
F ( jz)

]
x̂ + F −1

[ −ikx

k2
x + k2

y
F ( jz)

]
ŷ + ∇Sφ (1.8)

where F (r) and F −1(r) are the direct and inverse Fourier transforms of r, respec-
tively, and jz = 1/4πJz with the condition ∆Sφ = 0 in 2D. However, the disam-
biguated Jz is not known a priori. If Jz was known, then the disambiguation would
be performed numerically, but self-consistently, as follows: First, Bc can be cal-
culated from equation (1.8). Then a distribution of the vertical magnetic field Bz

can be found as a combination of Bz1 and Bz2 of the two ambiguity solutions B1

and B2, respectively. This Bz distribution gives rise to a potential field Bp such that
Bp + Bc best matches the respective combination of B1 and B2. Inferring Bz for
a known Jz would be sufficient to resolve the π-ambiguity. Since Jz is unknown,
Georgoulis (2005) follows a common strategy among disambiguation techniques
which pursue a minimum magnitude for Jz. This can be performed by used an
ambiguity-free proxy of Jz derived by extracting from the longitudinal magnetic
field Bl any information on the heliographic horizontal field present in Bl due to
projection effects. Specifically, the average of the two possible heliographic ambi-
guity solutions, Bav = (1/2)(B1 + B2). Then, a proxy for vertical current density
J′zp

is constructed by applying Ampère’s law to Bav. The calculation of J′zp
is done

once, at the beginning of the iterative process for Bz, and the resulting nonpotential
field Bc is fixed and used in each iteration. The magnitude of J′zp

depends on the
observing angle to the active region, since the extent of the projection effects on Bl

depends on the location of the measurements. On or close to disk center, J′zp
' 0,

so the resulting Bc ' 0. In this case, the NPFC method degenerates to a simple
potential field acute angle method.

For more methods on 180◦ ambiguity removal and comparison among each other one can
see Metcalf et al. (2006).

1.3 Force-free assumptions in the solar corona
Magnetic fields can induce currents in a moving conductive fluid, which create forces on
the fluid, and also change the magnetic field itself. The ideal MHD (magnetohydrodynam-
ics) equations describe the motion of a perfectly conducting fluid (i.e., plasma) interacting
with the magnetic field (Alfven 1950, Priest 1982b, Sturrock 1994, Parker 1979, Jackson
1975). Such interaction is introduced through the equations involving the velocity v of the
plasma fluid. Under conditions of electric neutrality, the equation of mass conservation
and Newton’s equation of motion for a plasma element, may be written as

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.9)
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ρ
(∂v
∂t

+ v · ∇v
)

= −∇p + ρg + J × B + Fvisc (1.10)

∂B
∂t

= ∇ × (v × B) (1.11)

∇ · B = 0 (1.12)

where the plasma is subjected to a plasma pressure gradient ∇p, the Lorenz force J × B
per unit volume and other forces like viscous force, Fvisc. Furthermore, ρ, J, g, and
B stand for the plasma density, electric current density, gravitational acceleration, and
magnetic field, respectively. Note that the energy equation and the equation of state for
the plasma to close the system of equations are omitted here. In a plasma where the
flow velocity is much smaller than both the isothermal sound and Alfven velocities, the
equation of motion of the plasma (i.e., Eq. (1.10)) reduces to magnetohydrostatics (MHS)
(Eq. (1.15)). Viscous forces are also negligible in the tenuous plasma of the corona. Along
with Ampere’s law in the limit of negligible electric fields, vanishing electron diffusivity,
and together with assumption that the plasma is in equilibrium (∂t = 0, i.e. the temporal
variations to be slow), the plasma of the solar atmosphere can be expressed by

∇ × B = 4πJ (1.13)

∇ · B = 0 (1.14)

J × B − ∇p + ρg = 0 (1.15)

The set of equations (1.13)-(1.15) allows to describe the equilibrium state of the
plasma in the solar atmosphere, including the photosphere and corona. It has been shown
(Woltjer 1958, Gold and Hoyle 1960) that the pressure and gravity forces can be neglected
in Eq. (1.15) for large parts of the corona: the gravity scale height is large compared to the
variation of the magnetic field and the gas pressure, and the coronal plasma-β (ratio of the
gas pressure and of the magnetic pressure) is, on average, less than 1 from the top of the
chromosphere to about 2.5 solar radii. Neglecting the gas pressure and the gravity leads
to the so-called force-free fields for which only the magnetic force is taken into account
to determine the magnetic field configuration in the corona. This, according to Eq. (1.15),
allows to neglect the pressure gradient and gravitational force only perpendicular to B so
that

J × B = 0 (1.16)

∇pq = ρgq (1.17)

i.e. that the Lorentz force vanishes and, consequently, that the electric currents can be
assumed to be aligned with the magnetic field. Recent numerical simulations of flux
emergence including partial ionization (Leake and Arber 2006) have shown that the final
state of the coronal magnetic field is force-free. In fact, the solar atmosphere shows a
varying pattern of dominance of either the plasma or the magnetic pressure. Thus, only
for the atmospheric layers from the mid-chromosphere until the mid-corona one can re-
gard the solar atmosphere as being almost entirely force-free, so that one is allowed to
neglect the pressure gradient and gravitational term in Eq. (1.15) with the aforementioned
conditions to ensure the validity of Eq. (1.16). Once the force-free approximation is jus-
tified, however, one finds a proportionality between the electric current density (assumed
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to be field-aligned) and the magnetic field, equivalent to Eq. (1.16), which can be written
as

4πJ = αB (1.18)

This equation is often rewritten in the form

∇ × B = αB (1.19)

where α is the so-called "force-free parameter" which is in general different for each field
line, although it must be constant along a given field line. This can be seen by taking the
divergence of Eq. (1.19) by the virtue of the solenoidal condition of Eq. (1.14) to obtain

B · ∇α = 0 (1.20)

Three different assumptions on the nature of the force-free parameter can be made. First,
the most simple of all approximations to the coronal magnetic field, is that α is zero ev-
erywhere, the field is potential. Secondly, if α has the same but nonzero value throughout
the field domain, the resulting subclass of force-free fields is called a "constant α" or lin-
ear field, since the field components satisfy a linear differential equation (Nakagawa and
Raadu 1972). Finally, if α depends on position in the field domain, the resulting subclass
of force-free fields is nonlinear field which assumes that relation between the current den-
sity and the magnetic field is no longer linear. The detail explanations of the three classes
of field will be illustrated in the next chapter.
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the solar atmosphere

Despite the importance of the magnetic field in the physics of the corona and despite
the tremendous progress made recently in the remote sensing of solar magnetic fields,
reliable measurements of the coronal magnetic field strength and its orientation do not
exist, except for a few individual cases in chromosphere, e.g., in newly developed active
regions (Solanki et al. 2003). This is largely due to the weakness of coronal magnetic
fields, previously estimated to be on the order of 10 G, and the difficulty associated with
observing the extremely faint solar corona emission. Using a very sensitive infrared spec-
tropolarimeter to observe the strong near-infrared coronal emission line Fe XIII λ10747
above active regions, one can succeeded in measuring the weak Stokes V circular polar-
ization profiles resulting from the longitudinal Zeeman effect of the magnetic field of the
solar corona (Lin et al. 2000). As a matter of fact, we must usually rely on numerical
computations of the field that use the observed photospheric field as a boundary condition
by using the model assumption that the corona is force-free. This so-called extrapolation
requires a knowledge of the physical laws governing the coronal magnetic field. Clas-
sical approximations are a potential field (no electric current in the corona) or a linear
force-free field (electric current proportional to the magnetic field and their ratio is con-
stant throughout a volume). The algorithms and limitations of these techniques are well
known, and they have been used extensively with magnetograms which routinely measure
the photospheric magnetic field vector. The more realistic and more demanding of com-
putational resources than the two above is a nonlinear force-free field (the electric current
is parallel to the magnetic field and where their ratio is spatially varying). In this chapter,
the focus lies on the why and how of "extrapolating" the force-free coronal magnetic field
from routinely measured photospheric vector magnetograms.

In the following, we will point out the importance of inferring coronal magnetic field
from boundary measurements on the photosphere in § 2.1. The three distinct classes
of magnetic field models, namely potential, linear force-free and nonlinear force-free
models arise from force-free assumptions are described in § 2.2, along with the existing
computational methods to solve the related set of equations. Alternative attempts that are
currently being carried out to measure the magnetic field higher up into the corona will
be discussed in § 2.3. Finally, in § 2.4 a short summary is given.
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2 Magnetic field extrapolations into the solar atmosphere

a) b)

Figure 2.1: A comparison of a). a magnetogram from SDO/HMI on August 13th, 2010
with b). coronal emission from SDO/AIA at the same time, showing a clear correlation
between regions of strong magnetic field and enhanced emission. Credit: SDO satellite /

NASA.

2.1 Why extrapolation?

Coronal magnetic fields are believed to play a crucial role in several major unsolved mys-
teries of solar physics, including coronal heating, solar flares and coronal mass ejections
(Priest 1982a, Benz 2002, Bhatnagar and Livingston 2005). Therefore, the determination
by measurement or theoretical calculation of the magnetic field structure in the solar at-
mosphere is one of the most important tasks to improve our understanding of physical
processes in the solar atmosphere (Aschwanden 2005). This can be seen quite clearly
by comparing, for example, magnetograms and pictures of coronal emission (Fig. 2.1),
which shows a strong correlation between regions of strong magnetic field and the regions
of strongest emission. The measurement of fields throughout the coronal volume is an in-
trinsically more difficult problem since it requires three dimensional information, whereas
photospheric fields are measured on a two dimensional surface. The techniques used to
measure magnetic fields in the photosphere rely on Zeeman splitting and Stokes profile
measurements and are not as effective in the solar corona, since lines formed at coronal
temperatures are intrinsically broader and are scarce in the infrared where Zeeman split-
ting is (relatively) large. Alternatively, the Hanle effect on ultraviolet emission lines can
be used to measure the coronal magnetic field but this requires space-based observations.
In particular, Trujillo Bueno and Asensio Ramos (2007) used the He I 1083.0 nm multi-
plet and Raouafi et al. (2009) used the H I Lyα and Lyβ lines to test their ability to probe
the coronal magnetic field. Coronal emission lines at optical frequencies are very faint
and extremely broadened due to the low coronal plasma density and the high temperature
of emitting ions, respectively. Not only the extraction of very weak signals hampers the
success of coronal magnetic field measurements but also the necessary long integration
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times and the line-of-sight integrated character of the measurements (the latter especially
for off-limb observations). Kramar et al. (2006) discussed the associated limitations and
pictured the possibility of reconstructing the 3D structure of the coronal magnetic field
based on longitudinal Zeeman effect measurements of magnetically sensitive lines, us-
ing a tomographic inversion method. Optionally, the gyroresonance emission of strong
active-region magnetic fields, originating from electrons gyrating along the coronal mag-
netic field lines can be measured.

Under exceptional circumstances the measurement techniques applicable to the lower
layers of the solar atmosphere can also be applied to measure magnetic fields at somewhat
greater heights (e.g., Solanki et al. 2003), which is discussed in section 2.3. Solar physi-
cists have thus been led to consider the so-called reconstruction problem of the coronal
magnetic field: this consists of solving the equations of a model (defined by some rea-
sonable assumptions about the physical state of the corona) as a Boundary Value Problem
(BVP), the boundary conditions being taken to be the measured values of the magnetic
field in the denser and cooler photosphere. Therefore, the extrapolation of magnetic field
measurements taken at photosphere (and/or chromospheric) level into the corona to get
an estimate of the coronal magnetic field is an essential tool for solar physics (Schmidt
1964, Semel 1967, Chiu and Hilton 1977, Seehafer 1978, Sakurai 1981, Seehafer 1982,
Semel 1988, Wu et al. 1990, Cuperman et al. 1991, Demoulin et al. 1992, Mikic and Mc-
Clymont 1994, Roumeliotis 1996, Amari et al. 1997, 1999, Clegg et al. 2000, Wheatland
et al. 2000, Yan and Sakurai 2000, Wheatland 2004, Wiegelmann 2004, Valori et al. 2005,
Neukirch 2005, Amari et al. 2006, Wiegelmann 2007, Tadesse et al. 2009, DeRosa et al.
2009, Wheatland and Régnier 2009)

However, the problem of extrapolation of photospheric magnetic fields into the corona
is neither simple nor straightforward as we do not know which type of magnetic field we
are really dealing with, i.e. which equations we have to solve. Then, does the boundary
condition of the magnetic field on the photosphere suffice for a unique solution in the
corona with a proper asymptotic behaviour at infinity? What are contributions of elec-
tric currents in the corona to its magnetic field distribution? Such questions cannot be
answered in a simple way which leaves the door open to approximations and a priori as-
sumptions in making physical models of the system (photosphere to corona) to compute
coronal magnetic fields. Therefore, the extrapolated coronal magnetic field depends on
assumptions regarding the coronal plasma, for example, force-freeness. Force-free means
that all nonmagnetic forces like pressure gradients and gravity are neglected. This ap-
proach is well justified in the solar corona owing to the low plasma beta (which is the
ratio of the thermal pressure pth to the magnetic pressure pmag). One has to take care,
however, about ambiguities, noise and nonmagnetic forces in the photosphere, where the
magnetic field vector is measured (Wiegelmann 2008, Cadez 2005).

The commonly used magnetic field extrapolation (or reconstruction) methods rely on
various assumptions made about the physical conditions in the solar corona. The most
commonly made assumptions are that

J the coronal magnetic field is in equilibrium and plasma flows can be neglected1,

1If the flow speed is much smaller than the sound speed, the Alfvèn speed and the gravitational free-fall
speed, it can be neglected.
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2 Magnetic field extrapolations into the solar atmosphere

J plasma densities are small so that the Lorentz force greatly exceeds the gravitational
force.

J the ratio of thermal pressure to magnetic pressure (the plasm β) in the corona is
small, and

J the corona structures change on length scales comparable to or shorter than the
typical coronal scale height as explained in section 1.3 of the previous chapter.

The last two assumptions allow us to neglect force-free magnetic fields, carrying only
field-aligned currents, with the sub-classes of nonlinear force-free fields, linear force-free
fields and potential (current free) fields (Neukirch 2005). According to these assumptions,
force-free coronal magnetic fields are defined entirely by requiring that the field has no
Lorentz force and is divergence free (the "solenoidal condition"):

4πJ × B = (∇ × B) × B = 0 (2.1)

∇ · B = 0 (2.2)

where B and J are the vectors of the magnetic field strength and of the electrical current
density, respectively. Equation (2.1) can be rewritten by introducing a scalar function (α),
sometimes known as the torsion function, so that

4πJ = ∇ × B = αB (2.3)

At the moment, potential (α = 0) and linear force-free field (α = constant) extrapolation
methods are still the most commonly used. There are two reasons for this:

1. these extrapolation methods are easy to use, both from the mathematical and the
numerical point-of-view, and

2. line-of-sight magnetograms are more readily available, in particular through the
MDI instrument on SoHO, and are easier to handle than vector magnetograph data.

Despite the popularity and frequent use of these simplified models (potential and linear
force-free field) in the past, there are several limitations in these models, which are dis-
cussed in the next subsection. Both observational and theoretical arguments show that at
least the magnetic field prior to eruptive processes in the corona is not a linear force free
(or potential) field (Wiegelmann 2008). The nonlinear force-free field has a more most
realistic description of the coronal magnetic field, which is subject of discussion in the
next sections.

In general, the boundary value problem to be solved for the force-free fields requires
the determination of the magnetic field in a given volume (enclosed by a boundary surface
∂V) in terms of the line-of-sight component or the full magnetic field vector on ∂V (in
case of potential and linear or nonlinear force-free fields, respectively) such that the field
vanishes at infinity. The boundary surface at the bottom of the computational domain,
representing the solar photosphere, should be specified as a sphere or can be approximated
with a planar surface, if the computational domain is much smaller than a solar radius.
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2.2 Magnetic field models

In principle, if both the magnitude and direction of the magnetic field vector could be
determined at every point in the solar corona at any given time, there would be no dif-
ficulty in programming a computer to construct a detailed three-dimensional field line
map. Therefore, one has to be forced to infer magnetic field throughout corona volume
using numerical models from photospheric footprint. The photospheric vector magnetic
field of solar active regions has been measured for the last decades. These measurements
provide the input to 3D numerical magnetic field models. The spatial resolution of mea-
surements has improved steadily, and models are able to incorporate some departures
from the force-free field approximation. Several of these models are now capable of re-
producing the observed sheared coronal magnetic features. In the following subsections,
basic coronal magnetic field models such potential, linear force-free, nonlinear force-free
and MHD will be discussed independently.

2.2.1 Potential field models

The simplest way to model the coronal field is to assume that it is potential, i.e. that it
carries no electric current. solutions for this model in plane geometry have been obtained
by Schmidt (1964), for the case where the vertical component of the field is specified at the
photospheric boundary. This model has now led to an almost routine type reconstruction,
used for observational purposes (Sakurai 1989), but also for building initial conditions
for dynamical MHD numerical simulations (Amari et al. 1996, Mikic et al. 1996). This
assumption has proven to be adequate for many quiescent, old active regions and even
for the non-eruptive global coronal-heliospheric interface (e.g., Wang and Sheeley 1990,
Hoeksema 1991, Schrijver and De Rosa 2003). Studies of the coupling of the coronal
field into the heliosphere suggest that the global coronal magnetic field is often largely
potential. For the practical calculation of the global field, the so-called source-surface
model has been introduced, in which the influence of the solar wind is artificially taken
account of by the requirement that the field be radial at some exterior spherical (source)
surface typically at 2.5R� from the sun’s center. The potential-field source surface (PFSS)
model, uses this concept to extrapolate the line-of-sight surface magnetic field through
the corona with the boundary assumed to be at the source surface. With the assumption of
current-free corona, such models are not able to reproduce any topological developments
of the coronal magnetic field. It is a fundamental theorem in electromagnetic theory the
current-free magnetic field is the state of minimum energy subject to the given boundary
condition. In other words, the variational problem for solenoidal vector field B

W =

∫
V

B2

8π
dV = stationary,

Bn is given on S

(Bn is the normal component of B on the boundary surface S), leads to the so-called
Euler equation for variational problem which reduces to ∇ × B = 0 and it can be shown
that the solution is unique and that it makes the functional W minimum (Sakurai 1979).
Hence, they are only to be used for estimating the lowest-energy state corresponding to
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an observed line-of-sight magnetic field and they do not provide any estimate for the
amount of energy which is built up in a solar active region prior to eruptions and the part
of it which could be involved in the reconfiguration of the field. That is because this
excess energy is mainly related to the change in the transversal (horizontal) photospheric
magnetic field components which a potential field approach is not capable of reproducing.

The potential field model fails, of course, in many interesting cases because it is by
definition wrong when we look at regions that can support flares, filament eruptions, or
coronal mass ejections: such regions contain free energy in the form of strong electrical
currents. Schrijver et al. (2005) showed that potential field model cannot be used to
determine the energy contained in electrical currents and magnetic fields available for
driving instabilities, or even provide the simple assessment of where such energy might
exist within active regions.

The magnetic scalar potential φ is uniquely determinable if φ itself or if its normal
derivative ∂nφ (which is equivalent to the magnetic field component normal to the bound-
ary Bn) is specified on the boundaries and, therefore, one has to solve a Dirichlet or Neu-
mann boundary value problem, respectively. As the line-of-sight component of the mag-
netic field near the solar disk center is essentially radial it can be used to determine the
distribution of magnetic sources which show a straightforward relation to the current-free
field above the photosphere. Since any gradient, n̂ · ∇φ is sufficient condition, the Laplace
field can also be calculated far off disk center from the line-of-sight components. A solu-
tion is obtained by solving the Laplace equation for φ with the normal magnetic field as
a boundary condition and standard methods, using either Green’s functions or eigenfunc-
tion expansions, for this purpose are existing.

We shall pursue the solution of this boundary-value problem in a standard form of har-
monic expansion in terms of eigen-solutions of the Laplace equation written in a spherical
coordinate system, (r, θ, φ). Assuming that a currentless (J = 0) approximation holds ei-
ther throughout the space above the photospheric surface S p, or between the photosphere
and some spherical surface S s (source surface), the force-free equation reduces to ,

∇ × B = 0

, and can be rewritten using scalar potential Φ as

B = −∇Φ (2.4)

Substituting Eq. (2.4) into divergence-free equation, ∇ · B, one can find Laplace equation
for Φ as

∇2Φ = 0 (2.5)

Using separation of variable in spherical (r, θ, φ) coordinates Eq. (2.5) has the solution
(Jackson 1975):

Φ(r, θ, φ) =

∞∑
l=0

l∑
m=−l

[
Almrl + Blmr−(l+1)

]
Ylm(θ, φ) (2.6)

where Ylm are Spherical Harmonics expressed through the associated Legendre polyno-
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mials, Pm
l (cosθ) by equation,

Ylm(θ, φ) =

√
2l + 1(l + m)!

4π(l + m)!
Pm

l (cosθ)eimφ (2.7)

where Alm & Blm are Spherical Harmonics coefficients. An intergrable function g(θ, φ)
can be represented as

g(θ, φ) =

∞∑
l=0

l∑
m=−l

ClmYlm(θ, φ) (2.8)

with Clm is given by (Jackson 1975):

Clm =

∫ 2π

0

∫ π

0
Y∗lm(θ, φ)g(θ, φ)sinθdθdφ (2.9)

with Y∗lm = (−1)mYl,−m. From the radial component of the vector magnetic field measured
on the photosphere at r = R�, we can prescribe Von Neumann boundary condition as
Br(R�, θ, φ) = ∂Φ

∂r and applying Eq. (2.9) to calculate Clm for g(θ, φ) = Br(R�, θ, φ). Hence
the radial component of the magnetic field is given by

Br(r, θ, φ) =

∞∑
l=0

l∑
m=−l

[
Almlrl−1 − Blm(l + 1)r−(l+2)

]
Ylm(θ, φ) (2.10)

The values of Alm & Blm are not completely determined with Clm, hence we have to impose
additional boundary condition with the assumption that magnetic field at source surface,
S s, is completely radial at r ≥ r1 as:

Bθ =
1
r
∂Φ(r, θ, φ)

∂θ
= 0 and Bφ =

1
rsin(θ)

∂Φ(r, θ, φ)
∂φ

= 0 at r = r1 (2.11)

Consequently the potential only depends on the radial component r ≥ r1, where

Φ(r) =

∞∑
l=0

l∑
m=−l

[
Almrl + Blmr−(l+1)

]
and all coefficient of Ylm except Y00 = 1 have to vanish. Together with the photospheric
boundary condition Eq. (2.9), one can get two equations to calculate Alm and Blm for l ≥ 1:

AlmlR(l−1)
� − Blm(l + 1)R−(l+2)

� = Clm (2.12)

Almrl
1 + Blmr−(l+1)

1 = 0 (2.13)

which leads to:

Alm =
ClmRl+2

�

r2l+1
1 + l(Rl+2

� + r2l+1
1 )

(2.14)

Blm = −
ClmRl+2

� r2l+1
1

r2l+1
1 + l(Rl+2

� + r2l+1
1 )

(2.15)
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The distance of the source surface sphere r1 might be chosen in a way that we can fit some
additional constraints, e.g., observations of radiating loops or helmet streamer. We might
compare the magnetic field and observed plasma structures similar as for the cartesian
linear force-free case and minimize with respect to r1. Therefore, all components of
potential field B can be calculated analytically from Φ.

In general, even if there are several limitations to potential field models which led
to the introduction of the so-called constant-α and non-constant-α force-free hypothesis
(both allow for the presence of electric currents in the corona) , the potential field has
been used as initial condition for many nonlinear force-free model codes for extrapolating
coronal magnetic field.

2.2.2 Linear force-free field models

Extrapolating magnetic fields from measured photospheric boundary upward into the
corona are difficult due to the general nonlinear character of the equations. However,
the linear force-free field model (LFF) corresponds to the case of a spatially constant (in
general non-vanishing) α, in force-free equation ∇×B = αB ( the ratio of field strength to
current density is constant throughout a volume) (Chiu and Hilton 1977, Seehafer 1982,
Semel 1988, Clegg et al. 2000, Alissandrakis 1981). This simplest variant of the force-
free problem leads to a linear differential equation which collapses to the potential field
when the constant of proportionality α vanishes. Taking the curl of ∇ × B = αB one gets
(in Cartesian coordinates) the Helmholtz equation:(

∇2 + α2
)
B = 0

It follows that a necessary (but not sufficient) condition for a linear force-free field is that
it satisfies the Helmholtz equation. This subset is important because it gives the only
general solution which can be used to understand currents in the solar atmosphere (Gary
1989). Linear force-free models might provide a rough estimate of the true 3D magnetic
field structure if the nonlinearity is weak. The use of simpler models was often justified
owing to limited observational data, in particular if only the line-of-sight photospheric
magnetic field has been measured (Wiegelmann 2008).

Nakagawa and Raadu (1972) were first to describe a generalized representation of
LFF magnetic fields and to provide (non-unique) solutions of force-free equation using a
Fourier series expansion in Cartesian coordinates. Barbosa (1978) computed the surface
Green’s function for LFF magnetic fields and imposed boundary conditions on the normal
component of B on two parallel planes which represent the force-free volume. This proce-
dure ensures that the magnetic field energy remains bounded, and that the field lines have
a smooth behaviour. Seehafer (1978) used a Fourier representation to seek the solution to
the set of linear force-free equations in a Cartesian coordinate system. He pointed out that
fields being linear force-free in the whole volume outside the Sun neither possess a finite
energy content nor can be determined uniquely from the normal photospheric magnetic
field component alone. In other words, he found that the consideration of global-scale
LFF fields is problematic.

Linear force-free fields have certain properties that limit their usefulness as solutions
to the boundary-value problem posed by photospheric magnetic field determinations.
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Chiu and Hilton (1977) had investigated that LFF fields have non-unique solutions if
only the normal (line-of-sight) magnetic field at the photosphere is used as boundary. To
achieve uniqueness both the normal and tangential component need to be defined on the
boundary so that the physical character of the field is clearly reflected. Linear force-free
fields are not suitable for problems like strong localized currents and for detailed studies
of the energy and helicity budgets of active regions, and the calculated magnetic fields
perhaps do not contain free energy (Wheatland 1999). Differencing of observationally
determined transverse field values provides estimates of α over an active region. Mea-
surements of this type typically show a highly nonuniform distribution of α (e.g., Wang
1993, Pevtsov et al. 1994), indicating that strong field-aligned currents flow in localized
areas in active regions. Therefore linear fields cannot reproduce the observed localized
currents. In addition, linear force-free fields are poor models of large-scale coronal fields
for two reasons (Wheatland 1999). First, in general, linear force-free fields have an infi-
nite energy in a half-space (apart from a restricted class of linear fields ; see Aly 1992)),
making them unsuitable as large-scale models of the field above a "photospheric plane".
Second, linear force-free fields do not become potential at large distance.

Because of the limitations of linear force-free field modeling, considerable effort has
been devoted to methods for calculating nonlinear force-free fields to match the photo-
spheric boundary conditions.

2.2.3 Nonlinear force-free field models
Potential and LFF fields are inappropriate in reproducing the energy content of the coro-
nal magnetic field accurately, since they cannot hold the full magnetic energy content
according to their computation from the measured normal (line-of-sight) magnetic field
only. Usually α (of Eq. 2.3) changes in space, even inside one active region. This can
be seen, if we try to fit for the optimal linear force-free parameter α by comparing field
lines with coronal plasma structures. An example is given by Wiegelmann and Neukirch
(2002) where stereoscopic reconstructed loops by Aschwanden et al. (1999) have been
compared with a linear force-free field model. The optimal value of α changes even sign
within the investigated active regions, which is a contradiction to the α= constant linear
force-free approach.

A realistic way to model the non-potential coronal fields in active regions is to as-
sume that the electric currents are parallel to the magnetic field, ∇ × B = αB, with α
being constant only along every field line (B · ∇α = 0) but varying from field line to
field line, giving us the nonlinear force-free field (NLFFF). The computation of nonlin-
ear force-free fields is however, more challenging for several reasons. Mathematically,
problems regarding the existence and uniqueness of various boundary value problems
dealing with nonlinear force-free fields remain unsolved (see Amari et al. 2006, for de-
tails). Another issue is their numerical analysis of given boundary values. This class of
field configuration is complex to compute, and solutions depend strongly on the imple-
mentation of the boundaries. An additional complication is to derive the boundary data
from observed photospheric vector magnetic field measurements, which are consistent
with the force-free assumption. Measurement uncertainties in the transverse components
of the measured field vector, ambiguities regarding the field direction, and non-magnetic
forces in the photosphere complicate the task of deriving suitable boundary conditions
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from measured data.
The assumption of force-freeness is well accepted for the coronal magnetic fields in

active regions, while it is not true for the photosphere. The photospheric plasma is a finite
β-plasma and nonmagnetic forces like pressure gradient and gravity cannot be neglected.
As a result, electric currents have a component perpendicular to the magnetic field, which
contradicts the force-free assumption. We will discuss later in the next chapter how these
difficulties can be mitigated using a preprocessing scheme.

Several methods have been developed over the past few decades to compute the most
general class of force-free fields, the nonlinear force-free (NLFF)field. This class of field
configuration is difficult to compute, and solutions depend strongly on the implementa-
tion of the boundaries. For a more complete review of existing methods for computing
nonlinear force-free coronal magnetic fields, we refer to the review works by Amari et al.
(1997), Schrijver et al. (2006), Metcalf et al. (2008), Wiegelmann (2008), Régnier (2007).

2.2.3.1 Upward integration method

This method was among the first to be seriously investigated for nonlinear force-free
extrapolation. The basic equations for the upward integration method (or progressive
extension method) have been published by Nakagawa (1974). The upward integration
method is a straight forward approach to use the nonlinear force-free equations (2.2 &
2.3) directly to extrapolate the photospheric magnetic field into the corona. The idea is to
reformulate the nonlinear force-free equations as:

∂Bx

∂z
= αBy +

∂Bz

∂x
(2.16)

∂By

∂z
= −αBx +

∂Bz

∂y
(2.17)

∂Bz

∂z
= −

∂Bx

∂x
−
∂By

∂y
(2.18)

α =
1
Bz

(∂By

∂x
−
∂Bx

∂y

)
(2.19)

α
∂Bz

∂y
=

∂

∂x

(∂By

∂z

)
−
∂

∂y

(∂Bx

∂z

)
(2.20)

and to integrate this set of equations upwards in z from the knowledge of B(x, y, 0) and its
vertical derivatives on the lower boundary z = 0. It is a Cauchy or initial value problem
with the vertical coordinate z playing the role of time. However, this initial value prob-
lem is mathematically ill-posed2, since the solutions do not depend continuously on the
photospheric initial values (Wu et al. 1990, Demoulin et al. 1992, Amari et al. 1997) and
therefore small changes or inaccuracies in the measured boundary data lead to a divergent
extrapolated field (Low and Lou 1990). In particular one finds that exponential growth of
the magnetic field with increasing height is a typical behavior.

The upward integration method has been recently reexamined by Song et al. (2006)
who developed a new formulation of this approach. The new implementation uses smooth

2The errors in the solution grow up as one goes higher up from the lower boundary.
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2.2 Magnetic field models

continuous functions and the equations are solved in asymptotic manner iteratively. The
original upward integration equations are reformulated into a set of ordinary differential
equations and uniqueness of the solution seems to be guaranteed at least locally.

2.2.3.2 Grad-Rubin methods

This method dates back to the classical work by Grad and Rubin (1958), in which it
was first presented (of course not for use in coronal magnetic field extrapolation). The
method reformulates the nonlinear force-free equations in such a way, that one has to
solve two well posed boundary value problems. This makes this approach also interesting
for a mathematical investigation of the structure of the nonlinear force-free equations. It
solves either for the magnetic field, the electric current density or the magnetic vector
potential. At first, a potential field is computed only from the line-of-sight photospheric
magnetic field whose transversal components are then used to compute the photospheric
α distribution for one polarity. The field is then iteratively updated in the computational
volume until the recalculation does not yield a change in the configuration anymore and
thus can be regarded as a stationary state.

The Grad & Rubin method as implemented by Wheatland (2004, 2006) is similar to
that of Sakurai (1981) where the current distribution is modelled in terms of cylindrical
current elements between nodal points on a small number of calculated field lines. The
magnetic force is calculated at each nodal point due to all current elements using an exact
integral solution of the Ampere’s law. In Wheatland (2004), the magnetic field due to the
currents is calculated at each grid points instead of only at nodal points.

The more frequently used form of the Grad-Rubin method is the one given by Amari
et al. (1997, 1999). This approach decomposes equations (2.1)-(2.3) into a 1st order
hyperbolic part for evolving α along the magnetic field lines and an elliptic one to iterate
the updated magnetic field from Amperes law. For every iteration step k one has to solve
iteratively for

Bk · ∇αk = 0 (2.21)

∇ × Bk+1 = αkBk (2.22)

∇ · Bk+1 = 0 (2.23)

which evolves α in the volume. Amari et al. (2006) have improved the numerical scheme
in many ways, e.g. by injecting the current density only in one step, by ensuring the
∇ · J = 0 at a high level of accuracy, or by improving the determination of the boundary
values of the transverse component of the vector potential.

Inhester and Wiegelmann (2006) implemented a Grad-Rubin code on a finite element
grid with staggered field components. The method first propagates the α value along
field lines and then updates the magnetic field using a residual vector potential and also
ensuring the condition ∇·J = 0. Since Eq. (2.21) is 1st order, only one boundary condition
is needed. This leads to conflicts on field lines which have both foot points anchored in
the photosphere. A balancing scheme between the two boundary values was introduced
by Inhester and Wiegelmann (2006) and later by Wheatland and Régnier (2009).
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2 Magnetic field extrapolations into the solar atmosphere

2.2.3.3 MHD relaxation methods

These methods do not make use of the NLFF equations directly, rather the magnetohydro-
dynamic (MHD) equations are simulated in a simplified or modified form (Chodura and
Schlueter 1981). The idea is to start with a suitable magnetic field which is not in equi-
librium and to relax it into a force-free state. This is done by using the MHD equations in
the following form:

υv = (∇ × B) × B (2.24)

E + v × B = 0 (2.25)
∂B
∂t

= −∇ × E (2.26)

∇ · B = 0 (2.27)

where υ and E are viscosity and the electric field, respectively. As the MHD relax-
ation aims for a quasi-physical temporal evolution of the magnetic field from a non-
equilibrium toward a (nonlinear force-free) equilibrium this method is also called ’evolu-
tionary method’ or ’magneto-frictional method’. The equation of motion (Eq. 2.24) has
been modified by eliminating the plasma inertia and introducting viscous friction in such
a way that it ensures that the (artificial) velocity field is reduced. Equation (2.25) has no
Ohmic resistance included and therefore ensures that the magnetic connectivity remains
unchanged during the relaxation except magnetic diffusion due to numerical effect. The
artificial viscosity υ plays the role of a relaxation coefficient which can be chosen in such
way that it accelerates the approach to the equilibrium state. A typical choice is

υ =
1
µ
|B|2 (2.28)

with µ=constant. Combining equations (2.24), (2.25), (2.26) and (2.28) we get an equa-
tion for the evolution of the magnetic field during the relaxation process,

∂B
∂t

= µFMHD (2.29)

with
FMHD = ∇ ×

( [(∇ × B) × B] × B
B2

)
(2.30)

This equation is then solved numerically starting with a given initial condition for B,
usually a potential field. Equation (2.29) ensures that equation (2.27) is satisfied during
the relaxation if the initial magnetic field satisfies it.

The MHD evolutionary method as implemented by McClymont and Mikic (1994) fol-
lows the time-dependent evolution of the resistive, viscous, MHD equations using chang-
ing boundary conditions. An incompressible two-dimensional flow is imposed on the
boundary in order to inject the observed current density (due to transverse field) in the
magnetic configuration. The stress-and relax method (Roumeliotis 1996) is very similar
to the MHD evolutionary technique solving similar MHD equations. But the resistive
relaxation is driven by the transverse components of the magnetic field and also includes
the uncertainty of the magnetic field measurements. The magnetofrictional method (Yang
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2.2 Magnetic field models

et al. 1986) uses a dissipative relaxation to drive the MHD equations towards an equi-
librium. The boundary conditions are injected by a series a stress-and-relax procedures.
This method has been recently implemented by Valori et al. (2005) with a zero plasma β
which results in a final state close to a force-free state.

2.2.3.4 Boundary element or Greens function like methods

The boundary integral method has been developed by Yan and Sakurai (2000). The
method relates the measured boundary values with the nonlinear force-free field in the
entire volume by considering the half-space above the lower boundary with vanishing
field at infinity. Following Green’s second identity, the solution at a given point i inside a
volume V and for a boundary field B0 on S = ∂V is given by:

ciB =

∮
S

(
Y
∂B
∂n
−
∂Y
∂n

B0

)
dS (2.31)

where ci = 1 for points in the volume and ci = 1/2 for points on the boundary S . Y is an
kernel function which depends on B and has to be determined iteratively in a such way
that a remaining volume integral vanishes. An iterative scheme has been developed (Yan
and Sakurai 2000, Li et al. 2004) to compute the NLFF field at given point in the coronal
volume from the boundary conditions given by the three components of the magnetic
field. In the work of Yan and Sakurai (2000) a volume integral is needed to determine
the auxiliary function at any point. Yan and Li (2006) have recently implemented a new
version of the boundary integral method avoiding the volume integral. Different from
other method, it allows, however, to evaluate the NLFFF field at every arbitrary point
within the domain from the boundary data, without the requirement to compute the field
in an entire domain. This is in particular useful if one is interested to compute the NLFFF
field only along a given loop.

2.2.3.5 Optimization approach

Wheatland et al. (2000) have proposed an optimization method for the calculation of
nonlinear force-free fields and later Wiegelmann (2004) improved the method. Note that
another optimization scheme has been implemented by McTiernan (see Schrijver et al.
2006, Inhester and Wiegelmann 2006). The method minimizes a functional L, which is
an integral sum of the normalized Lorentz forces and the divergence of the field (each of
which should equal zero) throughout the volume of interest, V . The minimization of the
global departure of an initial field from a force-free and solenoidal state is realized for a
vector field B(x, t) within a volume V by minimizing the quantity L as:

L =

∫
V

[
B−2|(∇ × B) × B|2 + |∇ · B|2

]
dV (2.32)

The minimization of L constitutes a variational problem and the related Euler-equations
directly tell us how to iterate B so as to find the minimum. The detail description of
optimization method and the extension of its scheme to spherical geometry is the subject
of this thesis and will be presented in the next chapters.
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2 Magnetic field extrapolations into the solar atmosphere

2.2.4 MHD models

Magnetohydrodynamics (MHD) models are also becoming key tools to study time evo-
lution of coronal magnetic field. The idea is to solve MHD equations using photospheric
magnetic field boundary as input. The basic equations are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (2.33)

ρ
(∂v
∂t

+ v · ∇v
)

+ ∇p − J × B + ρg = 0 (2.34)

∇ × B − 4πJ = 0 (2.35)
∂B
∂t

+ ∇ × E = 0 (2.36)

E + v × B = 0 (2.37)

∇ · B = 0 (2.38)

where the plasma is subjected to a plasma pressure gradient ∇p, the Lorenz force J × B
per unit volume and gravitational per unit volume. Furthermore, ρ, J, g, E, and B stand
for the plasma density, electric current density, gravitational acceleration, electric field,
and magnetic field, respectively.

Global MHD models are a more recent development. Relying on solutions to more
complex equations and requiring significantly more computational power, the first global
solutions incorporating observed photospheric fields into the boundary conditions were
produced by Mikic et al. (1996), Usmanov (1996). Otto et al. (2007) have used a lin-
ear force free field extrapolation to generate initial magnetic field B for a time-dependent
MHD simulations. In their work, the presented solar magnetic field expansion and sim-
ulation model provide a straightforward method which can incorporate observed solar
magnetic fields into MHD simulations of the dynamics of magnetic structure. The model
uses an extrapolation of the solar fields which is consistent with generic MHD boundary
conditions. The model includes the photosphere, chromosphere, and solar transition re-
gion and results indicate that this transition region may be important for the dynamics of
solar magnetic structure.

2.3 Alternatives

The measurement of magnetic fields throughout the coronal volume is an intrinsically
more difficult problem since it requires three dimensional information, whereas photo-
spheric fields are measured on a two dimensional surface. The techniques used to mea-
sure magnetic fields in the photosphere rely on Zeeman splitting and Hanle effect. The
required Stokes profile measurements and are not as effective in the solar corona, since
lines formed at coronal temperatures are intrinsically broader and are scarce in the in-
frared where Zeeman splitting is (relatively) large. Under exceptional circumstances the
measurement techniques applicable to the lower layers of the solar atmosphere can also
be applied to measure magnetic fields at somewhat greater heights (e.g., Solanki et al.
2003).When suitable lines exist in the infrared and optical regimes (e.g., Judge 1998,

42
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Kuhn et al. 1999, Lin et al. 2000), they can only be used for observations above the limb
because of the strong photospheric flux which contaminates the spectra against the solar
disk. Coronal lines are prevalent at X-ray and EUV wavelengths and can be used to ob-
serve regions on the solar disk, but polarimetry is more difficult at these wavelengths and
Zeeman splitting is only a small fraction of the thermal widths of the lines.

High resolution images from the EUV telescopes on the SOHO and TRACE satellites
are ideal for tracing magnetic field lines in the solar corona. This is because the line
emission processes responsible for coronal lines are proportional to the square of the
number density, and thus are very sensitive to density contrasts. In a strongly magnetized
plasma the inhibition of transport perpendicular to the magnetic field naturally results in
such strong density contrasts, but only a subset of the coronal field lines is illuminated by
this process.

In principle one can use the polarization of emissions from magnetic sensitive coronal
line transitions to draw conclusions about the coronal magnetic field. These lines, how-
ever, are very faint so that in the past they have only occasionally been observed (e.g.,
House 1977, Arnaud and Newkirk 1987). In their study Judge et al. (2001) conclude
that several forbidden lines (e.g., of Fe XIII, He I, Mg VIII, and Si IX) may be used to
determine the coronal magnetic field. They further concluded that space-born missions
are not needed for such kinds of coronal magnetometers but a high, dry mountain site.
In their study they propose a focal plane instrument devoted to the 1µm region. These
authors also point out that besides the observational part, a further major problem is the
interpretation of the data. Because of the optically thin coronal plasma, direct measure-
ments of the coronal magnetic field have a line-of-sight integrated character and to derive
the accurate 3D structure of the coronal magnetic field a vector tomographic inversion
is required. Corresponding feasibility studies based on coronal Zeeman and Hanle effect
measurements have been done by Kramar et al. (2006) and Kramar and Inhester (2006).

2.4 Summary and conclusions

The magnetic field contains the dominant energy per unit volume in the solar corona and
therefore plays an important role in most coronal phenomena. But until now, no direct
measurement of the magnetic field vector distribution in the corona could be made. In
recent years the accuracy of magnetic field observations in the solar atmosphere has made
considerable progress. Models of the coronal magnetic field rely almost entirely on ex-
trapolations of photospheric magnetic field observations. Therefore, numerical methods
to estimate the magnetic fields in the upper solar atmosphere have been developed and
extensively tested. Based on a number of assumptions about the physical conditions in
the mid-and-upper chromosphere and corona its magnetic field can be calculated using
force-free field extrapolation methods. The coronal magnetic field can be approximated
either by potential (current-free), linear force-free (constant-α) or nonlinear force-free
(non-constant-α) fields. While potential and constant-α fields are only capable of re-
producing the true coronal magnetic field (and in particular its magnetic energy content)
to a certain extent the more general approach of non-constant-α fields is favourable. In
contrast to the aforementioned simpler models, these methods need the full photospheric
magnetic field vector as the lower boundary condition.
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2 Magnetic field extrapolations into the solar atmosphere

The next chapter, therefore, deals with the application of optimization procedure along
with preprocessing boundary data in spherical geometry for modeling nonlinear force-free
coronal magnetic field above solar-like model active regions. In particular, mathematical
derivations of optimization and preprocessing procedures in spherical geometry are anal-
ysed.
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3 Optimization and preprocessing
procedures in spherical geometry

Routine measurements of the solar magnetic field vector are mainly carried out only in
the photosphere. Therefore, we compute the field in the higher layers of the solar atmo-
sphere from the measured photospheric field under the assumption that the corona plasma
is force-free. However, the measured photospheric magnetic field vector is inconsistent
with the above force-free assumption. Therefore, one has to apply some transformations
to these data before nonlinear force-free extrapolation codes can be applied. High noise
in the transverse components of the measured field vector, ambiguities regarding the field
direction, and non-magnetic forces in the photosphere complicate the task of deriving
suitable boundary conditions from measured data. Extrapolation codes in cartesian ge-
ometry do not take the curvature of the Sun’s surface into account (Wiegelmann 2007,
Tadesse et al. 2009). The main emphasis of this chapter (have partly been published in
Tadesse et al. (2009)) is to describe a method for nonlinear force-free coronal magnetic
field modelling and preprocessing of photospheric vector magnetograms in spherical ge-
ometry using the optimization procedure over a restricted area of the Sun.

In the following, the optimization approach to extrapolate the coronal magnetic field
for the analysis of solar active regions in spherical geometry as used in the presented
thesis is discussed in § 3.1 and the method to provide consistent boundary conditions to
this computational method is outlined in § 3.2. Finally, in § 3.3 a short summary is given.

3.1 Optimization procedure in spherical geometry

The optimization procedure is one of several methods that have been developed over the
past few decades to compute the most general class of those force-free fields. Optimiza-
tion methods have the advantage of being conceptually straightforward and are reasonably
easy to implement. The optimization approach as implemented by Wheatland et al. (2000)
has been used to compute magnetic fields using all six boundaries of a computational
box. This causes a serious limitation of the method because such data are only available
for model configurations. Potential fields1 have been used for the five boundaries at the
top and lateral directions for which observations usually are not present. However, these
assumed boundary data may have a strong influence on the solution. For the reconstruc-
tion of the coronal magnetic field it is necessary to develop a method which reconstructs
the magnetic field only from photospheric vector magnetograms (the three components

1It is a field that we have calculated from vertical component of the surface magnetic field.

45



3 Optimization and preprocessing procedures in spherical geometry

of surface field). Vector magnetograms provide boundary conditions only for the bottom
boundary of a computational box while the other five boundaries remain unknown. But
later on Wiegelmann (2004) extended this method and showed how the coronal magnetic
field can be reconstructed only from the bottom boundary, where the boundary conditions
are measured with vector magnetographs. It is therefore important to diminish the effect
of the top and lateral boundaries on the magnetic field inside the computational box. This
can be done either by including a variation of B not only in the interior but also on those
boundaries where B is unknown. This approach, however, is numerically difficult be-
cause it involves two types of variations. Wiegelmann (2004) showed that it is essentially
equivalent to introducing finite size boundary regions on those boundaries where B is un-
known with the weighting function w(x, y, z) different from unity. The wieghting function
is desirable to move these faces as far away as possible from the region of interest.

In the optimization approach, a functional L containing force-free equations (2.1) &
(2.2) is minimized. The method directly uses the magnetic field vector at the bottom
boundary of the computational box and an explicit computation of α is not necessary. In
the next subsection We describe how the required boundary conditions can be derived
from magnetic field measurements. Another advantage of the method is that the qual-
ity of the reconstructed magnetic field (force-free and solenoidal condition) is controlled
automatically within the iteration procedure. The good performance of the optimization
method, as indicated in Schrijver et al. (2006), encouraged us to develop a spherical ver-
sion of the optimization code such as in Wiegelmann (2007), Wiegelmann et al. (2007),
Tadesse et al. (2009). Wiegelmann (2007) has developed spherical version of the op-
timization principle for the whole sphere with two boundaries at the photosphere and
source surface. In this section of this chapter, we describe a newly developed code that
originates from a cartesian force-free optimization method implemented by Wiegelmann
(2004). This new code takes the curvature of the Sun’s surface into account when model-
ing the coronal magnetic field in restricted area of the Sun (not the whole sphere but part
of it).

Large model volumes at high spatial resolution are required which not only accom-
modate the connectivity within an active region but also the connectivity to the surround-
ing. This has become clear already in an earlier application of existing extrapolation
codes to Hinode/SOT-SP data by Schrijver et al. (2008) and it has been worked out that
a vector magnetogram with a small field-of-view (not containing an entire active region
and its surrounding) does not provide the necessary magnetic connectivity for an unbi-
ased nonlinear force-free extrapolation. DeRosa et al. (2009) compared several nonlinear
force-free codes in cartesian geometry with stereoscopic reconstructed loops as produced
by Aschwanden et al. (2008). The codes used as input vector magnetograms from the
Hinode-SOT-SP, which were unfortunately available for only a very small field of view
(about 10 percent of the area spanned by STEREO-loops). Outside the Hinode FOV (field
of view) line-of-sight magnetograms from SOHO/MDI were used and in the MDI-area,
different assumptions about the transversal magnetic field have been made. Unfortunately,
the comparison inferred that when different codes were implemented in the region outside
the Hinode-FOV in different ways, the resulting coronal magnetic field models produced
by the separate codes were not consistent with the STEREO-loops. The recommenda-
tions of the authors are that one needs vector magnetograms in larger field of views , the
codes need to account for uncertainties in the magnetograms, and one must have a clearer
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Figure 3.1: Series of co-aligned images of AR 10953 (with the same 10◦ gridlines drawn
on all images for reference). (a) Time-averaged and logarithmically scaled Hinode/XRT
soft X-ray image, and (b) with the best-fit Wheatland model field lines overlaid. (c)
STEREO-A/SECCHI-EUVI 171 Å image. (d) Trajectories of loops, as viewed from the
perspective of an observer located along the Sun-Earth line of sight and determined stereo-
scopically from contemporaneous pairs of images from the two STEREO spacecraft. (e)
Same visualization as panel (d) but viewed from the side. (credit: DeRosa et al. (2009)).

understanding of the photospheric-to-corona interface. For a meaningful application of
extrapolation codes on full disc vector magnetograms ( i.e., SOLIS/VSM or SDO/HMI ),
we have to take the curvature of the Sun into account and carry out nonlinear force-free
computations in spherical geometry.

In the following, we describe an optimization procedure in spherical geometry and
then, we apply it to a known nonlinear force-free test field and calculate some figures of
merit for different boundary conditions.

3.1.1 Numerics of the optimization procedure
The force-free magnetic fields Equations (2.1) and (2.2) can be solved with the help of
an optimization principle, as proposed by Wheatland et al. (2000) and generalized by
Wiegelmann (2004) for cartesian geometry. The method minimizes a joint measure (Lω)
of the normalized Lorentz forces and the divergence of the field throughout the volume of
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interest, V . Here we define a functional in spherical geometry (Wiegelmann 2007):

Lω =

∫
V
ω(r, θ, φ)B−2

(
Ω2

a + Ω2
b

)
r2 sin θ dr dθ dφ (3.1)

with
Ωa = B−2(∇ × B) × B , (3.2)

Ωb = B−2(∇ · B)B (3.3)

where B is the discrete vector of all magnetic field components which we split into those
of the interior, B̄, and those on the boundary B̃. ω(r, θ, φ) is a positive weighting function
and V is computational volume.

It is obvious that the force-free Eqs. (2.1) and (2.2) are fulfilled when Lω equals zero.
We minimize Equation (3.1) with respect to an iterative parameter t (see the Appendix for
details) and obtain an iterative equation for the magnetic field:

1
2

dLω
dt

= −

∫
V

∂B
∂t
· F̃ r2 sin θ dr dθ dφ −

∮
S

∂B
∂t
· G̃dS (3.4)

where
F̃ = ωF + (Ωa × B) × ∇ω + (Ωb · B)∇ω , (3.5)

G̃ = ωG (3.6)

F = ∇ × (Ωa × B) −Ωa × (∇ × B) + ∇(Ωb · B) −Ωb(∇ · B) + (Ω2
a + Ω2

b)B , (3.7)

G = n̂ × (Ωa × B) − n̂(Ωb · B) (3.8)

and n̂ is the inward unit vector on the surface S that is bounding the volume V . The
surface integral in Eq. (3.4) vanishes if the magnetic field is not varied on the boundaries
of a computational box. The functionalLω in Eq. (3.1) will decrease if B is evolved inside
the computational volume according to the iterative equation:

∂B̄
∂t

= µF̃ , (3.9)

with a sufficiently small constant µ > 0, and if the magnetic field vector is kept constant
on the boundaries during iterations, it leads to:

∂B̃
∂t

= 0 , (3.10)

on S . One can see that Eqs. (3.9) and (3.10) lead to

dLω
dt

= −2
∫

V
µF̃

2
r2 sin θ dr dθ dφ ≤ 0 (3.11)

where equality only occurs if F̃ = 0. The condition in Eq. (3.10) needs all the three
components of the magnetic field on the boundary, which leads to an ill-posed problem,
as there are no such measurements on top and lateral boundaries. Relaxing these top and
lateral boundaries is possible (Wiegelmann and Neukirch 2003) and leads to an additional
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Figure 3.2: Wedge-shaped computational box of volume V with the inner physical do-
main V ′ and a buffer zone. O is the center of the Sun.

term in Eq. (3.11).

dLω
dt

= −2
∫

V
µF̃

2
r2 sin θ dr dθ dφ − 2

∮
S
µG̃

2
dS ≤ 0 (3.12)

if


∂tB̄ = µF̃ on the interior of V

∂tB̃ = µG̃ on S

where equality only occurs in this case if both F̃ = 0 and G̃ = 0. It is straightforward to
extend the iteration by

∂B̃
∂t

= µG̃ , (3.13)

on the open boundaries. Equation (3.13) changes the boundary values in such way that
Lω decreases. Discretized versions of Eqs. (3.9), together with appropriate boundary
conditions, form the basis for the numerical scheme.

In this work, we have used computational box V of wedge-shaped volume, which
includes an inner physical domain V ′ and a buffer zone(the region outside the physical
domain) as shown in Fig. 3.2. The physical domain V ′ is a wedge-shaped volume, with
two latitudinal boundaries at θ1 = θmin and θ2 = θmax , two longitudinal boundaries at
φ1 = φmin and φ2 = φmax, and two radial boundaries at the photosphere (r = 1R�) and r =
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1.5R�. The idea is to define an interior physical region V ′ in which we wish to calculate
the magnetic field so that it fulfills the force-free or MHS equations. We define V ′ to be
an inner region of V (including the photosphere) with ω = 1 everywhere including its six
inner boundaries ∂V ′. We use the position-dependent weighting function to introduce a
buffer boundary of nd grid points towards the side and top boundaries of the computational
box, V . The weighting function, ω declines from unity at the boundary ∂V to 0 at the
boundary ∂V ′ with a cosine profile in the buffer boundary region.

For ω(r, θ, φ) = 1, the optimization method requires that the magnetic field is given on
all six boundaries of V ′. This causes a serious limitation of the method because these data
are only available for model configurations. For the reconstruction of the coronal mag-
netic field, it is necessary to develop a method that reconstructs the magnetic field only
from data on the bottom boundary (Wiegelmann 2004). Since only the bottom boundary
is measured, one has to make assumptions about the lateral and top boundaries, e.g., as-
sume a potential field. This may lead to inconsistent boundary conditions (see Aly 1989,
regarding the compatibility of photospheric vector magnetograph data). With the help of
the weighting function, the five inconsistent boundaries are replaced by boundary layers
and we consequently obtain more flexible boundaries around the physical domain that
will be adjusted automatically during the iteration. This diminishes the effect of the top
and lateral boundaries on the magnetic field solution inside the computational box. Ad-
ditionally, the influence of the boundaries is diminished, the farther we move them away
from the region of interest.

The theoretical deviation of the iterative Eq. (3.9) as outlined by Wheatland et al.
(2000) does not depend on the use of a specific coordinate system. Previous numerical
implementations of the optimization procedure in spherical geometry were demonstrated
by Wiegelmann (2007) for the full sphere. Within this work, we use a spherical geometry,
but for only a limited part of the sphere, e.g., large active regions, several (magnetically
connected) active regions and full disc computations. Full disc vector magnetograms
are available from SDO/HMI and SOLIS/VSM. Larger computational box will become
necessary when the observed photospheric vector magnetogram becomes available for
only parts of the photosphere.

3.1.2 Discretizing and implementing the method

The code uses non-uniform spherical grid r, θ, φ with nr, nθ, nφ grid points in the direction
of radius, latitude, and longitude, respectively. A finite difference scheme has been used
to discetize the problem over discrete nodal points [see, the details of the finite difference
scheme used in this work in Appendix A.2]. We normalize the magnetic field with the
average radial magnetic field on the photosphere and the length scale with a solar radius.

The method works as follows:

J Compute an initial source surface potential field in the computational domain from
r = 1R� to S s using Br in the photosphere at r = 1R� as input. The computation
is performed by assuming that a currentless (J = 0 or ∇ × B = 0) approxima-
tion holds between the photosphere and some spherical surface S s (source surface
where the magnetic field vector is assumed radial). We computed the solution of
this boundary-value problem in a standard form of harmonic expansion in terms of
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eigen-solutions of the Laplace equation written in a spherical coordinate system,
(r, θ, φ) [see section 2.2 of this thesis].

J The code replaces Bθ and Bφ at the bottom photospheric boundary at r = 1R� with
bottom boundary vector magnetogram. The outer radial and lateral boundaries are
unchanged from the initial potential field model. For the purpose of code testing,
we also tested different boundary conditions (see next section).

J Iterate for a force-free magnetic field in the computational box by minimizing the
functional Lω of Eq.(3.1) by applying Eq.(3.9). For each iteration step (k), the
vector field F̃(k) is calculated from the known field B(k), and a new field may simply
be computed as B(k+1) = B(k) + µF̃(k)

∆t for sufficiently small ∆t and µ.

J The continuous form of Eq.(3.9) ensures a monotonically decreasing functionalLω.
For finite time steps, this is also ensured if the iteration time step dt is sufficiently
small. If Lω(t + dt) ≥ Lω(t), this step is rejected and we repeat this step with dt
reduced by a factor of 2.

J After each successful iteration step, the code increase dt by a factor of 1.01 to ensure
a time step as large as possible within the stability criteria. This ensures an iteration
time step close to its optimum.

J The iteration stops if dt becomes too small. As a stopping criteria, we use dt ≤ 10−6.

3.1.3 Test case and application to ideal boundary conditions
3.1.3.1 Test case

To test the method, a known semi-analytic nonlinear solution is used. Low and Lou (1990)
presented a class of axisymmetric nonlinear force-free fields with a multipolar character.
The authors solved the Grad-Shafranov equation for axisymmetric force-free fields in
spherical coordinates r, θ, and φ. The magnetic field can be written in the form

B =
1

r sin θ

(1
r
∂A
∂θ

êr −
∂A
∂r

êθ + Qêφ
)
, (3.14)

where A is a flux function independent of φ and Q represents the φ-component of B, here
assumed to depend only on A. The flux function A satisfies the Grad-Shafranov equation

∂2A
∂r2 +

1 − µ2

r2

∂2A
∂µ2 + Q

dQ
dA

= 0 , (3.15)

where µ = cosθ. Low and Lou (1990) derive solutions for

dQ
dA

= α, (3.16)

by looking for separable solutions of the form

A(r, θ) =
P(µ)
rn (3.17)
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Q(A) = aA1+1/n (3.18)

where a and n are constants and the scalar function P satisfies the nonlinear differential
equation:

(1 − µ2)
d2P
dµ2 + n(n + 1)P + a2 1 + n

n
P1+2/n = 0 (3.19)

Equation (3.19) is not exactly the Legendre differential equation because of the third term
which is not derivative of P with respect to µ. Let us demand that the magnetic field
vanishes at r′ → ∞, which is ensured by the forms of A and Q given by Eqs. (3.17) and
(3.18) with n taken as positive, and is well behaved along the axis of symmetry except at
the origin. The latter condition requires the Bθ and Bφ vanish along the axis µ = 1, −1,
which by equations (3.14), (3.17) and (3.18) implies that

P = 0 at µ = −1, 1 (3.20)

The solution to the boundary-value problem posed by equations (3.19) and (3.20) generate
the force-free fields we seek (see Low and Lou 1990, for detailed description). Not all
prescriptions of the free constants a and n lead to a solution of equation (3.19) satisfy
the boundary condition (3.20) we have an eigenvalue problem to which we now turn our
attention. For instance, the case a = 0 corresponds to a potential field with α = 0, which
we are not interested in.

Low and Lou (1990) suggested that these field solutions are ideal solution for testing
methods of reconstructing force-free fields from boundary values. They have become a
standard test for nonlinear force-free extrapolation codes in cartesian geometry (Amari
et al. 1999, 2006, Wheatland et al. 2000, Wiegelmann and Neukirch 2003, Yan and Li
2006, Inhester and Wiegelmann 2006, Schrijver et al. 2006). For that purpose, the origion
of the spherical coordinate system is placed outside the computational box to avoid the
singularity of the solution and the symmetry axis is tilted obliquely by Φ = π/10 to the
edges of the computational box.

Here we use the Low and Lou solution for n = 1 and m = 1 where P1,1 is the associate
Legendre function of the first kind. The original equilibrium is invariant in φ (azimuth
angle the coordinate system), but we can produce a Φ-variation in our coordinate system
by placing the origin of the solution at l = 0.25 solar radii from the Sun centre (see Low
and Lou 1990, for detailed equations of transformation). The corresponding configuration
is then no longer symmetric in φ with respect to the solar surface, as seen in the magnetic
field map in the top row of Fig. 3.5, which shows the three components Br, Bθ, and Bφ

in the photosphere, respectively. Fig. 3.3a) shows the magnetic field configuration that
has been generated using this method. We remark that we use the solution only for the
purpose of testing our code and the equilibrium is not assumed to be a realistic model for
the coronal magnetic field. We do the test runs on spherical grids (r, θ, φ) of 20 × 48 × 62
and 40 × 96 × 124 grid points.

3.1.3.2 Figures of merit

In order to judge the accuracy of an extrapolation method, we apply it to the above test
case. The comparison between the calculated field and the reference field will give infor-
mation about the quality of the extrapolation method. To quantify the degree of agreement
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between the vector field B (for the model field, which is used as a reference to test the
code) and b (the NLFF model solutions derived from boundary field extracted from B)
specified on identical sets of grid points, we use five metrics that compare either local
characteristics (e.g., vector magnitudes and directions at each point) or the global energy
content in addition to the force and divergence integrals as defined in Schrijver et al.
(2006). The vector correlation (Cvec) metric generalizes the standard correlation coeffi-
cient for scalar functions given by

Cvec =

∑
i Bi · bi√∑

i |Bi|
2
√∑

i |bi|
2
, (3.21)

where Bi and bi are the vectors at each point grid i. If the vector fields are identical, then
Cvec = 1; if Bi ⊥ bi , then Cvec = 0.

The second metric, CCS is based on the Cauchy-Schwarz inequality(|a · b| ≤ |a||b| for
any vector a and b)

CCS =
1
N

∑
i

Bi · bi

|Bi||bi|
, (3.22)

where N is the number of vectors in the field. This metric is mostly a measure of the
angular differences between the vector fields: CCS = 1, when B and b are parallel, and
CCS = −1, if they are anti-parallel; CCS = 0, if Bi ⊥ bi at each point.

We use two measures of the vector errors, one normalized to the average vector norm,
one averaging over relative differences. The normalized vector error EN is defined as

EN =
∑

i

|bi − Bi|/
∑

i

|Bi|, (3.23)

The mean vector error EM is defined as

EM =
1
N

∑
i

|bi − Bi|

|Bi|
, (3.24)

Unlike the first two metrics, perfect agreement between the two vector fields results in
EM = EN = 0.
Since we are also interested in determining how well the models estimate the energy
contained in the field, we use the total magnetic energy in the model field normalized to
the total magnetic energy in the reference field as a global measure of the quality of the fit

ε =

∑
i |bi|

2∑
i |Bi|

2 , (3.25)

where ε = 1 for closest agreement between the model field and the nonlinear force-free
model solutions.

3.1.3.3 Application to ideal boundary conditions

The code has been used for different kind of boundary conditions extracted from the Low
and Lou model magnetic field.
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J Case 1: The boundary fields are specified on V ′(all the six boundaries ∂V ′ of V ′).

J Case 2: The boundary fields are only specified on the photosphere (the lower
boundary of the physical domain V ′) and V & V ′ are identical (no buffer zone,
see Fig. 3.2).

J Case 3: The boundary fields are only specified on the photosphere (the lower bound-
ary of the physical domain V ′) and with boundary layers (at the buffer zone) of
nd = 6 grid points toward top and lateral boundaries of the computational box V
(see Fig. 3.2).

For the boundary conditions in case 1, the field line plot (as shown in Fig. 3.3) agrees
with original Low and Lou reference field because the optimization method is constrained
by boundary conditions on all boundaries of the computational volume. This shows that
the code was technically correct in returning the right answer if fed by consistent and
complete boundary conditions.

For the boundary conditions in case 2, we used an optimization code without a weight-
ing function (nd = 0) and with a photospheric boundary. Here the boundaries of the
physical domain coincide with the computational boundaries. The lateral and top bound-
aries assume the value of the initial potential field during the iteration. Some low-lying
field lines are represented quite well (right-hand picture in Fig. 3.3 second row). The
(observed) bottom boundary has a higher influence on these fields here than the lateral
and top boundary. Other field lines, especially high-reaching field lines, deviate from the
analytic solution because they feel the influence of the lateral and top boundaries which
were fixed to the wrong potential field values.

For the boundary condition in case 3, we implemented an optimization code with
a weighting function of nd = 6 grid points outside the physical domain. This reduces
the effect of top and lateral boundaries where B is unknown as ω drops from 1 to 0
outward across the boundary layer around the physical domain. In this work, our physical
domain V ′ is a wedge-shaped volume, with two latitudinal boundaries at θmin = 20◦ and
θmax = 160◦ , two longitudinal boundaries at φmin = 90◦ and φmax = 270◦, and two radial
boundaries at the photosphere (r = 1R�) and r = 2R�.

The comparison of the field lines of the Low & Lou model field with the reconstructed
field of case 3 (the last picture in Fig. 3.3) shows that the quality of the reconstruction
improves significantly with the use of the weighting function. Additionally, the size and
shape of a boundary layer influences the quality of the reconstruction (Wiegelmann 2004)
for cartesian geometry. The larger computational box displaces the lateral and top bound-
ary further away from the physical domain and its influence on the solution consequently
decreases. As a result, the magnetic field in the physical domain is dominated by the
vector magnetogram data, which is exactly what is required for application to measured
vector magnetograms. A potential field reconstruction obviously does not agree with the
reference field. In particular, we are unable to compute the magnetic energy content of
the coronal magnetic field to be approximately correct. The figures of merit show that the
potential field is far away from the true solutions and contains only 67.6% of the magnetic
energy. The degree of convergence towards a force-free and divergence-free model solu-
tion can be quantified by the integral measures of the Lorentz force and divergence terms
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3 Optimization and preprocessing procedures in spherical geometry

(a) Original (b) Potential

(c) Case 1 (d) Case 2

(e) Case 3

Figure 3.3: The figure shows the original reference field, a potential field, and the results
of a nonlinear force-free reconstruction with different boundary conditions (case 1-3, see
text). The color coding shows Br on the photosphere and the disc centre corresponds to
180◦ longitude.
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in the minimization functional in Eq. (3.1), computed over the entire model volume V:

Lf =

∫
V
ω(r, θ, φ)B−2

∣∣∣(∇ × B) × B
∣∣∣2r2 sin θ dr dθ dφ,

Ld =

∫
V
ω(r, θ, φ)

∣∣∣∇ · B∣∣∣2r2 sin θ dr dθ dφ,

Lω = Lf +Ld,

where Lf and Ld measure how well the force-free and divergence-free conditions are
fulfilled, respectively. In Table 3.1, we list the figures of merit for our extrapolation
results as introduced in previous section. Column 1 indicates the corresponding test case.
Columns 2− 4 show how well the force and solenoidal condition are fulfilled, where Col.
2 contains the value of the functional Lω as defined in Eq.(3) and Lf and Ld in Cols.
3 and 4 correspond to the first (force-free) and second (solenoidal free) part of Lω. The
evolution of the functionalLω, |J×B|, and |∇·B| during the optimization process is shown
in Fig. 3.4. One can see from this figure that the calculation does not converge for case 2,
because of the problematic top and lateral boundary values which were set to the values
of the equivalent potential field. Column 5 contains the L∞ norm of the divergence of the
magnetic field

‖ ∇ · B ‖∞= sup
x∈V
|∇ · B|

and Col. 6 lists the L∞ norm of the Lorentz force of the magnetic field

‖ J × B ‖∞= sup
x∈V
|J × B|.

The next five columns of Table 3.1 contain different measurements comparing our recon-
structed field with the semi-analytic reference field. The two vector fields agree perfectly
if Cvec, CCS, and ε are unity and if EN and EM are zero. Column 12 contains the number of
iteration steps until convergence, and Col. 13 shows the computing time on 1 processor.

A comparison of the original reference field (Fig. 3.3(a)) with our nonlinear force-free
reconstructions (cases 1-3) shows that the magnetic field line plots agree with the original
for case 1 and case 3 within the plotting precision. Case 2 shows some deviations from
the original, but the reconstructed field lines are much closer to the reference field than the
initial potential field. The visual inspection of Fig. 3.3 is supported by the quantitative cri-
teria shown in Table 3.1. For case 1 and case 3 the formal force-free criteria (Lω,Lf ,Ld)
are smaller than the discretization error (see Column 2 of Table 3.1) of the analytic solu-
tion and the comparison metrics show almost perfect agreement with the reference field.
The comparison metrics (of Table 3.1) show that there is a discrepancy between the refer-
ence field and case 2 as the magnetic field solution is affected by the nearby problematic
top and lateral boundaries. In Fig. 3.3 we compare magnetic field line plots of the original
model field with a corresponding potential field and nonlinear force-free reconstructions
with different boundary conditions (case 1 - case 3). The colour coding shows the radial
magnetic field in the photosphere, as also shown in the magnetogram in Fig. 3.5(a). The
images show the results of the computation on the 20 × 48 × 62 grid.
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Figure 3.4: Evolution of Lω (as defined in Eq. 3), max(|force|), and max(|div B|) during
the optimization process. The solid line corresponds to case 3, the dash-dotted line to case
1, the long-dashed line to case 2.
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3.2 Preprocessing procedure in spherical geometry
It has been already mentioned that the magnetic field is not force-free in either the photo-
sphere or the lower chromosphere (with the possible exception of sunspot areas, where the
field is exceptionally strong). Furthermore, measurement errors, in particular for the trans-
verse field components (eg. perpendicular to the line of sight of the observer), will destroy
the compatibility of a magnetogram with the condition of being force-free. One way to
ease these problems is to preprocess the magnetograph data as suggested by Wiegelmann
et al. (2006). The vector components of the total magnetic force and the total magnetic
torque on the volume considered are given by six boundary integrals that must vanish if
the magnetic field is force-free in the full volume (Molodensky 1969, Aly 1984, 1989,
Low 1985). The preprocessing changes the boundary values of B within the error mar-
gins of the measurement in such a way that the moduli of the six boundary integrals are
minimized. The resulting boundary values are expected to be more suitable for an ex-
trapolation into a force-free field than the original values. In the practical calculations,
the convergence properties of the preprocessing iterations, as well as the calculated fields
themselves, are very sensitive to small-scale noise and apparent discontinuities in the
photospheric magnetograph data. This problem should, in principle, disappear if small
spatial scales were sufficiently resolved. However, the numerical effort for that would be
enormous. The small-scale fluctuations in the magnetograms are also presumed to affect
the solutions only in a very thin boundary layer close to the photosphere (Fuhrmann et al.
2007). Therefore, smoothing of the data is included in the preprocessing.

In this work, we develop a spherical version of both the preprocessing and the op-
timization code for restricted parts of the Sun (not full sphere, but relatively larger area
which could accommodate multi-active regions). We follow the suggestion of Wiegel-
mann et al. (2006) and generalize their method of preprocessing photospheric vector
magnetograms to spherical geometry just by considering the curvature of the Sun’s sur-
face for larger fields of view. We derive force-free consistency criteria and describe the
preprocessing procedure in spherical geometry in next subsections. For testing, we use
a known semi-analytic force-free model and apply the method to different noise mod-
els. We also investigate first ideal model data and later data that contain artificial noise.
To deal with noisy data and data with other uncertainties, we developed a preprocessing
routine in spherical geometry. While preprocessing does not model the details of the in-
terface between the forced photosphere and the force-free base of the solar corona the
procedure helps us to find suitable boundary conditions for a force-free modelling from
measurements with inconsistencies.

3.2.1 Boundary consistency criteria in spherical geometry

A more fundamental requirement of the boundary data is its consistency with the force-
free field approximation. As shown by Molodensky (1969) and Aly (1989), a balance
between the total momentum and angular momentum exerted onto the numerical box in
cartesian geometry by the magnetic field leads to a set of boundary integral constraints
on the magnetic field. These constraints should also be satisfied on the solar surface for
the field at the coronal base in the vicinity of a sufficiently isolated magnetic region and
in a situation where there is no rapid dynamical development. As explained in detail in
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Molodensky (1974), the sense of these relations is that on average a force-free field cannot
exert a net tangential force on the boundary or shear stresses along axes lying along the
boundary. In summary, the boundary data for the force-free extrapolation should fulfill
the following conditions:

1. The boundary data should coincide with the photospheric observations within mea-
surement errors.

2. The boundary data should be consistent with the assumption of a force-free mag-
netic field in the corona above the photosphere where the magnetic field is mea-
sured.

3. For computational reasons (finite differences), the boundary data should be suffi-
ciently smooth.

Additional a-priori assumption is about the photospheric data are that the magnetic flux
from the photosphere is sufficiently distant from the boundaries of the observational do-
main and that the net flux is balanced2, i.e.,∫

S
Br(r = 1Rs, θ, φ)dΩ = 0, (3.26)

where S is the area of a bottom boundary of the physical domain on the photosphere.
Generally, the flux balance criterion must be applied to the entire, closed surface of

the numerical box. However, we can only measure the magnetic field vector on the bot-
tom photospheric boundary and the contributions of the lateral and top boundary remain
unspecified. However, if a major part of the known flux from the bottom boundary is
uncompensated, the final force-free magnetic field solution will depend markedly on how
the uncompensated flux is distributed over the other five boundaries. This will result in
a major uncertainty on the final force free magnetic field configuration. We therefore
demand that the flux balance is satisfied with the bottom data alone (Wiegelmann and
Inhester 2006). If this is not the case, we classify the reconstruction problem as not be-
ing uniquely solvable within the given box. Aly (1989) used the virial theorem to define
the conditions that a vector magnetogram must fulfill to be consistent with the assump-
tion of a force-free field above in cartesian geometry. Let us formulate the force-free and
torque-free conditions for spherical geometry as in Sakurai (1994).

Integrated forms of the equation for the free-force magnetic fields were summarized
by Aly (1989, 1988). The Lorentz force is

F =
1

4π
(∇ × B) × B (3.27)

2The positive and negative flux within the domain should be balanced so that the net flux is zero. The
need for flux balance is not mathematical requirement but, imbalance of flux in a region implies the exis-
tence of compensating flux outside. Therefore, the flux imbalance means that the spatial coverage of the
data itself is incomplete for the problem to be solved, and it will necessarily lead to an incorrect results.
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where B is the magnetic field vector. By integrating Eq. (3.27) over a volume V sur-
rounded by a surface S one can obtain a global force-balance equation.∫

V
FdV =

∫
V

(∇ × B) × BdV = 0 (3.28)

But using the vector identity

∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A (3.29)

Where if A = B, the identity reduces to

(∇ × B) × B = −∇(
1
2

B2) + (B · ∇)B (3.30)

Substituting equation (3.30) into equation (3.28) and using Gauss divergence theorem one
can find,

1
2

∫
S

B2dS −
∫

S
(B · dS)B = 0 (3.31)

The vector dS is directed into the volume V . We will consider the equation described
above in spherical polar coordinates (r, θ, φ), with usual axes. The volume V is space
outside of a sphere of radius R� and the origin of the vector r is at the center of the sphere
(Sun). With dS = dsêr and ds = R2

� sin θdθdφ
The force balance equation (3.31) is still valid if S is spherical surface. For magnetic field
vector,

B = Brêr + Bθêθ + Bφêφ
with

B · dS = Brds

equation (3.31) can be written as∫
S

1
2

(B2
r + B2

θ + B2
φ)dS −

∫
S

Brds(Brêr + Bθêθ + Bφêφ) = 0 (3.32)

Notice that the spherical unit vectors vary over S . For the numerical evaluation, we
therefore calculate the cartesian components of Eq. (3.32). One can derive the force and
torque balance equations for the three components as the following: For force-balance
condition along x-axis, we have ∫

r>R�
FxdV = 0

Multiplying equation (3.32) by êx

êx ·
[ ∫

S

1
2

(B2
r + B2

θ + B2
φ)dS −

∫
S

Brds(Brêr + Bθêθ + Bφêφ)
]

= 0
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With the spherical unit vectors

êr = sin θ cos φêx + sin θ sin φêy + cos θêz

êθ = cos θ cos φêx + cos θ sin φêy − sin θêz

êφ = − sin φ êx + cos φêy

, and hence
êx · êr = sin θ cos φ

êx · êθ = cos θ cos φ

êx · êφ = − sin φ

Using those conditions one can arrive at∫
S

[1
2
(
B2
θ + B2

φ − B2
r
)

sin θ cos φ − BrBθ cos θ cos φ + BrBφ sin φ
]
dΩ = 0 (3.33)

Similarly for force-balance condition along y-component∫
r>R�

FydV = 0

êy ·
[ ∫

S

1
2

(B2
r + B2

θ + B2
φ)dS −

∫
S

Brds(Brêr + Bθêθ + Bφêφ)
]

= 0

where
êy · êr = sin θ sin φ

êy · êθ = cos θ sin φ

êy · êφ = cos φ

Using those conditions one can arrive at∫
S

[1
2
(
B2
θ + B2

φ − B2
r
)

sin θ sin φ − BrBθ cos θ sin φ − BrBφ cos φ
]
dΩ = 0 (3.34)

For force-balance condition along z-axis∫
r>R�

FzdV = 0

where
êz · êr = cos θ

êz · êθ = − sin θ

êz · êφ = 0

∫
S

[1
2
(
B2
θ + B2

φ − B2
r
)

cos θ + BrBθ sin θ
]
dΩ = 0 (3.35)
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3.2 Preprocessing procedure in spherical geometry

These equations (3.33), (3.34) and (3.35) are in terms of Cartesian components of force.

For the torque balance equations, the volume integral of torque in the box must vanish.∫
V

(
r × F

)
dV = 0

Using Gauss divergence theorem this will reduce to∫
V

(
r × F

)
dV =

1
2

∫
S

B2(r × dS
)
−

∫
S

(
r × B

)(
B · dS

)
= 0

We have r = R�êr ,
(
r × dS

)
= 0 and

(
B · dS

)
= BrdΩ

The above equation reduces to ∫
S

(
r × B

)
BrdΩ = 0 (3.36)

Using the cross product
r × B = 0êr − R�Bφêθ + R�Bθêφ

then equation (3.36) can be written as∫
S

[
− R�Bφêθ + R�Bθêφ]BrdΩ = 0 (3.37)

Hence the torque balance along each components will be

êx ·
[ ∫

S

(
− R�Bφêθ + R�Bθêφ

)
BrdΩ

]
= 0

Which is actually reducing to∫
S

Br
(
Bφ cos θ cos φ + Bθ sin φ

)
dΩ = 0 (3.38)

Similarly

êy ·
[ ∫

S

(
− R�Bφêθ + R�Bθêφ

)
BrdΩ

]
= 0

One can find ∫
S

Br
(
Bφ cos θ sin φ − Bθ cos φ

)
dΩ = 0 (3.39)

Finally

êz ·
[ ∫

S

(
− R�Bφêθ + R�Bθêφ

)
BrdΩ

]
= 0

One can find ∫
S

BrBφ sin θdΩ = 0 (3.40)
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3 Optimization and preprocessing procedures in spherical geometry

1. The total force on the boundary has to vanish because force-free fields can, on aver-
age, not exert pressure on the photospheric boundary S and cannot induce shear stresses
along axes parallel to the boundaries, i.e.

F1 =

∫
S

[1
2
(
B2
θ + B2

φ − B2
r
)

sin θ cos φ − BrBθ cos θ cos φ + BrBφ sin φ
]
dΩ = 0, (3.41)

F2 =

∫
S

[1
2
(
B2
θ + B2

φ − B2
r
)

sin θ sin φ − BrBθ cos θ sin φ − BrBφ cos φ
]
dΩ = 0, (3.42)

F3 =

∫
S

[1
2
(
B2
θ + B2

φ − B2
r
)

cos θ + BrBθ sin θ
]
dΩ = 0 (3.43)

2. The total torque on the boundary vanishes or force-free fields cannot induce rota-
tional moments along the boundary

T1 =

∫
S

Br
(
Bφ cos θ cos φ + Bθ sin φ

)
dΩ = 0, (3.44)

T2 =

∫
S

Br
(
Bφ cos θ sin φ − Bθ cos φ

)
dΩ = 0, (3.45)

T3 =

∫
S

BrBφ sin θdΩ = 0 (3.46)

The relations (3.41) - (3.46) are always fulfilled for potential magnetic fields because of
the vanishing electric currents (J = 0) which could be created, e.g., by currents at one side
of the plane S . However, if currents flow on either side of S both impulse and momentum
can be transferred from one side to the other and the distribution of the field in the plane
may not satisfy these relations (Molodensky 1974).

As with the flux balance, these criteria must in general, be applied to the entire surface
of the numerical box. Since we assumed that the photospheric flux is sufficiently concen-
trated in the center and the net flux is in balance, we can expect the magnetic field on
the lateral and top boundaries to remain weak and hence these surfaces do not represent
a significant contribution to the integrals of the constraints above. We therefore impose
the criteria on the bottom boundary alone. From this beginning, we use the following
notation for simplicity:

E−B =
1
2
(
B2
θ + B2

φ − B2
r
)
, EB =

∫
S

(
B2

r + B2
θ + B2

φ

)
dΩ ,

B1 = Bθ cos θ cos φ − Bφ sin φ , B2 = Bθ cos θ sin φ + Bφ cos φ ,

B3 = Bφ cos θ cos φ + Bθ sin φ , B4 = Bφ cos θ sin φ − Bθ cos φ

To quantify the quality of the vector magnetograms with respect to the above criteria, we
introduce three dimensionless parameters similar to those in Wiegelmann et al. (2006),
but now for spherical geometry:

1. The flux balance parameter

εflux =

∫
S

BrdΩ∫
S
|Br|dΩ
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3.2 Preprocessing procedure in spherical geometry

2. The force balance parameter

εforce =
|F1| + |F2| + |F2|

EB

=
(∣∣∣ ∫

S

[
E−B sin θ cos φ − BrB1

]
dΩ

∣∣∣ +
∣∣∣ ∫

S

[
E−B sin θ sin φ − BrB2

]
dΩ

∣∣∣
+

∣∣∣ ∫
S

[
E−B cos θ + BrBθ sin θ

]
dΩ

∣∣∣)/EB

3. The torque balance parameter

εtorque =
|T1| + |T2| + |T2|

EB

=
(∣∣∣ ∫

S
BrB3dΩ

∣∣∣ +
∣∣∣ ∫

S
BrB4dΩ

∣∣∣ +
∣∣∣ ∫

S
BrBφ sin θdΩ

∣∣∣)/EB

An observed vector magnetogram is then flux-balanced and consistent with the force-free
assumption if: εflux � 1, εforce � 1 and εtorque � 1.

3.2.2 Numerics of the preprocessing procedure

The strategy of preprocessing is to define a functional L of the boundary values of B,
such that on minimizing L the total magnetic force and the total magnetic torque on the
considered volume, as well as a quantity measuring the degree of small-scale noise in the
boundary data, simultaneously become small. Each of the quantities to be made small is
measured by an appropriately defined subfunctional included in L. The different subfunc-
tionals are weighted to control their relative importance. Even if we choose a sufficiently
flux balanced isolated active region (εflux � 1), we find that the force-free conditions
εforce � 1 and εtorque � 1 are not usually fulfilled for measured vector magnetograms. We
therefore conclude, that force-free extrapolation methods should not be used directly on
observed vector magnetograms (see Gary (2001) for β > 1 in photosphere), particularly
not on very noisy transverse photospheric magnetic field measurements. The large noise
in the transverse components of the photospheric field vector, which is one order of mag-
nitude higher than on the LOS-field (∼the transverse Bθ and Bφ at the bottom boundary),
provides us freedom to adjust these data within the noise level. We use this freedom to
drive the data towards being more consistent with Aly’s force-free and torque-free condi-
tions.

The preprocessing scheme of Wiegelmann et al. (2006) involves minimizing a two-
dimensional functional of quadratic form similar to the following:

L = µ1L1 + µ2L2 + µ3L3 + µ4L4 (3.47)
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3 Optimization and preprocessing procedures in spherical geometry

Here we write the individual terms in spherical co-ordinates as:

L1 = F 2
1 + F 2

2 + F 2
3

=
(∑

p

[
E−B sin θ cos φ − BrB1

]
sin θ

)2
+

(∑
p

[
E−B sin θ sin φ (3.48)

− BrB2
]
sin θ

)2
+

(∑
p

[
E−B cos θ + BrBθ sin θ

]
sin θ

)2
, (3.49)

L2 = T 2
1 + T 2

2 + T 2
3

=
(∑

p

BrB3 sin θ
)2

+
(∑

p

BrB4 sin θ
)2

+
(∑

p

BrBφ sin2 θ
)2
, (3.50)

L3 =
∑

p

(
Br − Brobs

)2
+

∑
p

(
Bθ − Bθobs

)2
+

∑
p

(
Bφ − Bφobs

)2
, (3.51)

L4 =
∑

p

[(
∆Br

)2
+

(
∆Bθ

)2
+

(
∆Bφ

)2] (3.52)

The surface integrals are replaced by a summation
( ∫

S
dΩ → Σp sin θ∆θ∆φ, omitting the

constant ∆θ∆φ over all p grid nodes of the bottom surface grid, with an elementary surface
of sin θ∆φ × ∆θ

)
. The differentiation in the smoothing term (L4) is achieved by the usual

five-point stencil for the 2D-Laplace operator. Each of the constraints Ln is weighted by
a yet undetermined factor µn. The first term (n = 1) corresponds to the force-balance
condition, and the next (n = 2) to the torque-free condition. The following term (n = 3)
ensures that the optimized boundary condition agrees with the measured photospheric
data, and that the last term (n = 4) controls the smoothing. The 2D-Laplace operator is
designated by ∆.

The aim of our preprocessing procedure is to minimize L so that all terms Ln, if pos-
sible, become small simultaneously. This will yield a surface magnetic field:

Bmin = argmin(L) (3.53)

Besides a dependence on the observed magnetogram, the solution in Eq.(3.47) now also
depends on the coefficients µn. These coefficients are formaly necessary because the terms
Ln represent different quantities. By means of these coefficients, however, we can also
give more or less weight to the individual terms in the case where a reduction in one term
opposes a reduction in another. This competition obviously exists between the observation
term (n = 3) and the smoothing term (n = 4). The smoothing is performed consistently
for all three magnetic field components.

To obtain Eq. (3.53) by iteration, we need the derivative of L with respect to each of
the three field components at every node (q) of the bottom boundary grid. We have, how-
ever, taken into account that Br is measured with much higher accuracy than Bθ and Bφ.
This is achieved by assuming that the vertical component is invariable compared to hori-
zontal components in all terms where mixed products of the vertical and horizontal field
components occur, e.g., within the constraints (Wiegelmann et al. 2006). The relevant
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3.2 Preprocessing procedure in spherical geometry

functional derivatives of L are therefore3

∂L
∂(Bθ)q

=2µ1(Bθ sin2 θ cos φ − Br sin θ cos θ cos φ)q×∑
p

[
E−B sin θ cos φ − BrB1

]
sin θ

+ 2µ1(Bθ sin2 θ sin φ − Br sin θ cos θ sin φ)q×∑
p

[
E−B sin θ sin φ − BrB2

]
sin θ

+ 2µ1(Bθ sin θ cos θ + Br sin2 θ)q×∑
p

[
E−B cos θ + BrBθ sin θ

]
sin θ

+ 2µ2

[
(Br sin θ sin φ)q

∑
p

BrB3 sin θ

− (Br sin θ cos φ)q

∑
p

BrB4 sin θ
]

+ 2µ3(Bθ − Bθobs)q + 2µ4(∆(∆Bθ))q,

(3.54)

∂L
∂(Bφ)q

=2µ1(Bφ sin2 θ cos φ + Br sin θ sin φ)q×∑
p

[
E−B sin θ cos φ − BrB1

]
sin θ

+ 2µ1(Bφ sin2 θ sin φ − Br sin θ cos φ)q×∑
p

[
E−B sin θ sin φ − BrB2

]
sin θ

+ 2µ1(Bφ sin θ cos θ)q

∑
p

[
E−B cos θ + BrBθ sin θ

]
sin θ

+ 2µ2

[
(Br cos θ cos φ sin θ)q

∑
p

BrB3 sin θ

+ (Br cos θ sin φ sin θ)q

∑
p

BrB4 sin θ

+ (Br sin2 θ)q

∑
p

BrBφ sin2 θ
]

+ 2µ3(Bφ − Bφobs)q

+ 2µ4(∆(∆Bφ))q,

(3.55)

∂L
∂(Br)q

= 2µ3(Br − Brobs)q + 2µ4(∆(∆Br))q (3.56)

The optimization is performed iteratively by a simple Landweber iteration4, which re-

3See Appendix A.2 for partial derivative of L4 with respect to each of the three field components.
4Landweber iteration is the method used for finding successively better approximations to the zeroes (or

roots) of a real-valued function.
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3 Optimization and preprocessing procedures in spherical geometry

places

(Br)q ←− (Br)q − µ
∂L

∂(Br)q
, (3.57)

(Bθ)q ←− (Bθ)q − µ
∂L

∂(Bθ)q
, (3.58)

(Bφ)q ←− (Bφ)q − µ
∂L

∂(Bφ)q
, (3.59)

at every step. The convergence of this scheme towards a solution of Eq. (3.47) is obvious:
L has to decrease monotonically at every step as long as Eqs. (3.49)-(3.51) have a nonzero
component and if µ is sufficiently small. These terms vanish only if an extremum of L
is reached. Since L is fourth order in B, this may not necessarily be a global minimum;
in rare cases, if the step size is handled carelessly, it may even be a local maximum. In
practical calculation, this should not, however, be a problem and from our experience we
rapidly obtain a minimum Bmin of L, once the parameters µn are specified (Wiegelmann
et al. 2006).

3.2.3 Tests with different noise-models

We extract the bottom boundary of the Low and Lou equilibrium and use it as input
for our extrapolation code (see Wiegelmann 2004). This artificial vector magnetogram
(see first row of Fig. 3.5) derived from a semi-analytical solution is of course in perfect
agreement with the assumption of a force-free field above (Aly-criteria) and the result of
our extrapolation code was in reasonable agreement with the original. Truely measured
vector magnetograms are not ideal (and smooth) of course, and we simulate this effect by
adding noise to the Low and Lou magnetogram (Wiegelmann et al. 2006). We add noise
to this ideal solution in the form:

Noise model I:
δBi = nl · rn ·

√
Bi, where nl is the noise level and rn a random number in the range

−1....1 with typical Bi = 50 Gauss. The noise level was chosen to be nl = 10.0 for the
transverse magnetic field (Bθ, Bφ) and nl = 0.5 for Br. This mimics a real magnetogram
(see the middle row of Fig. 3.5) with Gaussian noise and significantly higher noise in the
transverse components of the magnetic field.

Noise model II:
δBi = nl · rn, where nl is the noise level and rn a random number in the range −1....1.
The noise level was chosen to be nl = 20.0 for the transverse magnetic field (Bθ, Bφ) and
nl = 1.0 for Br). This noise model adds noise, independent of the local magnetic field
strength.

Noise model III:
δBr = constant, δBt =

δB2
tmin√

B2
t +B2

tmin

, where we choose a constant noise level δBr of 1 and a

minimum detection level δBtmin = 20. This noise model mimics the effect in which the
transverse noise level is higher in regions of low magnetic field strength (Wiegelmann
et al. 2006).

The bottom row of Fig. 3.5 shows the preprocessed vector magnetogram (for noise
model I) after applying our procedure. The aim of the preprocessing is to use the result-
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3 Optimization and preprocessing procedures in spherical geometry

Figure 3.5: Top row: vector magnetogram derived from the Low and Lou solution.
From left to right the three components Br, Bθ & Bφ are shown). Middle row: the same
magnetogram as in the first row, but with noise added (noise model I). Bottom row:
magnetogram resulting from preprocessing of the disturbed magnetogram shown in the
second row. The magnetic fields are measured in gauss. The vertical and horizontal axes
show latitude, θ and longitude, φ on the photosphere respectively.

ing magnetogram as input for a nonlinear force-free magnetic field extrapolation. During
the iterative proccess the force-balance parameter εforce and the torque-balance parameter
εtorque decrease to zero for vector magnetogram with noise model I as shown in Fig. 3.7.
Figure 3.6 shows in panel a) the original Low and Lou solution and in panel b) a corre-
sponding potential field reconstruction. In Fig. 3.6 we present only the inner region of
the whole magnetogram (marked with black rectangular box in Fig. 3.5(a)) because the
surrounding magnetogram is used as a boundary layer (6 grid points) for our nonlinear
force-free code. The computation was done on a 26 × 60 × 74 grid including a 6 pixel
boundary layer towards the lateral and top boundary of the computational box V . In the
remaining panels of Fig. 3.6, we demonstrate the effect of the noise model (I) on the
reconstruction. The noise levels were chosen so that the mean noise was similar for all
three noise models. Fig. 3.6 (c) shows a nonlinear force-free reconstruction with noisy
data (noise model I, magnetogram shown in the central panel of Fig. 3.5), and Fig. 3.6 (d)
presents a nonlinear force-free reconstruction after preprocessing (magnetogram shown
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3.2 Preprocessing procedure in spherical geometry

(a) Original reference field (b) Potential field

(c) Field from unpreprocessed noisy data (d) Field from preprocessed noisy data

Figure 3.6: a) Some field lines for the original Low and Lou solution. b) Potential field re-
construction. c) Nonlinear force-free reconstruction from noisy data (noise model I) with-
out preprocessing. d) Nonlinear force-free reconstruction from noisy data (noise model I)
after preprocessing the vector magnetogram with our newly developed spherical code.

in the bottom panel of Fig. 3.5). After preprocessing(see Fig. 3.6 d), we achieve a far
closer agreement with the original solution (Fig. 3.6 a). Field lines are plotted from the
same photospheric footpoints in the positive polarity region of the magnetogram.

For the other noise models II and III, we find that the preprocessed data agree more
closely with the original Fig. 3.6 (a). We check the correlation of the original solution
with our reconstruction with help of the vector correlation function as defined in (3.21).

Table 3.2 confirms the visual inspection of Fig. 3.6. The correlation of the recon-
structed magnetic field with the original improves significantly after preprocessing of
the data for all noise models. We knew already from previous studies (Wiegelmann and
Neukirch 2003, Wiegelmann 2004) that noise and inconsistencies in vector magnetograms
have a negative influence on the nonlinear force-free reconstruction, and the preprocess-
ing routine described in this work shows how to overcome these difficulties in the case
of spherical geometry. As indicated by Fig. 3.8, the higher the noise level we add to
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Figure 3.7: Graph of force-balance parameter εforce and the torque-balance parameter
εtorque for vector magnetogram with noise model I against iterative steps.
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Figure 3.8: Vector correlation plotted against noise level for noise model I.

the original magnetogram, the smaller the vector correlation will be for the field recon-
structed from the magnetogram with noise, compared with the reference field. However,
the corresponding vector correlations for the field reconstructed from the preprocessed
magnetogram has no significant change as the code largely removes the noise we have
added to the original magnetogram with different noise levels.

3.3 Summary and conclusions
In this work, we have developed and tested the optimization method for the reconstruc-
tion of nonlinear force-free coronal magnetic fields in spherical geometry by restricting
the code to limited parts of the Sun, as suggested by Wiegelmann (2007). The optimiza-
tion method minimizes a functional consisting of a quadratic form of the force balance
and the solenoidal condition. Without a weighting function, all the six boundaries are
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3.3 Summary and conclusions

equally likely to influence the solution. The effect of top and lateral boundaries can be re-
duced by introducing a boundary layer around the physical domain (Wiegelmann 2004).
The physical domain is a wedge-shaped area within which we reconstruct the coronal
magnetic field that is consistent with the photospheric vector magnetogram data. The
boundary layer replaces the hard lateral and top boundary used previously. In the phys-
ical domain, the weighting function is unity. It drops monotonically inside the boundary
layer and reaches zero at the boundary of the computational box. At the boundary of the
computational box, we set the field to have the value of the potential field computed from
Br at the bottom boundary. Our test calculations show that a finite-sized weighted bound-
ary yields far more reliable results. The depth nd of this buffer boundary influences the
quality of reconstruction, since the magnetic flux in these test cases is not concentrated
well inside the interior of the box.

In this work, we have presented a method for preprocessing vector magnetogram data
with help of an optimization code in spherical geometry. The preprocessing result is
used as input for a nonlinear force-free magnetic field extrapolation. We extended the
preprocessing routine developed by Wiegelmann et al. (2006) to spherical geometry. As
a first test of the method, we use the Low and Lou solution with noise from different
noise models added. A direct use of the noisy photospheric data for a nonlinear force-free
extrapolation showed no good agreement with the original Low and Lou solution, but after
applying our newly developed preprocessing method we obtained a reasonable agreement
with the original. The preprocessing method changes the boundary data within their noise
limits to drive the magnetogram towards boundary conditions that are more consistent
with the assumption of a force-free field above. The transverse field components with
higher noise level are modified more than the radial components.

To carry out the preprocessing, we use a minimization principle. On the one hand,
we control the final boundary data to be as close as possible (within the noise level) to
the original measured data, and the data are forced to fulfill the consistency criteria and
be sufficiently smooth. Smoothness of the boundary data is required by the nonlinear
force-free extrapolation code, but also necessary physically because the magnetic field at
the basis of the corona should be smoother than in the photosphere, where it is measured.
In addition to these, we found that adding a larger amount of noise to the magnetogram
decreases its vector correlation with the model reference field whenever we reconstruct it
without preprocessing.
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4 Treatment of measurement errors
and missing data in vector
magnetograms

In a recent joint study by DeRosa et al. (2009) which deals with an observed data-set
(vector magnetogram taken with Hinode/SOT embedded in a line-of-sight magnetogram
from SOHO/MDI) different force-free codes did not find consistent solutions with stereo-
scopically reconstructed loop shapes of the same region. A major problem in this study
was that only for a part of the model region vector magnetograms were observed (in the
Hinode field-of-view, FOV) and the transverse magnetic field component Btrans was un-
known in the remaining photospheric area. In the study, the missing field components
were replaced by zeros, which was insufficient way to treat the missin data. In view of the
inconsistency of the results DeRosa et al. (2009) concluded that a successful nonlinear
force-free reconstruction requires: (1.) a large computational domain with a high resolu-
tion, which accommodates most of the connectivity within the coronal region under study,
(2.) to take into account the measurement uncertainties, in particular for the transverse
field components, and (3.) preprocessing of the observed vector field that approximates
the physics of the photosphere-to-chromosphere interface as it transforms the observed,
forced, photospheric field to a more realistic approximation of the near force-free field in
the upper chromosphere. The problem of preprocessing (3) has already been addressed in
several works (Wiegelmann et al. 2006, Fuhrmann et al. 2007, Wiegelmann et al. 2008,
Tadesse et al. 2009). The main emphasis of this chapter (partly published in Tadesse
et al. (2011a,b)) is to describe how to improve the algorithm for computing the nonlinear
force-free coronal magnetic field and how to incorporate measurement errors and how to
handle missing data in the boundary conditions. Finally, we describe the generalization
to spherical geometry.

In this work, we use a large computational domain which accommodates most of
the connectivity within the coronal region. This requires a spherical version of the opti-
mization procedure. We take uncertainties of measurements in vector magnetograms into
account and add a term to treat the measurement errors, similar to the one that has been
implemented in cartesian geometry in Wiegelmann and Inhester (2010). In the following,
the updated optimization approach for extrapolating the coronal magnetic field in spher-
ical geometry will be discussed in § 4.1 and the method to provide consistent boundary
conditions for missing data points is outlined in § 4.2. More emphasis will be given how
to use these methods on magnetograms taken from the Synoptic Optical Long-term In-
vestigations of the Sun (SOLIS) in § 4.3. We apply the code to two neighbouring active
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4 Treatment of measurement errors and missing data in vector magnetograms

regions and analyze the resulting coronal magnetic fields in § 4.4. We also apply the
code to more larger field of views with three neighbouring active regions and analyze the
resulting coronal magnetic fieldsin § 4.5. Finally, in § 4.6 a short summary is given.

4.1 Optimization procedure for missing data points and
measurement errors

The equilibrium structure of the coronal magnetic field when non-magnetic forces are
negligible, the force-free assumption is formulated as:

(∇ × B) × B = 0 (4.1)

∇ · B = 0 (4.2)

B = B̃obs on photosphere (4.3)

where B is the magnetic field and B̃obs is 2D observed surface magnetic field on photo-
sphere. Equations (4.1) and (4.2) can be solved with the help of an optimization princi-
ple, as proposed by Wheatland et al. (2000) and generalized by Wiegelmann (2004) for
cartesian geometry for fixed boundary data. The method minimizes a joint measure of
the normalized Lorentz forces and the divergence of the field throughout the volume of
interest, V as described in Chapter 3 of this thesis. Throughout this minimization, the
photospheric boundary of the model field B is exactly matched to the observed B̃obs and
possibly preprocessed magnetogram values B̃. Here in this work, we use the optimization
approach for functional (Lω) in spherical geometry (Wiegelmann 2007, Tadesse et al.
2009) along with the new method which instead of an exact match enforces a minimal
deviations between the photospheric boundary of the model field B and the magnetogram
field B̃obs by adding an appropriate surface integral term Lphoto (Wiegelmann and Inhester
2010).

Assume the Lagrangian to be minimized can be written as:

B = argmin(Lω)

Lω(B) = L f +Ld + νLphoto (4.4)

L f (B) =

∫
V
ω f (r, θ, φ)B−2

∣∣∣(∇ × B) × B
∣∣∣2r2 sin θ dr dθ dφ

Ld(B) =

∫
V
ωd(r, θ, φ)

∣∣∣∇ · B∣∣∣2r2 sin θ dr dθ dφ

Lphoto(B̃) =

∫
S

(
B̃ − B̃obs

)
·W(θ, φ) ·

(
B̃ − B̃obs

)
r2 sin θ dθ dφ

where B is the discrete vector of all magnetic field components. Lf and Ld measure
how well the force-free Eqs. (4.1) and divergence-free (4.2) conditions are fulfilled, re-
spectively. ω f (r, θ, φ) and ωd(r, θ, φ) are weighting functions. The third integral, Lphoto,
is surface integral over the photosphere which allows us to relax the field on the photo-
sphere towards force-free solution without too much deviation from the original surface
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4.2 Preprocessing for missing data points

field data. W(θ, φ) = diag(σ−2
i ) is a diagonal matrix of size m̄× m̃ where for each element

i = 1, m̄, and σ−2
i is the inverse variance of the respective field component. It may be zero

where no measurement was made or large where a measurement value is dead certain.
Typically, σ−2

i is larger for the normal components than for the horizontal boundary field
components. W(θ, φ) is the diagonal matrix defined as follows:

W(θ, φ) =

 wradial 0 0
0 wtrans 0
0 0 wtrans


Finally, this yields the iterative Landweber steps as

B(k+1) = B(k) + dtµ(∇BLω)(B(n)) + 2dtνW(θ, φ)(B̃ − B̃obs) (4.5)

where µ is constant and ν is Lagragian multiplier. Hence, the inner field values are modi-
fied as before except that the boundary field values are not the observed but the currently
iterated ones. In addition there is the iteration of the boundary values in the last term of
Eq. (4.5).

Numerical tests of the effect of the new term Lphoto were performed by Wiegelmann
and Inhester (2010) in cartesian geometry for a synthetic magnetic field vector generated
from Low & Lou model (Low and Lou 1990). They showed that this new method to
incorporate the observed boundary field allows to cope with data gaps as they are present
in SOLIS and other vector magnetogram data. Within this work, we use a spherical
geometry for the full disk data from SOLIS. We use a spherical grid r, θ, φ with nr, nθ, nφ
grid points in the direction of radius, latitude, and longitude, respectively.

4.2 Preprocessing for missing data points

The preprocessing scheme of Tadesse et al. (2009)(as presented in section 3.2.2) involves
minimizing a two-dimensional functional of quadratic form in spherical geometry as fol-
lows:

B̃ = argmin(Lp)

Lp = µ1L1 + µ2L2 + µ3L3 + µ4L4 (4.6)

where B̃ is preprocessed surface magnetic field from the input observed field B̃obs. Each
of the constraints Ln is weighted by a yet undetermined factor µn. The first term (n = 1)
corresponds to the force-balance condition, the next (n = 2) to the torque-free condition,
and the last term (n = 4) controls the smoothing. The explicit form of L1, L2, and L4 can
be found in Tadesse et al. (2009). The term (n = 3) ensures that the optimized boundary
condition agrees with the measured photospheric data. In the case of missing data points
(i.e., SOLIS/VSM ) we modified L3 with respect to the one in Eq. (3.52) as follows, to
treat those data gaps.

L3 =
∑

p

(
B̃ − B̃obs

)
·W(θ, φ) ·

(
B̃ − B̃obs

)
, (4.7)
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4 Treatment of measurement errors and missing data in vector magnetograms

In this integral, W(θ, φ) is a diagonal matrix which gives different weights to the different
observed surface field components depending on their relative measurement accuracy. A
careful choice of the preprocessing parameters µn ensures that the preprocessed magnetic
field B̃ does not deviate from the original observed field B̃obs by more than the measure-
ment errors. As the result of a parameter study in this work, we found µ1 = µ2 = 1.0,
µ3 = 0.03 and µ4 = 0.45 as optimal value for particular data set of vector magnetogram
observed on 15 May 2009 by SOLIS/VSM. We also found µ1 = µ2 = 1.0, µ3 = 0.3
and µ4 = 0.65 as optimal values for the observations on March 28, 29, and 30 2008(for
detailed descriptions of those parameters, see section 3.2 of this thesis).

4.3 The SOLIS/VSM instrument

In this study, we use vector magnetogram observations from the Vector Spectromag-
netograph (VSM; see Jones et al. 2002), which is part of the Synoptic Optical Long-
term Investigations of the Sun (SOLIS) synoptic facility (SOLIS; see Keller et al. 2003).
VSM/SOLIS currently operates at the Kitt Peak National Observatory, Arizona, and it has
provided magnetic field observations of the Sun almost continuously since August 2003.

VSM is a full disk Stokes Polarimeter. As part of daily synoptic observations, it takes
four different observations in three spectral lines: Stokes I(intensity), V (circular polariza-
tion, Q, and U (linear polarization) in photospheric spectral lines Fe I 630.15 nm and Fe
I 630.25 nm , Stokes I and V in Fe I 630.15 nm and Fe I 630.25 nm, similar observations
in chromospheric spectral line Ca II 854.2 nm, and Stokes I in the He I 1083.0 nm line
and the near-by Si I spectral line. Observations of I, Q, U, and V are used to construct a
full disk vector magnetograms, while I − V observations are employed to create separate
full disk longitudinal magnetograms in the photosphere and the chromosphere.

In this study, we use a vector magnetogram observed on 15 May 2009. The data were
taken with 1.125 arcsec pixel size and 2.71pm spectral sampling. ( In December 2009,
SOLIS/VSM cameras has been upgraded from Rockwell ( 90 Hz, 18 micron pixels ) to
Sarnoff ( 300 Hz, 16 micron pixels ). This camera upgrade has resulted in improved
spatial and spectral sampling ). The noise level for line-of-sight component is about 1
Gauss. However, noise due to atmospheric seeing may be much larger, and the final
measurement error depends on the measured flux, its spatial distribution as well as the
seeing conditions. A rough estimate suggests a noise level of a few tens of Gauss for
areas with a strong horizontal gradient of magnetic field and about 1 arcsec atmospheric
seeing.

To create a single magnetogram, the solar disk is scanned from terrestrial South to
North; it takes about 20 minutes to complete one vector magnetogram. After the scan
is done, the data are sent to an automatic data reduction pipeline that includes dark and
flat field correction. Once the spectra are properly calibrated, full disk vector (magnetic
field strength, inclination, and azimuth) magnetograms are created using two different ap-
proaches. Quick-look (QL) vector magnetograms are generated based on an algorithm
by Auer et al. (1977). The algorithm uses the Milne-Eddington model of solar atmo-
sphere, which assumes that the magnetic field is uniform throughout the layer of spectral
line formation (Unno 1956). It also assumes symmetric line profiles, disregards magneto-
optical effects (e.g., Faraday rotation), and does not separate contributions of magnetic
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4.3 The SOLIS/VSM instrument

Figure 4.1: Surface contour plot of radial magnetic field vector and vector field plot of
transverse field with black arrows.

and non-magnetic components in spectral line profile (i.e., magnetic filling factor is set
to unity). A more sophisticated inversion of the spectral data is performed later using a
technique developed by Skumanich and Lites (1987). This latter inversion (called ME
magnetogram) also employs the Milne-Eddington model of atmosphere, but it solves for
magneto-optical effects and determines magnetic filling factor (fractional contribution of
magnetic and non-magnetic components to each pixel). The ME inversion is only per-
formed for pixels with spectral line profiles above the noise level. For pixels below the
polarimetric noise threshold, magnetic field parameters are set to zero.

The 180◦ ambiguity (see chapter one section 1.2) is resolved using the Non-Potential
Field Calculation (NPFC; see Georgoulis 2005). The NPFC method was selected on the
basis of comparative investigation of several methods for 180-degree ambiguity resolution
(Metcalf et al. 2006). Both QL and ME magnetograms can be used for potential and/or
force-free field extrapolation. However, in strong fields inside sunspots, the QL field
strengths may exhibit erroneous decrease inside sunspot umbra due to, so called magnetic
saturation. For this study we choose to use fully inverted ME magnetograms. Fig. 4.1
shows a map of the radial component of the field as a contour plot with the transverse
magnetic field depicted as black arrows. For this particular dataset, about 80% of the data
pixels are undetermined and as a result the ratio of data gaps to total number of pixels is
large.
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4 Treatment of measurement errors and missing data in vector magnetograms

4.3.1 Implementing the method to SOLIS data
The method has been implemented to SOLIS data as follows:

J We compute an initial source surface potential field in the computational domain
from B̃robs, the normal component of the surface field at the photosphere at r = 1R�.

J We minimize Lω(Eqs. 4.4) iteratively without constraining B̃obs at the photosphere
boundary as in previous version of Wheatland algorithm (Wheatland et al. 2000).
The model magnetic field B at the surface is gradually driven towards the observa-
tions while the field in the volume V relaxes to force-free. If the observed field is
inconsistent, the difference B − B̃obs or B − B̃ (for preprocessed data) remains finite
depending in the control parameter ν. At data gaps in B̃obs, we set wradial = 0 and
wtrans = 0 and respective field value is automatically ignored.

J The state Lω = 0 corresponds to a perfect force-free and divergence-free state and
exact agreement of the boundary values B with observations B̃obs in regions where
wradial and wtrans are greater than zero. For inconsistent boundary data the force-
free and solenoidal conditions can still be fulfilled, but the surface term Lphoto will
remain finite. This results in some deviation of the bottom boundary data from the
observations, especially in regions where wradial and wtrans are small. The parameter
ν is tuned so that these deviations do not exceed the local estimated measurement
error.

J The iteration stops when Lω becomes stationary as ∆Lω/Lω < 10−4.

4.4 Application to two neighbouring active regions
We use the vector magnetograph data from the Synoptic Optical Long-term Investiga-
tions of the Sun survey (SOLIS) to model the coronal magnetic field. We extrapolate by
means of Eq. (4.4) both the observed field B̃obs measured above two active regions ob-
served on May 15 2009 and preprocessed surface field (B̃, obtained from B̃obs applying
our preprocessing procedure). We compute 3D magnetic field in a wedge-shaped com-
putational box V , which includes an inner physical domain V ′ and the buffer zone (the
region outside the physical domain), as shown in Fig. 4.3 of the bottom boundary on
the photosphere. The wedge-shaped physical domain V ′ has its latitudinal boundaries at
θmin = 3◦ and θmax = 42◦ , longitudinal boundaries at φmin = 153◦ and φmax = 212◦, and
radial boundaries at the photosphere (r = 1R�) and r = 1.75R�.

4.4.1 Analysis of the result
The weighting function ω f and ωd in L f and Ld in Eq. (4.4) are chosen to be unity within
the inner physical domain V ′ and decline with a cosine profile in the buffer boundary re-
gion (Wiegelmann 2004, Tadesse et al. 2009, see also chapter 3 of this thesis). They reach
a zero value at the boundary of the outer volume V . The distance between the bound-
aries of V ′ and V is chosen to be nd = 10 grid points wide. The framed region in Figs.
4.3.(a-i) corresponds to the lower boundary of the physical domain V ′ with a resolution
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4.4 Application to two neighbouring active regions

Figure 4.2: Left: Full disc vector magnetogram of May 15 2009 at 16:02UT. Middle:
SOHO/EIT image of the Sun on the same day at 16:00UT. Right: potential magnetic
field line plot of SOLIS vector magnetogram at16:02UT, that has been computed from
the observed radial component.

of 132 × 196 pixels in the photosphere. The original full disc vector magnetogram has a
resolution of 1788× 1788 pixels out of which we extracted 142× 206 pixels for the lower
boundary of the computational domain V , which corresponds to 550Mm× 720Mm on the
photosphere.

The main reason for the implementation of the new term Lphoto in Eq. (4.4) is that we
need to deal with boundary data of different noise levels and qualities or even lack some
data points completely. SOLIS/VSM provides full-disk vector-magnetograms, but for
some individual pixels the inversion from line profiles to field values may not have been
successful and field data there will be missing for these pixels. Since the previous code
described in chapter 3 of this thesis without the term Lphoto requires complete boundary
information, it can not be applied to this set of SOLIS/VSM data. In our new code, these
data gaps are treated by setting W = 0 for these pixels in Eqs. (4.4). For those pixels, for
which B̃obs was successfully inverted, we allow deviations between the model field B and
the input fields either observed B̃obs or preprocessed surface field B̃ using Eqs. (4.4) and so
that the model field can be iterated closer to a force-free solution even if the observations
are inconsistent. This balance is controlled by the Lagrangian multiplier ν as explained in
Wiegelmann and Inhester (2010). In this work we used wradial = 100wtrans for the surface
fields both from data with and without preprocessing.

Figure 4.2. shows the position of the active region on the solar disk both for SOLIS
full-disk magnetogram 1, SOHO/EIT image of the Sun observed at 195Å on the same
day at 16:00UT.2 As stated in section 2.3, the potential field is used as initial condition
for iterative minimization required in Eq. 4.4. The respective potential field is shown
in the rightmost panel of Fig. 4.2. During the iteration, the code forces the photospheric
boundary of B towards observed field values B̃obs or B̃ (for preprocessed data) and ignores
data gaps in the magnetogram. A deviation between surface vector field from model B
and B̃obs or B̃ (for preprocessed data) occurs where B̃obs is not consistent with a force-free
field. In this sense, the term Lphoto in Eq. (4.4) acts on B̃obs similarly as the preprocessing,
it generates a surface field B instead of B̃ from B̃obs which is close to B̃obs, but consistent

1http://solis.nso.edu/solis data.html
2http://sohowww.nascom.nasa.gov/data/archive
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4 Treatment of measurement errors and missing data in vector magnetograms

Figure 4.3: Top row: Radial surface vector field difference of a). modelled B with-
out preprocessing and B̃obs b). modelled Bpre and B̃obs c). initial potential and B̃obs.
Middle row:Latitudinal surface vector field difference of d). modelled B without pre-
processing and B̃obs e). modelled Bpre and B̃obs f). initial potential and B̃obs. Bottom
row:Longitudinal surface vector field difference of g). modelled B without preprocessing
and B̃obs h). modelled Bpre and B̃obs i). initial potential and B̃obs. The vertical and
horizontal axes show latitude, θ and longitude, φ on the photosphere respectively.

with a force-free field above the surface. In Fig. 4.3 we therefore compare the option of
the preprocessing and the new extrapolation code (Eq. 4.4) on B̃obs. The figure shows the
surface magnetic field differences of the preprocessed, un-preprocessed and the potential
surface fields.

In order to deternime the similarity of vector components on the bottom surface, we
calculate their pixel-wise correlations. The correlation were calculated from:

Cvec =

∑
i vi · ui√∑

i |vi|
2
√∑

i |ui|
2

(4.8)

where vi and ui are the vectors at each grid point i on the bottom surface. If the vector
fields are identical, then Cvec = 1; if vi ⊥ ui , then Cvec = 0. Table 4.1 shows correla-
tions of the surface fields from Bpre

− B̃obs (where Bpre is the model field obtained from
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4.4 Application to two neighbouring active regions

(a) Potential field (b) Field from data before preprocessing

(c) Field from preprocessed data

Figure 4.4: a) Some field lines for the Potential field reconstruction. b) Nonlinear force-
free reconstruction from SOLIS data without preprocessing. c) Nonlinear force-free re-
construction from preprocessed SOLIS data.

preprocessed surface field B̃ using Eq. (4.4)) and Bunpre − B̃obs (where Bunpre is the model
field obtained from observed surface field B̃obs using Eq. (4.4)). We have computed the
vector correlations of the two surface vector fields for the three components at each grid
points to compare how well they are aligned along each directions. From those values in
Table 4.1 one can see that the preprocessing and extrapolation with Eq. (4.4) act on B̃obs

in a similar way. Table 4.1 shows vector correlations of the surface fields from Bpre − B̃obs

(where Bpre is the model field obtained from preprocessed surface field B̃ using Eq. (4.4))
and Bunpre− B̃obs (where Bunpre is the model field obtained from observed surface field B̃obs

using Eq. (4.4)). From those values one can see that the preprocessing and extrapolation
with Eq. (4.4) act on B̃obs in a similar way.

In Fig.4.4. we plot magnetic field lines for the two configurations and in addition the
field lines of a corresponding potential field for comparison. The vector correlations of
potential field lines in 3D box to both the extrapolated NLFF with and without prepro-
cessing data are 0.741 and 0.793, respectively.
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4 Treatment of measurement errors and missing data in vector magnetograms

Table 4.1: The vector correlations between the components of surface fields from (Bpre −

B̃obs) and (Bunpre − B̃obs).

v u Cvec

(Bunpre − B̃obs)r (Bpre − B̃obs)r 0.930
(Bunpre − B̃obs)θ (Bpre − B̃obs)θ 0.897
(Bunpre − B̃obs)φ (Bpre − B̃obs)φ 0.875

Table 4.2: The magnetic energy associated with extrapolated NLFF field configurations
with and without preprocessing.

Model Enlff(1032erg) Efree(1032erg)
No preprocessing 37.456 4.915

Preprocessed 37.341 4.800

4.4.2 Magnetic energy and electric current density

To understand the physics of solar flares, including the local reorganization of the mag-
netic field and the acceleration of energetic particles, one has to estimate the free magnetic
energy available for such phenomena. This is the free energy that can be converted into
kinetic and thermal energy. From the energy budget and the observed magnetic activity in
the active region, Régnier and Priest (2007a) and Thalmann et al. (2008) investigated the
free energy above the minimum-energy state for the flare process. We estimate the free
magnetic energy to be the difference of the extrapolated force-free fields and the potential
field with the same normal boundary conditions in the photosphere. We therefore estimate
the upper limit to the free magnetic energy associated with coronal currents of the form

Efree =
1

8π

∫
V

(
B2

nlff − B2
pot

)
r2sinθ dr dθ dφ, (4.9)

where Bpot and Bnlff represent the potential and NLFF magnetic field, respectively. The
free energy for active regions in Fig.4.4 is about 5 × 1032erg. The magnetic energy asso-
ciated with the potential field configuration is found to be 32.541 × 1032erg. Hence, Enlff

exceeds Epot by 15%. Table 4.2 shows the magnetic energy associated with extrapolated
NLFF field configurations with and without preprocessing. The magnetic energy of the
NLFF field configuration obtained from the data without preprocessing is slightly larger
than for the preprocessed boundary field, as the preprocessing procedure removes small
scale structures.

The electric current density calculated from Ampére’s law, J = O×B/4π, on the basis
of spatially sampled transverse magnetic fields varies widely over an active region. In
order to investigate how errors in the vector magnetograph measurements produce errors
in the vertical electric current densities, Liang et al. (2009) have numerically simulated
the effects of random noise on a standard photospheric magnetic configuration produced
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Table 4.3: The currents and average α calculated from those pixels which are magnetically
connected. The currents are given in Ampère (A).

Inside left
active region

Between left
and right ARs

Inside right
active region

Magnetic flux (1019Gcm2) 3.32 4.61 2.08
Total current (106A) 49.6 1.58 32.17
Average α (Mm−1) 2.49 0.08 1.62

Figure 4.5: Iso-surfaces (ISs) of the absolute current density vector |J| = 100mA · m−2

computed above the active regions. Units of the axes are in pixel.

by electric currents satisfying the force-free field conditions. Even if the current density
can be estimated in the photosphere, it is not intuitively clear how the change in the
current density distribution affects a coronal magnetic configuration. Régnier and Priest
(2007b) studied such modifications in terms of the geometry of field lines, the storage of
magnetic energy and the amount of magnetic helicity. Fig. 4.5. shows Iso-surface plots
of the current density above the volume of the active region studied in Figs. 4.3 and 4.4.
There are strong current configurations above each active regions. This becomes clear
if we compare the total current in between each active region with the current from the
left to the right active region. These currents were added up from the surface normal
currents emanating from those pixels which are magnetically connected inside or across
active regions respectively. The result is shown in table 4.3. The active regions share a
decent amount of magnetic flux compared to their internal flux from one polarity to the
other. In terms of the electric current they are much more isolated. The ratio of shared to
the intrinsic magnetic flux is order of unity, while for the electric current those ratios are
much less, 1.58/49.6 and 1.58/32.17, respectively. Similarly we can calculate the average
value of α on the field lines with the respective magnetic connectivity. The averages are
shown in the second row of table 4.3. The two active regions are magnetically connected
but much less by electric currents.

4.5 Application to three neighbouring active regions

We use vector magnetograph data from the Synoptic Optical Long-term Investigations
of the Sun survey (SOLIS) measured on March 28, 29, and 30 2008. As a first step for
our work we remove non-magnetic forces from observed surface magnetic field using our
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4 Treatment of measurement errors and missing data in vector magnetograms

Figure 4.6: Surface contour plot of radial magnetic field vector and vector field plot of
transverse field with white arrows. The color coding shows Br on the photosphere. The
magnetic fields are measured in gauss. The vertical and horizontal axes show latitude, θ
(in degree) and longitude, φ(in degree) on the photosphere.

spherical preprocessing procedure. For this data set, as indicated in Fig. 4.6, for some
individual pixels the inversion from line profiles to field values have not been successful
inverted. We treat these data gaps by setting W = 0 for these pixels in Eqs. (4.4). For
those pixels, for which B̃obs was successfully inverted, we allow deviations between the
model field B and the input fields (preprocessed surface field B̃) using Eqs. (4.4) and so
that the model field can be iterated closer to a force-free solution even if the observations
are inconsistent. This balance is controlled by the Lagrangian multiplier ν as explained in
Wiegelmann and Inhester (2010). In this work we used wradial = 20wtrans for the surface
preprocessed fields.

4.5.1 Analysis of the result

We compute the 3D magnetic field above the observed surface region inside wedge-
shaped computational box of volume V , which includes an inner physical domain V ′

and a buffer zone (the region outside the physical domain). The physical domain V ′ is
a wedge-shaped volume, with two latitudinal boundaries at θmin = −26◦ and θmax = 16◦,
two longitudinal boundaries at φmin = 129◦ and φmax = 226◦, and two radial boundaries
at the photosphere (r = 1R�) and r = 1.75R� for the observation on March 29 2008. We
define V ′ to be the inner region of V (including the photospheric boundary) with ω = 1
everywhere including its six inner boundaries δV ′. We use a position-dependent weight-
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4.5 Application to three neighbouring active regions

(a) March 28 2008 15:45UT (b) March 29 2008 15:48UT (c) March 30 2008 15:47UT

(d) March 28 2008 15:45UT (e) March 29 2008 15:48UT (f) March 30 2008 15:47UT

(g) March 28 2008 16:00UT (h) March 29 2008 15:48UT (i) March 30 2008 15:48UT

Figure 4.7: Top row: SOLIS/VSM magnetograms of respective dates. Middle row:
Magnetic field lines reconstructed from magnetograms on the top panel. Bottom row:
EIT image of the Sun at 195Å on indicated dates.
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(a) March 28 2008 15:45UT

(b) March 29 2008 15:48UT

(c) March 30 2008 15:47UT

Figure 4.8: Some magnetic field lines plots reconstructed from SOLIS magnetograms
using nonlinear force-free modelling. The color coding shows Br on the photosphere.
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Table 4.4: The magnetic energy associated with extrapolated NLFF field configurations
for the three particular dates.

Date Enl f f (1032erg) Epot(1032erg) Efree(1032erg)
March 28 2008 57.34 53.89 3.45
March 29 2008 57.48 54.07 3.41
March 30 2008 57.37 53.93 3.44

ing function to introduce a buffer boundary of nd = 10 grid points towards the side and
top boundaries of the computational box, V . The weighting function, ω is chosen to be
unity within the inner physical domain V ′ and declines to 0 with a cosine profile in the
buffer boundary region (Wiegelmann 2004, Tadesse et al. 2009). The framed region(in
black) in Figs. 4.6 corresponds to the lower boundary of the physical domain V ′ with a
resolution of 114 × 251 pixels in the photosphere.

The middle panel of Fig. 4.7 shows magnetic field lines overplotted on the magne-
tograms for three consecutive dates. The top and bottom panels of Fig. 4.7 show the
position of the three active regions on the solar disk both for SOLIS full-disk magne-
togram3 and SOHO/EIT 4 image of the Sun observed at 195Å on the indicated dates and
times. Figure 4.8 shows some selected magnetic field lines from the reconstruction of the
SOLIS magnetograms, zoomed in from the middle panels of Fig. 4.7. In each column of
Fig. 4.8, the field lines are plotted from the same foot points to compare the change in
topology of the magnetic field over the period of the three days of observation. In order
to compare the fields at the three consecutive days quantitatively, we compute the vector
correlations between the three field configurations using Eq. (4.8). The correlations (Cvec)
of the 3D magnetic field vectors of March 28 and 30 with respect to the one on March
29 are 0.96 and 0.93 respectively. From these values we can see that there has been no
major change in the magnetic field configuration during this period. We also compute
the values of the free magnetic energy estimated from the excess energy of the extrap-
olated field. For the corresponding potential and force-free magnetic field, we can then
estimate an upper limit to the free magnetic energy associated with coronal currents using
Eq. (4.9). The free energy on all three days is about 3.5 × 1032erg. The magnetic energy
associated with the potential field configuration is about 54×1032erg. Hence Enlff exceeds
Epot by only 6%. Table 4.4 shows the magnetic energy associated with potential and ex-
trapolated NLFF field configurations. Fig. 4.9 shows Iso-surface plots of magnetic energy
density above the volume of the active regions. There are strong energy concentrations
above each active region. There were no major changes in the energy density over the
observation period and there was no major eruptive phenomenon during those three days
in the region observed.

The three ARs share a decent amount of magnetic flux compared to their internal flux
from one polarity to the other (see Fig. 4.8). In terms of the electric current they are much
more isolated. In order to quantify these connectivities, we have calculated the magnetic

3http://solis.nso.edu/solis data.html
4http://sohowww.nascom.nasa.gov/data/archive
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4 Treatment of measurement errors and missing data in vector magnetograms

(a) March 28 2008 15:45UT

(b) March 29 2008 15:48UT

(c) March 30 2008 15:47UT

Figure 4.9: Iso-surfaces (ISs) of the absolute NLFF magnetic energy densities for the
three consecutive dates computed within the entire computational domain.
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4.6 Summary and conclusions

Table 4.5: The percentage of the total magnetic flux shared between the three ARs. Φ1,
Φ2 & Φ3 denote magnetic flux of AR 10989(left), AR 10988(middle) & AR 10987(right)
of Fig. 4.6, respectively.

28th 29th 30th

Φαβ α = 1 2 3 α = 1 2 3 α = 1 2 3
β = 1 56.37 5.59 0.00 56.50 5.48 0.00 56.50 5.48 0.00

2 13.66 81.12 1.43 13.66 81.22 1.43 13.66 81.22 2.22
3 0.00 0.48 71.47 0.00 0.48 71.80 0.00 0.48 71.80

Elsewhere 29.97 12.82 27.10 29.84 12.82 26.77 29.84 12.82 25.98

Table 4.6: The percentage of the total electric current shared between the three ARs. I1,
I2, & I3 denote elecrtic current of AR 10989(left), AR 10988(middle) & AR 10987(right)
of Fig. 4.6, respectively.

28th 29th 30th

Iαβ α = 1 2 3 α = 1 2 3 α = 1 2 3
β = 1 82.47 0.19 0.00 86.36 0.19 0.00 94.16 0.19 0.00

2 0.65 85.25 1.42 0.65 85.25 1.42 0.65 85.25 3.55
3 0.00 0.38 82.27 0.00 0.38 82.27 0.00 0.38 82.27

Elsewhere 16.88 14.18 16.31 12.99 14.18 16.31 5.19 14.18 14.18

flux and the electric currents shared between active regions. For the magnetic flux, e.g.,
we use

Φαβ =
∑

i

|Bi · r̂|R2
� sin(θi)∆θi∆φi (4.10)

where the summation is over all pixels of AR α from which the field line ends in AR β.
For the electric current we replace the magnetic field, B, by the vertical current density
Ji · r̂ in equation (4.10). For every pixel in a single active region, we plot the field line and
locate its end point. Whenever the end point of a field line falls outside the three ARs, we
categorize it as ending elsewhere. Finally, we calculate total magnetic flux and electric
currents for those pixels with field lines ending at the same region somewhere ( it can be
either in the same active region, other ARs or elsewhere). Both table 4.5 and 4.6 show the
percentage of the total magnetic flux and electric current shared between the three ARs.
The three active regions are magnetically connected but much less by electric currents.

4.6 Summary and conclusions
We have investigated the coronal magnetic field associated with the AR 11017 on 2009
May 15 together with neighbouring active region and three ARs 10987, 10987, 10989, on
2008 March 28, 29 and 30 by analysing SOLIS/VSM data. We have used the optimization
method for the reconstruction of nonlinear force-free coronal magnetic fields in spherical
geometry by restricting the code to limited parts of the Sun (Wiegelmann 2007, Tadesse
et al. 2009). Different from previous implementations our new code allows us to deal
with missing data and regions with poor signal-to-noise ratio in the extrapolation in a
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4 Treatment of measurement errors and missing data in vector magnetograms

systematic manner. It produces a field which is closer to a force- and divergence-free field
and tries to match the boundary only where it has been reliably measured (adapted from
the cartesian version as described in Wiegelmann and Inhester 2010).

With the new Lphoto term extrapolation from B̃obs and B̃(preprocessed boundary field)
yields almost the same 3D field. However, in the latter case the iteration to minimize
Eq. (4.4) converges in fewer iteration steps. At the same time, preprocessing does not
affect the overall configuration of magnetic field and its total energy content.

We have studied the time evolution of magnetic field over the period of the three days
observed on March 28, 29, and 30 2008 and found no major changes in topologies as there
was no major eruption event. The magnetic energies calculated in the large wedge-shaped
computational box above the three active regions were not far apart in value. This is the
first study which is extrapolated NLFFF from three well separated ARs. This was made
possible by the use of spherical coordinates and it allows us to analyse linkage between
the ARs. The active regions share a decent amount of magnetic flux compared to their
internal flux from one polarity to the other. In terms of the electric current they are much
more isolated.
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5 Conclusions and outlook

The structure and evolution of the coronal magnetic field (and the associated electric
currents) that permeates the solar atmosphere play key roles in a variety of dynamical
processes observed to occur on the Sun. Such processes range from the appearance of ex-
treme ultraviolet (EUV) and X-ray bright points, to brightenings associated with nanoflare
events, to the confinement and redistribution of coronal loop plasma, to reconnection
events, to X-ray flares, to the onset and liftoff of the largest mass ejections. It is believed
that many of these observed phenomena depend on the configurations of the magnetic
field, and thus knowledge of the field configuration is becoming an increasingly impor-
tant factor in discriminating between different classes of events. The coronal magnetic
field topology is thought to be a critical factor in determining, for example, why some
active regions flare, why others do not, how filaments form, and many other topics of
interest. Within this thesis, we used a numerical method to extrapolate the magnetic field
above solar active regions from vector magnetic field measurements made in the solar
photosphere. Our method is based on the force-free assumption, i.e. the adoption that
the coronal currents are co-aligned with the magnetic field. Potential (current-free) and
nonlinear force-free field models were used to calculate the coronal magnetic field, where
the latter represents the currently most sophisticated and most realistic approximation to
the true static coronal magnetic field.

A successful application of nonlinear force-free field models to real solar data, in gen-
eral, requires a number of prerequisites. This was concluded by DeRosa et al. (2009) who
applied different existing nonlinear force-free codes to data from the Hinode Solar Optical
Telescope-SpectroPolarimeter (Hinode/SOT-SP) and where the resulting models showed
remarkable differences in the field line configuration and estimates of the free magnetic
energy. In the following, the requirements for a successful application of extrapolation
techniques to model the coronal magnetic field are listed along with the effort we have
made in this work to incorporate them.

First, large model volumes at high spatial resolution are required to accommodate the
magnetic connectivity within an active region and the surrounding environment. This re-
quirement can only be met if the computational box for the field extrapolation is enhanced
beyond a size where the solar spherical geometry can be neglected. In this work, we have
developed and tested the optimization method for the reconstruction of nonlinear force-
free coronal magnetic fields in spherical geometry by restricting the code to limited parts
of the Sun, as suggested by Wiegelmann (2007). The optimization method minimizes a
functional consisting of a quadratic form of the force balance and the solenoidal condi-
tion. Without a weighting function, all the six boundaries are equal likely to influence
the solution. The effect of top and lateral boundaries can be reduced by introducing a
boundary layer around the physical domain (Wiegelmann 2004). The physical domain
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is a wedge-shaped area within which we reconstruct the coronal magnetic field that is
consistent with the photospheric vector magnetogram data. The boundary layer replaces
the hard lateral and top boundary used previously. In the physical domain, the weighting
function is unity. It drops monotonically in the boundary layer and reaches zero at the
boundary of the computational box. At the boundary of the computational box, we set
the field to have the value of the potential field computed from Br at the bottom boundary.
Our test calculations show that a finite-sized weighted boundary yields far more reliable
results. The depth nd of this buffer boundary influences the quality of reconstruction,
since the magnetic flux in these test cases is not concentrated well inside the interior of
the box. In this way we will achieve a consistent connectivity of the local active region
magnetic field with the global field structure.

Second, the preprocessing of the lower-boundary (photospheric) vector field is neces-
sary in order to gain boundary conditions consistent with the force-free assumption. The
assumption of force-free magnetic field models is that the magnetic pressure is consid-
erably higher than the plasma pressure in the solar atmosphere. As this condition is not
true for the photosphere, non-magnetic forces can in principle not be neglected and the
photospheric magnetic field provides an inconsistent lower boundary condition for the
force-free extrapolation codes. The preprocessing ensures the transformation of the ob-
served (not force-free) photospheric field to a (nearly force-free) chromospheric-like field
in order to approximate the physics in the solar atmosphere at a chromospheric level. In
this work, we have presented a method for preprocessing vector magnetogram data input
so that the result is suitable for a nonlinear force-free magnetic field extrapolation with
help of an optimization code in spherical geometry. We extended the preprocessing rou-
tine developed by Wiegelmann et al. (2006) to spherical geometry for large field of view
(Tadesse et al. 2009). As a first test of the method, we use the Low and Lou solution
with noise added from different noise models. A direct use of the noisy photospheric
data for a nonlinear force-free extrapolation showed no good agreement with the original
semi-analytic Low and Lou solution (Low and Lou 1990), but after applying our newly
developed preprocessing method we obtained a reasonable agreement with the original.
The preprocessing method changes the boundary data within their noise limits to drive
the magnetogram towards boundary conditions that are consistent with the assumption
of a force-free field above. The transverse field components with higher noise level are
modified more than the radial components. To carry out the preprocessing, we use a min-
imization principle. On the one hand, we control the final boundary data to be as close as
possible (within the noise level) to the original measured data, and the data are forced to
fulfill the consistency criteria and to be sufficiently smooth. Smoothness of the boundary
data is required by the nonlinear force-free extrapolation code, but is also necessary phys-
ically because the magnetic field at the basis of the corona should be smoother than in the
photosphere, where it is measured. In addition, we found that adding a larger amount of
noise to the magnetogram decreases its vector correlation with the model reference field
whenever we reconstruct it without preprocessing.

Third, the measurement uncertainties in the lower boundary conditions need to be ad-
dressed. This, in particular, concerns the transverse magnetic field measurements which
posses a much lower level of accuracy than the longitudinal ones. We solve the nonlinear
force-free field equations by minimizing a functional in spherical coordinates over a re-
stricted area of the solar surface. We extend the functional by an additional term, which
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allows to incorporate measurement errors and treat regions with missing observational
data. We have applied our new algorithms to vector magnetograph data from the Synoptic
Optical Long-term Investigations of the Sun survey (SOLIS). We study two neighbouring
magnetically connected active regions observed on May 15 2009 and three neighbouring
active regions observed on March 28-30 2008. For vector magnetograms with variable
measurement precision and randomly scattered data gaps (e.g., SOLIS/VSM) the new
code yields field models which satisfy the solenoidal and force-free condition signifi-
cantly better as it allows deviations between the extrapolated boundary field and observed
boundary data within measurement errors. Data gaps are assigned to an infinite error. We
extend this new scheme to spherical geometry and apply it for the first time to real data.
As field of view of observations are getting large, one can use this newly developed spher-
ical code for full-disk data from SDO (Solar Dynamics Observatory)/HMI ( Helioseismic
and Magnetic Imager) and other ground-based observations.

Further improvement to reasonably approximate the force-free magnetic field at the
base of the corona is expected to be achieved by the supplementary incorporation of rou-
tinely measured, chromospheric, line-of-sight magnetic field data, e.g., from Synoptic
Optical Long-term Investigations of the Sun (SOLIS). Since extrapolation is ill-posed,
the reconstructed magnetic field becomes more uncertain at the larger distance from the
solar surface. We therefore hope that magnetic field observations in the corona, even if
they are indirect, will constrain and stabilize the extrapolation at greater altitudes. This
could be achieved by

1. constraining the direction of the magnetic field along stereoscopically reconstructed
loops. Even if these additional measurements are sparse, they may influence the
computed magnetic field in the whole volume. It is well know, e.g., that for solenoidal
fields, the boundary conditions are influential throughout the whole volume of the
computational box.

2. constraining the magnetic field by coronal measurements of Stokes vectors of In-
frared (IR) lines. These observations are line-of-sight (LOS) integrated and they
are not easy to interpret directly, but they could be incorporated in the functional L

(Eq. 3.1) by an additional term
∫

LOS

(
Iobs − Itheory(B, n,T )

)2
dl, where I = {Q,U,V}

are the Stokes components or line moments thereof. Unfortunately, they are not
only sensetive to the magnetic field B but also depend on the plasma density n,
and temperature T . This method requires an a-priori coronal density and temper-
ature model. Alternatively we can slove for some combination of n and T using
coronagraph data and the Stokes I-components.
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A Appendix

A.1 Derivation of F̃ and G̃ in Eq. (3.4)

Lω(B̄, B̃) =

∫
V
ω(r, θ, φ)B−2

(
Ω2

a + Ω2
b

)
r2 sin θ dr dθ dφ (A.1)

Ωa = B−2(∇ × B) × B , (A.2)

Ωb = B−2(∇ · B)B (A.3)

where B is the discrete vector of all magnetic field components which we split into those
of the interior, B̄, and those on the boundary B̃. Let us vary Lω with respect to an iterative
parameter t as:

dLω(B̄, B̃)
dt

=
dLω(B̄, B̃)

dB
·
∂B̄
∂t

+
dLω(B̄, B̃)

dB̃
·
∂B̃
∂t

(A.4)

Here we have two terms one for inner domain and the second over the boundary and our
aim is to separate all terms containing a product with ∂B̄/∂t and ∂B̃/∂t. This will allow
us to provide explicit evolution equations for B to minimize Lω.

1
2

dLω
dt

= −

∫
V
ωΩa ·

∂

∂t
[(∇ × B) × B]r2 sin θ dr dθ dφ

+

∫
V
ωΩb ·

∂

∂t
[(∇ · B)B]r2 sin θ dr dθ dφ

−

∫
V
ω(Ω2

a + Ω2
b)B ·

∂B
∂t

r2 sin θ dr dθ dφ

(A.5)

The third term has the correct form we need already. Using the following vector identities
and Gauss’s Law, one can re-formulate the first and the second term as required. Given
three vectors a, b, and c and scalar function ψ

a · (b × c) = b · (c × a) = c · (a × b) , (A.6)

(∇ × a) · b = a · (∇ × b) + ∇ · (a × b) , (A.7)

ψ∇ · a = ∇ · (aψ) − a · ∇ψ , (A.8)∫
V

(∇ · a)dV =

∫
S

a · n̂dS , (A.9)

where n̂ a unit vector normal to infinitesimal area dS . Let us expand the first and the
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second terms of Eq. (A.5), respectively as follows:∫
V
ωΩa ·

∂

∂t
[(∇ × B) × B]dV =

∫
V
ωΩa ·

[(
∇ ×

∂B
∂t

)
× B

]
r2 sin θ dr dθ dφ

+

∫
V
ωΩa ·

[
(∇ × B) ×

∂B
∂t

]
r2 sin θ dr dθ dφ

(A.10)

Hence applying Eqs. (A.6)-(A.9), one can simplify Eq. (A.10) to the form:∫
V
ωΩa ·

∂

∂t
[(∇ × B) × B]dV = −

∫
V

[ω∇ × (Ωa × B)] ·
∂B̄
∂t

r2 sin θ dr dθ dφ

−

∫
S
[ωn̂ × (Ωa × B)] ·

∂B̃
∂t

dS

+

∫
V

[∇ω × (Ωa × B)] ·
∂B̄
∂t

r2 sin θ dr dθ dφ

+

∫
V

[Ωa × ∇ × B)] ·
∂B̄
∂t

r2 sin θ dr dθ dφ

(A.11)

Similarly we can decouple the second term of Eq. (A.5) as follows:∫
V
ωΩb ·

∂

∂t
[(∇ · B)B]r2 sin θ dr dθ dφ =

−

∫
V
ω∇(Ωb · B) ·

∂B̄
∂t

r2 sin θ dr dθ dφ

+

∫
S

n̂(ωΩb · B) ·
∂B̃
∂t

dS

−

∫
V

[(Ωb · B)∇ω] ·
∂B̄
∂t

r2 sin θ dr dθ dφ

+

∫
V
ω[Ωb(∇ · B) ·

∂B̄
∂t

r2 sin θ dr dθ dφ

(A.12)

Substituting back Eqs. (A.11) and (A.12) into Eq. (A.5) and collecting the terms under
volume and surface intergrals separately we can rearrange Eq. (A.5) as follows:

1
2

dLω
dt

= −

∫
V

∂B̄
∂t
· F̃ r2 sin θ dr dθ dφ −

∫
S

∂B̃
∂t
· G̃dS (A.13)

where
F̃ = ωF + (Ωa × B) × ∇ω + (Ωb · B)∇ω , (A.14)

G̃ = ωG (A.15)

F = ∇ × (Ωa × B) −Ωa × (∇ × B) + ∇(Ωb · B) −Ωb(∇ · B) + (Ω2
a + Ω2

b)B , (A.16)

G = n̂ × (Ωa × B) − n̂(Ωb · B) (A.17)
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A.2 Finite difference scheme

A finite-difference approximation is one of the commonly used methods for numerical
solution of ordinary and partial differential equations. The approximations most often
used have second-order accuracy. The order of accuracy can be increased either by us-
ing higher-order finite difference approximations. The goal is to approximate solutions
to differential equations, i.e., to find a function (or some discrete approximation to this
function) which satisfies a given relationship between various of its derivatives on some
given region of space and/or time, along with some boundary conditions along the edges
of this domain. A finite difference method proceeds by replacing the derivatives in the
differential equations by finite difference approximations. This gives a large algebraic
system of equations to be solved in place of the differential equation, something that is
easily solved on a computer. Let first consider the more basic question of how we can
approximate the derivatives of a known function by finite difference formulas based only
on values of the function itself at discrete points.

Let us introduce a non uniform finite-difference mesh for x. Let N be be the number
of discretisation points for x. We denote u(xi) by ui at the grid point xi, where u(xi) is the
exact solution of the partial differential equation at this point. hi is the distance between
adjacent grid points where hi = xi − xi−1. Let u(x) represent a function of one variable
that, unless otherwise stated, will always be assumed to be smooth, meaning that we
can differentiate the function several times and each derivative is a well-defined bounded
function over an interval containing a particular point of interest x. Let us expand u(x)
using Taylor expansion as follows:

ui+1 = ui + hi+1u′i +
1
2

h2
i+1u′′i +

1
6

h3
i+1u′′′i + O(h4

i+1) (A.18)

ui+2 = ui + (hi+1 +hi+2)u′i +
1
2

(hi+1 +hi+2)2u′′i +
1
6

(hi+1 +hi+2)3u′′′i +O((hi+1 +hi+2)4) (A.19)

ui−1 = ui − hiu′i +
1
2

h2
i u′′i −

1
6

h3
i u′′′i + O(h4

i ) (A.20)

ui−2 = ui − (hi + hi−1)u′i +
1
2

(hi + hi−1)2u′′i −
1
6

(hi + hi−1)3u′′′i + O((hi + hi−1)4) (A.21)

Using the first two equations one can find the first derivative of u(x) as:

u′i =
ui+1 − ui

hi+1
+ O(hi+1) (A.22)

u′i =
ui − ui−1

hi
+ O(hi) (A.23)

where Eqs. (A.22) and (A.23), are termed as forward and backward differences, respec-
tively. In order to find the second order approximation of first derivative of u(x) at node
xi using the points xi−1, xi, and xi+1, let us write u′i in the form of

u′i = aui−1 + bui + cui+1 (A.24)

where a,b, and c are constants. By substituting Eqs. (A.18) and (A.20) into Eq. (A.24)
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and calculating for the constants a,b, and c one one can find:

u′i =
−h2

i+1ui−1 + (h2
i+1 − h2

i )ui + h2
i ui+1

hihi+1(hi + hi+1)
(A.25)

The left-sided, second order approximation of first derivative of u(x) at node xi using the
points xi, xi+1, and xi+2 can calculated by:

u′i = aui + bui+1 + cui+2 (A.26)

Substituting Eqs. (A.18) and (A.19) into Eq. (A.26) and calculating for the constants a,b,
and c one one can find:

u′i =
−hi+2(hi+2 + 2hi+1)ui + (hi+2 + hi+1)2ui+1 − h2

i+1ui+2

hi+1hi+2(hi+1 + hi+2)
(A.27)

Similarly one can calculate the right-sided, second order approximation of first derivative
of u(x) at node xi from the points xi, xi−1, and xi−2 using Eqs. (A.20) and (A.21) as

u′i =
h2

i ui−2 − (hi−1 + hi)2ui−1 + hi−1(hi−1 + 2hi)ui

hihi−1(hi−1 + hi)
(A.28)

The rightand left-sided approximations of the derivatives help us to find the derivative of
a function without consodering points outside the computational domain.

The second order approximation of second derivative of u(x) on a standard 3-points
stencil can be found just by adding Eqs. (A.18) and (A.20) and rearranging terms for u′′i
as:

u′′i =
d2u(xi)

dx2 = 2
hi(ui+1 − ui) − hi+1(ui − ui−1)

hihi+1(hi + hi+1)
(A.29)

A.3 Partial derivative of L4

We derive the partial derivative of L4 with respect to each of the three magnetic field
components in its discretized form as indicated in Eqs.(3.54)-(3.56). We used a five-point
stencil on the photospheric boundary for Laplace in L4. Those derivatives are carried out
at every node (q) of the bottom boundary grid. The partial derivative of Eq. (3.52) with
respect to Br, for instance can be written as

∂L4

∂(Br)q
= 2

∑
p

(∆Br)p
∂

∂(Br)q
(∆Br)p (A.30)

We demonstrated the effect of the derivative by using the conventional Laplacian ∆Br

in one dimension using three-point stencil with geometry-dependent coefficients c & a.
Then

(∆Br)p = a(Br)p−1 + c(Br)p + a(Br)p+1, (A.31)
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and after substituting Eq.(A.31) into the derivative term in Eq.(A.30), we find

∂

∂(Br)q
(∆Br)p =

∂

∂(Br)q

(
a(Br)p−1 + c(Br)p + a(Br)p+1

)
=aδp−1,q + cδp,q + aδp+1,q

(A.32)

Therefore, using equation Eq.(A.32), we can reduce Eq.(A.30) to

∂L4

∂(Br)q
=2

∑
p

(∆Br)p
(
aδp−1,q + cδp,q + aδp+1,q

)
=2

∑
p

[
a(∆Br)q+1 + c(∆Br)q + a(∆Br)q−1

]
=2

∑
p

(
∆(∆Br)

)
q.

(A.33)

One can similarly derive the partial derivative of L4 with respect to the other two field
components.
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